1

Interactivity is a primary performance measure for distributed applications
(DIAs) that enable participants at different locations to interact with each
other in real time. The interactivity performance depends on not only client-
to-server network latencies but also inter-server network latencies [11]. Zhang

Client Assignment Problems for Latency
Minimization
Gruia Calinescu * Xiaolang Wang!

July 6, 2018

Abstract

Interactivity is a primary performance measure for distributed in-
teractive applications (DIAs). In a network supporting a DIA, interac-
tivity performance depends on both client-to-server network latencies
and inter-server network latencies. An optimization problem, which
we term FCSA, is to find an optimum way how clients are assigned
to servers such that the largest latency on an interactivity path be-
tween two clients (client 1 to server 1, server 1 to server 2, then server
2 to client 2) is minimized. Previous work showed that it is NP-
hard to approximate this problem with a ratio better than 4/3 and
gave a 3-approximation algorithm. In this paper, we give a (3/2)-
approximation algorithm for FCSA, and show that it is NP-hard to
obtain a better ratio. We also give a (3/2)-approximation algorithm
when server capacity constraints are considered.

Introduction

*Gruia Calinescu is with the Department of Computer Science, Illinois Institute of

Technology, Chicago, IL 60616, USA; calinescu@iit.edu.

TXjaolang Wang is with the Department of Computer Science, Illinois Institute of

Technology, Chicago, IL 60616, USA; xwang122@hawk.iit.edu.

and Tang [11] modeled the network supporting a DIA by a graph G(V, E), in
which V' was the set of nodes and F was the set of links between the nodes.
A length d(u,v) of link (u,v) € E represented the network latency between
nodes u and v.

A network-latency optimization problem, which we term FCSA, is de-
scribed as following. The input consists of a finite set V' and two subsets of
Vi C={cy,co,...,cn} (“clients”) and S (“servers”), and a semimetric d on
V 1. A feasible solution consists of a function (“assignment”) f : C — S.
The objective is to minimize

max d(y, f(y)) + d(z, f(x)) + d(f(z), f(y)).

z,yeC

[11] uses a more complete name for FCSA: the Client Assignment Prob-
lems for Continuous Distributed Interactive Applications. Another optimiza-
tion problem with the consideration of capacity constraints on servers, which
we term FCSA-SC is a generalization of FCSA. The only difference is that the
input of FCSA-SC also contains another function (“capacity”) cap : S — Z+,
which represents the maximum number of clients that can be assigned to a
server.

[11] showed that it is NP-hard to approximate the FCSA problem with
a ratio better than 4/3, and gave a 3-approximation algorithm. It also gave
a b-approximation algorithm for FCSA-SC. In this paper, we give a (3/2)-
approximation algorithm for FCSA, and show that it is NP-hard to obtain a
better ratio. Moreover, we give a (3/2)-approximation algorithm for FCSA-
SC.

FCSA is a "bottleneck”-type problem (see [6]), such as the classic Metric
k-Center problem, covered in [10]. In the Metric k-Center problem, the
input is a metric undirected graph and a number £, and one needs to select
k vertices (the “centers”) to minimize the maximum, over vertices, of the
distance from each vertex to the closest center. Hochbaum and Shmoys [5]
give a 2-approximation for k-Center, matching the NP-Hardness result of Hsu
and Nemhauser [7]. Our results can be seen as a counterpart of these papers.
In particular, for FCSA-SC we use the technique of parametric pruning [10].

Further work on the Metric k-Center includes the capacitated version
8, 3], which has constant factor algorithms and a lower bound of 3 on the

LA function d : V x V — R is a semimetric on V iff for every iy,1i2,i3 € V, d(i1,i1) = 0,
d(il,ig) Z O, d(il,ig) = d(ig,il), and d(il,ig) + d(ig,ig) Z d(ll,lg) If, in addition,
d(i1,i2) = 0 implies i1 = i, then d is a metric.

best possible approximation. [9, 1, 4] obtain approximation algorithms for
Metric k-Center in directed metric graphs, matching (up to a constant) the
hardness results in [2].

2 The algorithm for FCSA

For every client ¢; and server s,, compute L(i,z) = maxcec, j+i d(¢, Sz) +
d(ss,¢j). Then let z; = argmin, L(7, x), breaking ties arbitrarily.

Claim 1 For all clients ¢;, we have OPT > L(i,x;), where OPT is the
objective of the optimal solution.

Proof: Let the optimal solution assigns client ¢; to server s;« (for all j).
Then, for all clients ¢; # ¢;, we have OPT > d(c;, s;+)+d(si, Sj+)+d(c;, $j+) >
d(c;, si+) + d(si,¢;) (we used the triangle inequality). As this holds for all
¢; # ¢, we deduce OPT > L(i,7*). From the definition of x;, we have
L(i,7*) > L(i,z;) and the claim follows.
u
Let L = max.,cc L(i,2;). Then:

Corollary 2 OPT > L.

Our algorithm returns the best of the following m + 1 solutions:
o Assign all clients to server s,,.

e Assign all clients to server s,,.

o ...

e Assign all clients to server s, .

e For all 7, assign client ¢; to server s,..

It is straightforward to implement this algorithm in polynomial time. Assume
that our input is a distance matrix of size (m + n)?, where m and n are the
number of clients and servers respectively. For each server s;, we can find
two clients with longest and second longest distances to it in O(m) steps,
we call them y; and z; respectively (if more than one clients have the same
longest distance to the server, arbitrarily choose two of them as y; and z;).

Then, we can find z; for a client ¢; by finding a server s; with minimum
d(c;, sj) +d(sj,y;) as x;; specially, if ¢; is the y; for server s;, we use value
d(c;, s;) + d(sj, z;) instead of d(c;, s;) + d(sj,y;) for this server. Thus in
O(m-n) steps, can we find z; for all clients. There are n+ 1 solutions. Each
of the first n solutions takes only constant time, since an assignment of all
clients to server s; returns d(s;, y;) +d(s;, zj). The last solution takes O(m?)
steps: we need to calculate the objective for each pair of clients then return
the maximum among them. Therefore, in conclusion, our algorithm has a
time complexity O(m - (n +m)).

Theorem 3 The algorithm above is a (3/2)-approzimation for FCSA.

Proof: In the first case, there exists a client ¢; such that d(c;, s,,) > L/4.
Then we look at the solution that assigns all the clients to server s,,. First,
we notice that for any client ¢; # ¢;, we have

d(ci, Su;) + d(Suys 82;) + d(cj, 52,) < L.
Second, we notice that for all ¢; # ¢;, we have
d(cj, 82;,) < L —d(ci,54,) < (3/4)L.
Therefore, for all ¢; # ¢; and ¢; € {c¢j, ¢}, we have:
d(cj, 8z;) + (S, Sz) + d(ck, 52,) < 2(3/4)L = (3/2)L,

which combined with Corollary 2 finishes the proof in the first case.

In the second and the last case, we have that for all clients ¢;, d(c;, s,) <
L/4. We look at the last solution, where each client ¢; is assigned to its s,,.
Consider now two distinct clients ¢; and c;, we have

d(cj, Sz;) + d(Sa;, 52,) + d(Cr, 5z,,) (¢, 82;) + d(8q;, k) + d(ck, S2,) + d(ck, 5z,)
L(j,z;) + 2d(ck, Sz,,)

L+ 2d(cg, z,)

L+2(L/4)

(3/2)L.

[IA A A A
U

The first inequality comes from the triangle inequality, the second inequality
comes from the definition of L(j,z;), the third inequality comes from the

4

definition of L, and the fourth inequality comes from the fact we are in the
second case. Combined with Corollary 2, this finishes the proof in the second
and final case. m

Figure 1 gives a tight example of (3/2)-approximation using our algo-
rithm. There are three clients (c¢1, c2 and ¢3) and six servers (sy1, s12, S2.1,
S22, s31 and s3o). The distance between two vertices a and b without an
edge (a,b) is the length of the shortest path between them. For example,
d(s11,512) = 2 + 2¢, where € is any value greater than 0. Assigning all
clients to one of the servers among s, (S12), Sz, (S21) and s, (s31) has a
smallest objective 6 (assigning all clients to s; 2). Assigning each client ¢; to
its s,, has an objective 6 4+ €. Our algorithm returns the best result among
four solutions above, which is 6. The optimal solution is to assign ¢; to s; 1,
co 1o s91 and c3 to s3 o with an objective 4 + 2e. By making € be arbitrarily
small, we obtain that the approximation ratio of our algorithm is exactly
3/2.

C2 C3

Figure 1: Example of tight 3/2-approximation for FCSA

3 Inapproximability result

Consider the following reduction from 3SAT to FCSA (part of the construc-
tion is the textbook reduction from 3SAT to Clique). Let ® be a 3SAT
Boolean formula. For every clause C; with literal z; ,z;,,x;,, produce a
client ¢; at distance 1 to servers s;1, s;2, and s;3. For two servers s;; and
s, make the distance between them 2 if j # j’ and the two literals x;, and
xj are not complementary of each other. Use shortest paths to determine
the distance between other pairs of vertices. Call the constructed FCSA in-
stance f(®). Figure 2 is an example of an FCSA instance constructed from
a 3SAT instance.

Figure 2: Example of the FCSA instance constructed from the 3SAT & =
(x1 VT V) A (T VI Vas) A(z1 VIV Z3). A solid edge has length 2 and
a dashed edge has length 1. The distance between two vertices without an
edge between them is the length of the shortest path from one to the other.

Claim 4 If the formula ® is satisfiable, then f(®) has a solution of objective
4.

Proof: In a satisfying truth assignment g of ®, each clause C; has (at least)
one literal «; , that is True. Assign each client ¢; to server s; ;/; then we have

d(Cj, Sj,j/) + d(Sj,j/, Sk,k’) + d(Ck, Sk,k’) =14+2+1=4.

Here, d(s;;, skr) = 2 comes from the fact that z;, and xj,, are not literals
complementary of each other, as both are set to True in g. []

Claim 5 If f(®) has a solution of objective less than 6, then ® is satisfiable.

As an illustration, for the example in Figure 2, there is an assignment
with objective 4 in f(®): assigning ¢; to $12, ¢2 to S92, and c3 to s3o. Using
this assignment for f(®), we can construct a satisfying assignment for @
as following: assign z; to True for the first clause, assign T, to True for
the second clause, assign Zs to True for the third clause, then assign the
unassigned z3 to True. A satisfying assignment for ® is z; = False, x5 =

False, x3 = True.]]
Proof: Any two-clause formula is satisfiable. We assume from now on that

® has at least three clauses, and as a result f(®) has at least three clients.

Based on our construction and on the fact that f(®) has a finite objective,
for any two servers s;; and sy, the value of d(s; i, s;) can only be 2 or
4; d(s;j i, Sk) = 4 only when x;, is the negation of xy,, and they appear in
different clauses. For any client ¢; and any server sy i/, their distance is at
least 1. So, for any path between two clients involving two servers, say s; j/
and sk, with d(s; 7, Sgw) = 4, we have

d(Ca, Sj,j’) + d(Sj’j/, Sk,k’) + d(Cb, Sk,k’) Z 1 + 4 + 1=6.

Thus, if f(®) has a solution of objective less than 6, we have an assignment
without assigning two clients to two servers at relative distance 4.

Another observation is that, there does not exist a client-server pair at
distance 2: ¢; is at distance 1 to only three servers s; 1, s;2 and s;3; ¢; is at
distance at least 3 to server sy (k # j) because d(s; 7, sk i) is at least 2.

Thus, any assignment including assigning a client ¢; to a server not among
51, 8j2 OF Sj3, say sy for k # j, will have an objective at least

d(Cj, Sk,kf) —+ d(Sk,kr, 5b,b’) —+ d(Ca, 5b,b’) Z d(Cj, Sk,k’) -+ d(Ska/, Ca) Z 3 —+ 3= 6,

where ¢, is a client other than c¢; and ¢, and s,y is the server assigned
to ¢, (the first inequality comes from the triangle inequality). Therefore,

7

in conclusion, if f(®) has a solution of objective less than 6, we have an
assignment that only uses a set of servers at relative distances 2 and only
assigns a client ¢; to one of the s; ;.

Using this assignment of f(®), a satisfying assignment for ® can be con-
structed in polynomial time: for each client ¢; and its assigned server s; jr,
assign «; , to True; then if neither x; nor z; is assigned with a Boolean value,
assign x; to True. Here are the reasons why this is a satisfying assignment.
We assigned at least one literal to True in each clause, because clause C;
is represented by a client ¢; in f(®), and we assigned one of the literals in
clause C; represented by c;’s assigned server to True. We never assigned any
literal and its negation both to True, because in f(®) we never assigned two
clients to two servers at relative distance 4. |

Thus an algorithm with approximation ratio smaller than 3/2 can deter-
mine if @ is satisfiable or not: if the algorithm returns a solution of objective
less than 6, we know from the previous claim that & is satisfiable; on the
other hand, if the algorithm returns a solution of objective at least 6, we
know that the optimal solution has objective strictly greater than 4, and it
follows from Claim 4 that ® is not satisfiable. We obtain that

Theorem 6 Unless P = NP, no polynomial-time algorithm for FCSA can
have approximation ratio smaller than 3/2.

4 The algorithm for FCSA-SC

Here, we only consider the case that all servers have a capacity 1, because

Claim 7 For each FCSA-SC instance, there is an equivalent FCSA-SC in-
stance in which ¥s; € S, cap(s;) = 1.

Proof: Given an FCSA-SC instance A, we can construct another FCSA-SC
instance A as following. For each s; € S(A), we construct in A cap(i) servers
with capacity 1: s;,, Siy...S; . We construct the same set of client in A as

cap(s;

in A: C(A) = C(A). And we define the length function d in A as following:

CZ(SZ], si,.) = 0, j #k;
d(si,, 85,) = d(si, 85), i # J, 8iy 55 € S(N);
C?(S,J,) (S,,C), 8; € S(A),C € C() (/:\)a
d(ci, i) = d(ci,), i #j,c,¢5 € C(A) =C(A)

If A has feasible solution f, the following is a feasible solution for A with the
same objective: for each client ¢;, if f(¢;) = s;,, then f(¢;) = s;. Because k is
at most cap(j), the number of clients assigned to ¢; in A will not exceed the
capacity of s;. And similarly, if A has feasible solution f, we can construct a
feasible solution f for A with the same objective as following: for each client
¢;, if f(c;) = s;, assign ¢; to one of the s;, in A. m

It is obvious that no feasible solution exists if there are more clients than
servers under the assumption that each server has a capacity 1. Thus, we
assume |C| < |S| in order to guarantee a feasible solution. We denote OPT
as the optimum objective for an FCSA-SC instance, and we denote P as a
constant which represents a guessed value of the optimum objective. The
value of P will be adjusted through the process of the algorithm, and the
way to adjust it will be talked about later in this section.

For a value P, for every pair of client ¢; and server s;, and for every other
client ¢, we find a set W of servers with

‘I’fj,k = {s | d(ci, sj)+d(s, sj)+d(s,cr) < PAd(c;, s5) > (1/4)P,s € S\{s;}, cr # ¢i}.
Then, for a value P and for each client ¢;, we find a set ©F of servers with

OF = {s|d(c,s) + mjxd(s,cj) < PAd(c,s) < (1/4)P,se S,c; € C}.
JFi

We build the following m - n bipartite graphs:

e Gﬁl(LﬁlvRﬁlvngl)v Lf,l = C\ {a}, Rf,l = S\ {s1}, Efl =
{(ck,8) [s €Wy}

hd Gﬁz(LﬁmRﬁmg&% Lf,z = C\ {a}, ng = S\ {s2}, Efz =
{(ck,8) | s € Uiy}

hd G§1(L§17R§,17§§,1)7 L§1 = C\ {2}, R;l = S\ {s1}, E§1 =
{(ck,8) [s €Wy, 4}

hd G§2(L§2>R§,2>§§,2)> Lg,z = C\ {e}, 352 = S\ {s2}, E§2 =
{(ck,8) | s € Wy}

i anm,n(LP RP EP)’ anm,n = C\{Cm}7 Rfm,n = S\{SN}7 EnP;,n =

m,n) *t'mn “mmn

{(cr,s) [s € Uy 4

Then we build another bipartite graph G as following:
Gg(Lg, R5>E§)a LOJD =C, RéD =5, Ej = {(Cka S) | s € @5}

We check the existence of at least one complete matching in any of the m-n-+1
graphs, where a complete matching is defined as following.

Definition 1 A matching h in a bipartite graph G(L, R, F) is a complete
matching if |h| = min(|L]|, |R]).

Note that all our graphs have LI < RP| as we assumed the number of servers
is at least the number of clients.

Till here, we have the first half of our algorithm which is called matching-
based assignment. From here on in the second half of our algorithm, we will
use matching-based assignment to adjust the value of P and to find a feasible
solution that is a (3/2)-approximation of FCSA-SC problem.

For every two clients ¢;, ¢; and every two servers s, s,, we calculate

Dizy = A(¢i, Sz) + d(Sz, 8y) + d(sy, ;).

Then we sort all m? - n? results in non-decreasing order, and we use P, to

re-denote each p; ., ; where z is its ordering number, 1 < z < m? - n?. We
adjust the value of P as following:

1. First, let P = Py, if at least one complete matching exists, then we
finish the adjustment with P = P;.

2. Otherwise, we keep two values of P: P;, P; where j > 4, such that no
complete matching exists if P = P; and at least one complete matching
exists if P = P;. (the reason why this holds for the initial value of j
given below is proven later while proving Claim 10). Let i = 1 and
j = m?-n? as initial values and use binary search to shrink j — i
by half: if a complete matching exists when P = P|;4;)/2) then let

j=|(i+7)/2]; otherwise, let i = | (i + 7)/2].

3. Repeat this shrinking procedure until we find consecutive values P;, P;
where i = j—1, such that no complete matching exists if P = P, = P;_4
and at least one complete matching exists if P = FP;. We finish the
adjustment with P = P;.

10

With the adjusted value of P, there exists at least one complete matching
among m - n + 1 graphs. Our algorithm returns one of the following results:

e if a complete matching is found in one of the first m - n graphs, GI Iy

then assign ¢; to s; and assign every other client to its matched server
in G e

e if a complete matching is found in G, assign every client to its matched
server in G{.

Till here, we finish our algorithm for FCSA-SC. And before the proof
of our algorithm is a (3/2)-approximation of FCSA-SC, let us prove some
claims first.

Claim 8 If a complete matching exists in any of the m - n + 1 graphs
(Gl 1) sz GF GF), then our matching-based algorithm obtains a feasible

n,m’

solution with objective at most (3/2)P

Proof: Assume that the solution given by our algorithm is called f’.

The first case is that, the solution is related to a complete matching in
one of the first m - n graphs, say Gf ;- In graph Gf ; we connect a client ¢, to
servers in the set W', and based on the definition of set W}, we have:

Ve € Lr

Vs € WP d(ci, s5) +d(s, s;) +d(s,c) < P, (1)

1,5 1,5,k?

and
d(ci, s5) = (1/4)P,
which together with Inequality (1) implies

Ver € LY, Vs € \If”k, d(s,sj)+d(s,cp) < (3/4)P. (2)

Z]’

For any two clients z and y other than ¢; we have:

d(z, f'(x)) +d(y, f'(y)) + d(f'(x), f'(y))
< d(w, f(x) +d(y, ['(y)) + d(f'(2), 55) + d(f'(y), 55)
= d(z, f'(2)) +d(f'(x),s;) +dly, ['(y) + d([' (1), 5;)
< (3/49P+(3/4)P
= (/2P

11

The first inequality comes from triangle inequality, and the second inequality
follows Inequality (2). Together with Inequality (1), we finish the proof of
the first case.

The second and the last case is that, the solution is related to a complete
matching in graph G¥'. In graph G{ we connect a client ¢; to servers in set
O©F, and based on the definition of set ©F we have:

Vs € ("‘)f), VCj % Ci, d(Ci, S) + d(S,Cj) < P, (3)

and
Vs € OF, d(c;, s)

For any two clients z and y we have:

IA
—~
—
~
o~
N2
e
—~
o~
N2

d(z, f'(x)) + d(y, f'(y)) + d(f'(z), ['(y))

< d(z, f'(x)) +d(y, ['(y) + d(f'(x),y) + d(y, f'(y))
d(z, f'(x)) +d(f'(x),y) + 2 - d(y, f'(y))

< d(z, f'(2) +d(f'(x),y) +2- (1/4)P

< P+(1/2)P

= (/2P

The first inequality comes from triangle inequality, the second and the third
inequalities follow the Inequality (4) and (3) respectively. Till here, we finish
the proof of the second and the last case. []

Claim 9 If P > OPT, then at least one complete matching exists among
the m -n + 1 graphs.

Proof: Remind that OPT is the objective of the optimal solution, f.

The first case is that, there exists a client ¢; with d(¢;, f(¢;)) > (1/4)P.
Let s; = f(¢;), and in this case a complete matching exists in graph Gf e
Here is the proof.

For every client ¢, # ¢; we have

d(ci, 85) +d(sj, f(cx)) + d(ex, f(cx)) < OPT.
Because P > OPT, we also have

d(ci, s5) +d(sj, f(cx)) + d(cx, f(ck)) < P. (5)

12

Together with the fact that d(c;, s;) > (1/4)P, from Inequality (5) it is easy
to see that:
\V/Ck 7& Ci,y f(ck) € \Ilfij

which guarantees a complete matching in graph G
of the first case.

The second and the last case is that, every client ¢; has d(c;, f(¢;)) <
(1/4)P. Let ¢y = argmax;; d(f(c;), ¢j), and in this case a complete match-
ing exists in graph GY¥'. Here is the proof. We have

d(ci, f(ei) +d(f (i) creiy)

d(ci, f(ci)) +d(f(ci), fler@)) + dlcray, fcr@))
OPT

P

i j» and we finish the proof

IA A

The first inequality follows triangle inequality. Again, because P > OPT,
we also have

d(ci, f(ei)) + d(ex, f(ei)) < P. (6)

Together with the fact that d(c;, f(¢;)) < (1/4)P, from Inequality (6) it is
easy to see that:

vciv f(cl> € ®zp7

which guarantees a complete matching in graph G, and we finish the proof
of the second and the last case. []

Claim 10 In the second half of our algorithm, after the adjustment for the
value of P, P < OPT.

Proof: It is easy to see OPT equals to one of the P,, 1 < z < m? -n?

The first case is that, we finish the adjustment in the first step, which
means we find at least one complete matching when P = P;. Since P, is the
smallest possible value of OPT, so in this case P = P; < OPT and we finish
the proof of the first case.

The second and the last case is that, we finish the adjustment in the third
step. In this case, let us look into the adjustment procedure. In the second
step we set the initial values i = 1,57 = m? - n?>. We can make sure that no
complete matching exists when P = P; because we come to the second step
already. Also, and we can make sure to find at least one complete matching
when P = P,2.,,2 because of the fact that P,2.,,2 > OPT and Claim 9.

We finish the adjustment with P = P; in the third step, where at least
one complete matching exists if P = FP; but no complete matching exists if

13

P = P;_,. From the contrapositive of Claim 9, we have P;_; < OPT, which
implies P; < OPT'. Till here, we finish the proof of the second and the last
case. [|

Combining Claim 8 and Claim 10, it is easy to see our algorithm gives a
solution with objective at most (3/2) OPT, which means

Theorem 11 The algorithm we give is a (3/2)-approximation for FCSA-
SC.

Acknowledgments: Gruia Calinescu thanks Niranjana Sompura Ra-
makrishna Reddy, a student in his Combinatorial Optimization class, for
bringing this problem to his attention.

References

[1] Aaron Archer. Two O(log* k)-approximation algorithms for the asym-
metric k-center problem. In Karen Aardal and Bert Gerards, editors,
Integer Programming and Combinatorial Optimization, volume 2081 of
Lecture Notes in Computer Science, pages 1-14. Springer Berlin Heidel-
berg, 2001.

[2] Julia Chuzhoy, Sudipto Guha, Eran Halperin, Sanjeev Khanna, Guy
Kortsarz, Robert Krauthgamer, and Joseph (Seffi) Naor. Asymmetric
k-center is log™n-hard to approximate. J. ACM, 52(4):538-551, July
2005.

[3] Marek Cygan, MohammadTaghi Hajiaghayi, and Samir Khuller. LP
rounding for k-centers with non-uniform hard capacities. In 53rd Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2012,
New Brunswick, NJ, USA, October 20-23, 2012, pages 273-282. IEEE
Computer Society, 2012.

[4] Inge Li Gegrtz and Anthony Wirth. Asymmetry in k-center variants.
Theoretical Computer Science, 361(2-3):188 — 199, 2006.

[5] D.S. Hochbaum and D.B. Shmoys. A best possible heuristic for the k-
center problem. Mathematics of Operations Research, 10:180-184, 1985.

[6] D.S. Hochbaum and D.B. Shmoys. A unified approach to approximation
algorithms for bottleneck problems. Journal of the ACM, 33(3):533-550,
1986.

14

[7]

8]

Wen-Lian Hsu and George L. Nemhauser. Easy and hard bottleneck
location problems. Discrete Applied Mathematics, 1(3):209 — 215, 1979.

Samir Khuller and Yoram J. Sussmann. The capacitated k-center prob-
lem. SIAM J. Discrete Math., 13(3):403-418, 2000.

Rina Panigrahy and Sundar Vishwanathan. An O(log" n) approxima-
tion algorithm for the asymmetric p-center problem. J. Algorithms,
27(2):259-268, May 1998.

V.V. Vazirani. Approximation Algorithms. Springer, 2001.

Lu Zhang and Xueyan Tang. The client assignment problem for con-
tinuous distributed interactive applications: Analysis, algorithms, and

evaluation. Parallel and Distributed Systems, IEEE Transactions on,
25(3):785-795, March 2014.

15

