RECONFIGURATIONS IN GRAPHS AND GRIDS *

GRUIA CALINESCU', ADRIAN DUMITRESCU!, AND JANOS PACH

Abstract. Let G be a connected graph, and létandV’ two n-element subsets of its vertex $&(G). Imagine
that we place a chip at each elemenfioind we want to move them into the positionslof (1 andV’ may have
common elements). A move is defined as shifting a chip figmo v2 (vi,v2 € V(G)) on a path formed by
edges ofG so that no intermediate vertices are occupied. We give wgmettower bounds on the number of moves
that are necessary, and analyze the computational conyptefxihis problem under various assumptions: labeled
versus unlabeled chips, arbitrary graphs versus the case tie graph is the rectangular (infinite) planar grid,
etc. We prove hardness and inapproximability results fueise variants of the problem. We also give a linear-
time algorithm which performs an optimal (minimum) numbémuoves for the unlabeled version in a tree, and
a constant-ratio approximation algorithm for the unlaflelersion in a graph. The graph algorithm uses the tree
algorithm as a subroutine.

Key words. Reconfiguration algorithms, approximation algorithmsaloratio method, proper function, NP-
hardness.

AMS subject classifications.05C85, 68R05, 68R10, 68W25, 68W40

1. Introduction . Consider a set system (set)ofpairwise disjoint objects in the Eu-
clidean space that need to be brought from a gstart (initial) configurationS into a desired
target(goal) configuratiori’. In many cases, the problem admits the following abstractio
we have an underlying finite or infinite graph, the start canfigion is represented by a set
of n chips atn distinct start vertices and the target configuration by lae@oset ofn distinct
target vertices. A vertex can be both a start and targetiposifThe case when the chips
are labeled or unlabeled give two different variants of thabfem. In one move a chip can
follow an arbitrary path in the graph and end up at anotheéexeprovided the path (includ-
ing the end vertex) is free of other chips. Timetion planningoroblem for such a system is
that of computing a sequence of object motions (schedudg)athieves this task. If such a
sequence of motions exists, we say that the probldaaisibleand we say that it imfeasible
otherwise. To avoid trivial questions, we always assume@thph is connected.

In certain applications, objects are indistinguishaliieréfore the chips are unlabeled;
for instance, a modular robotic system consists of a numbgteatical modules (robots),
each of which having identical capabilities [10, 11]. In Hrey application, the chips are
indivisible packets (copies) of the same data that need tadned from one site to another
of a wide-area communication network without ever excegthie capacities of the commu-
nication buffers at each site [5, 16].

In this variant with unlabeled chips, the problem is easier always feasible; therefore
one is interested in minimizing the number of moves. For gugant with labeled chips the
problem may be infeasible: it is known for instance, thatthguzzle on at x 4 grid —
introduced by Sam Loyd in 1878 — has a solution if and only & $itart permutation is an
even permutation [15, 20] (see [3] for a recent approach).

*A preliminary version inProceedings of Latin American Theoretical Informatics @oence(LATIN '06),
vol. 3887 of LNCS, Springer, 2006, pp. 262—-273.

TDept. of Computer Science, lllinois Institute of Technglpg Chicago, IL 60616, USA;
calinesc@it.edu. Research partially supported by NSF grant CCF-0515088.

tDept. of Computer Science, University of Wisconsin—Milkeea, WI 53201-0784, USAad@s. uwm edu.
Research partially supported by NSF CAREER grant CCF-08841

§Courant Institute of Mathematical Sciences, 251 Mercereesir New York, NY 10012-1185, USA,
pach@i ns. nyu. edu. Research partially supported by grants from NSF, NSA, OT&#d from the US-Israeli
Binational Research Foundation.

Other reconfiguration rules (models) for systems of diskbhé@plane have been exam-
ined recently [1, 7, 8]; see also [9]. These models do notifialhe graph reconfiguration
framework in this paper, because a disk may partially opeskeveral target positions. A
model that fits in the graph reconfiguration framework hastewalyzed in [10]: it deals
with reconfiguration of modular systems acting in a gricelénvironment, where moves
must maintain connectivity of the whole system, and the amtules are very local: a chip
can only move to an adjacent position in one move. Denotiagtnfiguration of the mod-
ules at timet by V;, the system remains connected if for edachk- 0,1,2,..., the graph
G, = (V4, Ey) is connected, wherg, is the set of edges connecting pairs of celldjrthat
are side-adjacent.

The general form of the reconfiguration problem we consislér find a reconfiguration
sequence with a minimum number of moves. Depending on whetbeefer to the graph
or grid version, or to the labeled or unlabeled version, wktka problem U-GRAPH-RP,
L-GRAPH-RP, U-GRID-RP or L-GRID-RP. In the grid versionethnderlying graph is
the infinite planar integer grid.

Consider for example the reconfiguration problem in the iteigrid with unlabeled (or
labeled) chips (objects). The following simple algorithoed2n moves for reconfiguration
of n chips. In the first stepn(moves), move in a suitable order all the chips away in the
free grid space. In the second stepnfoves), bring the chips "back” to target positions. We
will show that minimizing the number of moves is intractaiidoth (labeled and unlabeled)
variants in the grid.

A move is a calledarget movef it moves a chip to a final target position. Otherwise it
is callednon-targetmove. Our lower bounds use the following argument: if no éaghip
coincides with a start chip (so each chip must move), a sdhegiith = non-target moves
consists of at least + moves.

It is worth noting that, in contrast with the variant with mesvalong free paths studied
here, the variant of the reconfiguration problem (with ugle chips) in which we count
as one move each edge traversed by a chip, can be solvedygiagtiinally). This will be
explained at the end of Section 2.

Previous related work:. Most of the work done so far concerns labeled versions of the
reconfiguration problem, and we give here only a very briefey

For the generalization of th&-puzzle on an arbitrary graph (with= v—1 labeled chips
in a connected graph arvertices), Wilson [21] gave an efficiently checkable chaggzation
of the solvable instances of the problem. Kornhawteal. have extended his result to any
k < v — 1 and provided bounds on the number of moves for solving anyabte instance
[16].

Ratner and Warmuth have shown that finding a solution withimmim number of moves
for the (N x N)-extension of tha5-puzzle is intractable [19], so the reconfiguration problem
in graphs with labeled chips is NP-hard.

Aulettaet al. gave a linear time algorithm for thgebble motion on a trefb]. This
problem is the labeled variant of the same reconfiguratioblpm we study here, however
each move is along one edge only.

Papadimitriowet al. studied a problem afhotion planning on a grapm which there is
a mobile robot at one of the verticesthat has to reach to a designated vertesing the
smallest number of moves, in the presence of obstacleslgm®tah some of the other vertices
[17]. Robot and obstacle moves are done along edges, andctdsshave no destination
assigned and may end up in any vertex of the graph. The probéenbeen shown to be
NP-complete even for planar graphs, and a r&lg/n) polynomial time approximation
algorithm was given in [17].

Dumitresclet al. have addressed several basic questions in the analysisiofanoneta-
morphic systems [11]. In particular the next two questioagsbeen shown to be decidable:
(i) whether a given set of motion rules maintains connectiyity whether a goal configura-
tion is reachable from a given initial configuration (at Sfied locations) using a given set of
motion rules. Other seemingly similar questions have bbews to be undecidable.

Our results are:.

(1) The reconfiguration problem in graphs with unlabeled chip§ RAPH-RP is NP-hard,
and even APX-hard.

(2) The reconfiguration problem in graphs with labeled chips RA®PH-RP is APX-hard.

(3) For the infinite planar rectangular grid, both the labeledl@mabeled variants L-GRID-
RP and U-GRID-RP are NP-hard.

(4) There exists a rati@ approximation algorithm for the unlabeled version in grsjh
GRAPH-RP. Thereby we also get a rai@pproximation algorithm for the unla-
beled version U-GRID-RP in the (infinite) rectangular grid.

(5) We show that: moves are always enough (and sometimes necessary) forcinafiggi-
ration ofn unlabeled chips in graphs. For the case of trees, we presesta time
algorithm which performs an optimal (minimum) number of rasy

(6) We show thatn/4 moves are always enough, ahe/2 are sometimes necessary, for the
reconfiguration of: labeled chips in the infinite planar rectangular grid (L-®RI
RP).

2. Chips in graphs. Let G be a connected graph, and tand V'’ two n-element
subsets of its vertex séf(G). Imagine that we place a chip at each elemeny'cind we
want to move them into the positions@f (VV andV’ may have common elements). A move
is defined as shifting a chip fromy to vo (v1,v2 € V(G)) along a path inG so that no
intermediate vertices are occupied.

THEOREM 2.1. In G one can get from any-element initial configuratio’” to anyn-
element final configuratiol’ using at most: moves, so that no chip moves twice. Moreover,
for the case of a tre@ with r vertices, there is & (r)-time algorithm which performs the
optimal (minimum) number of moves.

Proof. Itis sufficient to prove the theorem for trees. We argue biyation on the number
of chips. Take the smallest trdecontainingl” andV’, and consider an arbitrary leabf T
Assume first that the ledbelongs td/: sayl = v. If v also belongs t&”, the result trivially
follows by induction, so assume that this is not the case.oS&a@ pathr in 1", connecting
v to an element’ of V’ such that no internal point of belongs tal’”’. Apply the induction
hypothesistd” \ {v} andV"’ \ {v'} to obtain a sequence of at mast- 1 moves, and add a
final (unobstructed) move fromto v’.

The remaining case when the Idafelongs toV’ is symmetric: say = ¢’; choose a
path7 in T', connecting’ to an element of V' such that no internal point of belongs to
V. Move firstv to v and append the sequence of at mest 1 moves obtained from the
induction hypothesis applied 16 \ {v} andV”’ \ {v'}.

We further refine this algorithm so as to minimize the numbienaves. We call a vertex
that is both a start and a target positionastacle We have four types of vertices: free
vertices, chip-only vertices, target-only vertices, atdtacles. Denote by (resp. t) the
number of chip-only (resp. target-only) vertices, ancliie number of obstacles. We have
c+ o0 =0+t =n. We call atreebalancedif it contains an equal number of chip-only
and target-only vertices. Clearly, the initial tréeis balanced. If there exists an obstacle
whose removal fron¥” breaksT into balanced subtrees, we keep this obstacle fixed and
proceed recursively (by induction) on the subtrees. If netatle removal break® into
balanced subtrees, then all obstacles must move (eachsableee), hence the number of

3

moves necessary is at least ¢ = n, and the algorithm in the first part of our proof can be
used to obtain an optimal schedule.

We continue with the description of the linear time algarthWe traverse the tree in
postorder and compute for every verteXfour doubly-linked listsM,,, @, A,, andC,.
Let T, denote the subtree rooted«at We say that a sequence of mowesdvesT, if, after
executing the moves in this sequence, all the chip§,irtover exactly every target df,
(including obstacles). Note that by itself the definitiorsofving does not imply solving with
a minimum number of moves.

We now discuss the four lists and give intuition on their wsé&rmal proof follows the
description of the algorithmA,, andC, are lists of vertices insid&, which require moves
involving nodes outsidd’,: for A, those moves mean bringing a chip from outsideto
a vertex ofA,, and forC, those moves mean taking a chip from a vertex’pfto a node
outsideT’,. Either A, or C, (possibly both) will be empty after nodeis processed. A move
is described by a pair of vertices: the place where we takd abthe chip and the place
where we release itM,, and@, are lists of moves insid&,. Moves involving elements of
A, or C, will use the edge from to its parent. Moves not involving elements 4f U C,,
will be done insidé€rl’, and are all inM,, and@,. The goal is to obtain a sequence of moves
solvingT,, such that this sequence starts with the move¥jn followed by some moves on
the edge fromv to its parent (all these moves involve vertices frGmor A,), followed by
the moves inQ,. If v has no parent (i.ey is the root ofT’), the list of moves on the edge
from v to its parent is empty. The final reconfiguration sequenctp(duly the algorithm) is
the sequence of moves in the Ii&f, followed by the moves in the ligh,, at the root of the
tree.

We now describe howd,,, C,, M, Q, are initialized and computed. Two examples of
the execution of the algorithm are shown in Figure 2. i§ a leaf,M,, and@,, are empty,
A, =< v > if v is a target-only vertex and empty otherwise, &ii{d=< v > if vis a
chip-only vertex, and empty otherwise. We now show how the fists M/, Q.,,, A,, andC,
are obtained from the lists of the childremofThere are four cases, depending on whether
is free, target-only, chip-only, or an obstacle.

In all four cases, we first compufd,, Q.,, A, andC, by concatenating the correspond-
ing lists of the children ofv. We also make use of a procedu@ance| which works as
follows: Iterate the following step until eithet, or C, is empty: remove the first element
from each list and add the corresponding pair at the end of

In thefirst casep is a free vertex. After applyinGance] we are done.

In thesecondcasew is a target-only vertex. We appyancel Now, if C,, is empty, we
putv at the end ofd,, and we are done. If’, is nonempty, we remove from it the last element
q. Insert the movég, v) at the beginning of),,, and we are done.

In thethird casep is a chip-only vertex. If4, is empty, we putb at the beginning of’,,
and we are done. I, is nonempty, we remove from it the first elemeniVe add the move
(v, q) at the end of\/,,. Then we applyCanceland we are done.

In thefourthand last case; is an obstacle. (i) 14, andC, are both empty, we are done.
(i) If A, is empty and”,, is nonempty, lety be the last chip front’,. Removeg from C,,
insert the movéq, v) at the beginning of),,, addv at the beginning of’,, and we are done.
(iii) If A, is nonempty, lep be the first target im,,. Removep from A,, and add the move
(v, p) at the end of\,. Apply Cancel Now, if C,, is empty, addy at the end of4,, and we
are done. IfC, is nonempty (noteA, must be empty afte€ance), let ¢ be the last chip
from C,. Remove; from C,,, insert the movég, v) at the beginning of),,, and we are done.

We need to prove this algorithm returns an optimum soluti@hthen analyze its running
time. First, we prove it returns a correct solution, and twerjustify separately its optimality.

4

Fic. 2.1. Two examples of execution of the linear time algorithm faordiguration in a tree.
Chips are drawn as empty circles, obstacles as black cireled targets as gray circles.

For the correctness, we prove by induction on the siZe, ¢fiat the following three conditions
hold:
e If T, contains an equal number of start and target vertices, fhea C, = (). The
sequence of moves obtained by concatenatihgand(,, solvesT’,.
e If T, containsg more start vertices than target vertices, thép = ¢ andA, = 0.
A sequence of moves obtained by concatenatifiganyq moves taking chips from
vertices ofC, in the order they appear i, and placing them on vertices outside
T,, andQ@,, solvesT,,.
e If T, containsg more target vertices than start vertices, thép| = ¢ andC, = 0.
A sequence of moves obtained by concatenatifiganyq moves taking chips from
vertices outsidd’, and placing them on vertices df, in the order they appear in
A,, andQ@,, solvesT,,.

The base case is obvious, and the inductive step followsttlirrom the description of
the algorithm, thereby proving that the algorithm returrerect solution. Regarding the
optimality of the number of moves, notice that an obstaclehose removal breaks into
balanced subtrees is not moved by the algorithm, and any ottig is moved only once:
hence the algorithm returns an optimum solution.

The time spent at vertaxis proportional to one plus the number of childrergflus the
number of moves added ff,, and@,. Summing over the vertices, we obtain that the time
is proportional to the number of vertices in the tree plusttitel number of moves, hence it
isO(n+r)=0(r), sincen <r.0O

Remark Theorem 2.1 implies that in the infinite rectangular grid,can get from any starting
position to any ending position of the same sizia at most: moves. It is perhaps interesting
to compare this to the problem of sliding congruent unlatbelisks in the plane: here one
can come up with “cage-like” constructions that requireuattiég—‘ moves [7].

2.1. Hardness results. THEOREM 2.2. The unlabeled version in graph$-GRAPH-
RPis NP-complete. Moreover, assumingZANP, there is an absolute constant > 0 such
that no polynomial-time algorithm has approximation guaee at most + ¢;. That is,
U-GRAPH-RPis APX-hard.

Proof. The decision version of U-GRAPH-RP is clearly in NP, so wéydrave to
prove its NP-hardness. We reduce #la¢ coveproblem SC to U-GRAPH-RP. An instance

5

of the set cover problem consists of a famffyof subsets of a finite séf. The problem is
to decide whether there is a set cover of gifer 7, i.e., a subset’ C F, with | 7’| < k,
such that every element iti belongs to at least one memberBf. SC is known to be
NP-complete [12]. Consider an instance of SC representeddiyartite grapi{B U C, E),

Fic. 2.2.The “broom” graphG corresponding to a set cover instance with = 12, and|F| = 6.
The vertices occupied only by chips are white, those ocdupyeboth chips and targets are black, and
those occupied only by targets are shaded. An optimal regqumatiion takesl5 moves (an optimal set
cover has siz8: the third, fourth and fifth sets counting from the top).

whereU = C, F = B, and edges describe the membership relation. Construehtlieected

graphG shown in Fig. 2.2, withA| = |C|. The chips are§ = A U B and the targets are
T = B U C. Clearly,G can be constructed in polynomial time. The reduction is detep
once we establish the following claim.

Claim. There is a set cover consisting of at m@sets if and only if reconfiguration i@ can
be done using at most| + ¢ moves.

Proof of Claim: Let ¢ be the size of an optimal set cover. The direct implicationlésr:
move one chip from each elementBfin the optimal cover to a target ifi; then move the
elements of4 to targets inC' and to the emptied targets i using the required number of
moves. For the converse implication, assume that there és@nfiguration sequence with
fewer than|A| + ¢ moves. Since all elements df must move, fewer thaga elements ofB
move away from their original positions. By the definitionsgt cover, it means that some
target inC will not be filled, a contradiction.

To prove the approximation hardness we use the same redpatid the fact tha&t-SC,
the set cover problem in which the size of each sefiis bounded from above b¥/is APX-
hard [2, 18]. Thugy, as in the paragraph above, is betwédfy3 and|A|. Approximating
|A| 4+ ¢ within 1 + e will approximateg within 1 + 4e. O

A similar reduction can be made for the labeled version. THipscin A have targets in
C, labeled as in Fig. 2.3 (hetel| = |C| = m). The obstacle chips if8 coincide with
their targets. Each vertex iR is adjacent to a “twin” free vertex. The reduction follows
from the next claim. Its proof is similar to that for previoclaim, using the fact that a chip
representing a selected set must move twice - once to to maké&wthe chips whose targets
are on the vertices representing elements, and once to cacke b

Claim. There is a set cover consisting of at mgsets if and only if reconfiguration i can
be done using at mog#t| 4+ 2¢ moves.

We thus obtain:

i
gf&#n

Fic. 2.3. The graph constructed in the reduction for labeled chipseeFvertices are drawn as
squares. An optimal reconfiguration takes moves (an optimal set cover has sikehe third, fourth
and fifth sets counting from the top).

THEOREM 2.3. The labeled version in graphs GRAPH-RPis APX-hard.

2.2. Approximation algorithms. THEOREM 2.4. There exists &-approximation al-
gorithm forU-GRAPH-RP.

Proof. The algorithm is obtained by applying the local ratio metiod Bar-Yehuda [6]
to a graphH whose construction we describe below.

The vertex set of the input gragghis partitioned into four sets:

e C =V \V’/, the chip-only vertices

e A =V'\V,the target-only vertices

e B=V NV’ the obstacles

e F=V(G)\ (VUV’),the free vertices

ThenV(H) = AUBUC. Observe thatA| = |C|. For every pair of vertices andv of
H,we putinE(H) the edgew if uv € E(G) or there is a path id&7 from « to v having all
the internal vertices fronf'.

A set of vertices (inV/(H)) is calledbalancedif it contains an equal number of chip-
only and target-only vertices. If/, we use the local ratio method to find a small set of
edges(such that every connected componéndf (V(H), Q) is balanced. We call this
the U-STEINER problem. U-SEINER is a network design problem given byoal proper
function[13, 14], problem for which both the primal-dual schema arallbcal ratio method
were known to give a 2-approximation. The local-ratio 2+apmation algorithm is also
implicit later in this section. We briefly recall here that # ground set/, a0-1 function
f 2V — {0,1} is proper (cf. [13, 14)) if it satisfies the following threeratitions: (i)
f(V) =0, (i) if AandB are disjoint, thenf(A U B) < max(f(A), f(B)), and (iii) f is
symmetric, i.e.f(S) = f(V — S)forall S C V.

In our case, the function, defined over all subsets of vestiieone if the set is unbal-
anced and zero otherwise. It can be shown that this is a pfopetion, however this fact is
not needed in the rati® approximation algorithm, whose proof is self-containetbr the
next claim, one can easily obtainrteapproximation for U-GRAPH-RP, as shown after the
proof of claim.

One more piece of notation: given a solutiifor U-GRAPH-RP inG, consider the
edges ofGG traversed by the moving chips during the reconfiguratiorc@ss. These edges,
together with their endpoints (including the free vertit@®ugh which chips pass through)
form a numbek > 1 of connected components. We then say fRaitask connected compo-

7

nents. Writec = |C| = | A].

CLAaIM 1. Given a feasible solutiok for U-GRAPH-RPin G with m moves and
k connected components, there is a feasible solufidior U-STEINER in H with at most
m + ¢ — k edges. Conversely, given a feasible solutibfor U-STEINERIn H with e edges,
there is a feasible solutioR for U-GRAPH-RPin G with at moste — ¢ + k£ moves, where
k is the number of connected componentQafhich intersectd (andC).

Proof. For the first part, lefS be the set of vertices aF involved in the moves of?,
and letsS;, fori = 1,2,...,k, be the connected componentsi®f Then the number of
moves insideS; is at least|S; N C| + |S; N B|. LetS, = S; N V(H) and note thatS;
is also connected ifif. In eachsS, pick a spanning tre€’;; the union of the treeg; is
the feasible solutiol) for U-STEINER. In eachT;, the number of edges (¥ (T;)| — 1 =
V() NC|+|V(T;) N B|+ |V(T;) N A| — 1. Summing ovei gives the needed inequality.

For the second part, 6%, fori = 1,..., k, be one such connected component (w.l.o.g.
atree) withe, edges. ThepA NV (T;)| = |C NV (T;)| and using Theorem 2.1 one can move
all the chips ofl/(T;), including those sitting on obstacles, to all the target¥ ¢f’;) using
[V (T;)| — |C NV (T;)| moves: the chips frortC' U B) N V(T;) move along the edges @f,
passing if necessary through verticestotin G). Since|V (T;)| = |E(T;)| + 1, this second
part of the claim follows by adding up over the components;&sino move puts a chip on a
vertexinF'. (As a side remark, i) is an optimal solution irfff, eachT; is a tree intersecting
AandC).O

Here is a short account for the ratioapproximation algorithm: By the first part of
Claim 1 applied to an optimal solution for U-GRAPH-RP @ with mopr moves and
kopr components, the number of edgespr in an optimal solution for U-SEINER in H
satisfies

eopr < mopr + ¢ —kopr < mopr + ¢ < 2mopr.

Therefore, by the second part of Claim 1, the number of mewea the solution for U-
GRAPH-RP inG returned by the algorithm satisfies (singe< ¢, wherek; is the number
of components in the solution for UTEINER in H which intersectd andC)

m<e—c+k <e<2eopr <4mopr.

We now present the rati® approximation algorithm. To this end, we have to enter the
details of the local ratio method. The local ratio algoritapproximately solves U-&INER
instances with non-negative weighton the edges. The algorithm below, given in [6], is
recursive. Each recursive call is given a Sedf already selected edges and a non-negative
edge weight function, and it returns a set of edges (in ste@i8en a set of edge’s C F(H),
call a connected componeft of (V(H), F') balancedf |V(X) N 4| = |V(X) n C| and
unbalancedtherwise. For the first call of the algorithifi,= @), andd = 1 on all edges. By
feasible solution we mean feasible solution for the origeSTEINER instance.

1. The input parameters are the set of edges F(H) and non-negative weiglton
E(H).

2. If all the connected components(@f(H), S) are balanced, retuth

3. Define weight function; on edges off(H) as follows: edges going between two
unbalanced components 0f (H), S) get weightl, edges going between one un-
balanced component §1/(H), S) and one balanced component(®f(H), S) get
weight1/2, and all the other edges get weight

4. Compute a positive real numbersuch that the weight functiof, on edges of
H given by, = 6 — « - 61 is non-negative and for at least one edgeve have
da(e) = 0 < d(e).

(€2}

. LetM = {e| 62(e) = 0}.

6. Recursively solve the instance with parametg¢rs M and weightd, on F(H),
producing a set of edgdssuch thatS U M U L is a feasible solution.

7. Obtain minimald/’ C M such thatS U M’ U L is a feasible solution.

8. ReturnL U M’

We are guaranteed th&f # () and thus the algorithm terminates. For the approximation
ratio, we need the following claim.

CLAaIM 2. During the execution of a recursive call of the algorithnt,Aebe the number
of unbalanced components @f (H), .S). Thené;(P) > k/2 for any feasible solutiorP.
The set of edged returned by the recursive call of the algorithm satisfie&?) < k — ¢,
whereq is the number of connected componentSiofH), Q U S).

Proof. Consider a feasible solutioR. If an edge ofP goes between two unbalanced
components of V(H), S) we assignl/2 to each such component, and if it goes from one
unbalanced component ¢V (H), S) to one balanced component @f (H),.S), we assign
1/2 to the unbalanced component. Each unbalanced componé¢ht(éf), S) must have
at least one edge d? going to some other component, and thus it is assigned atlg¢as
Therefored, (P) > k/2.

Consider now the edgé&3 selected (returned) by one recursive call of the algorithch a
letQ;, fori =1,...,q be the connected component¥f(H), Q U S). Fix one component
Q;. InsideQ;, contract to a single vertex the vertices from the same compf(V (H), S),
obtaining@,. The minimal property of) as ensured by Step 7 of the algorithm ensures that
Q; is acyclic (and thus it is a tree) and every leaf@f is an unbalanced component 8f
Note that all the edges 6J; with positives; -weight are inQ;. RootQ; at an arbitrary vertex
v given by an unbalanced componentf

For everyu € (V(Q;)\ {v}) given by an unbalanced component%fcharge ta: either
one or two edges, of totdl -weight 1, as follows: consider the path franto v in Q; and
let v’ be the next vertex on this path given by an unbalanced conmpofné. If the path has
only one edge, charge this edgeitdf this path has more than one edge, charge tioe first
and last edge of the path. It is easy to check that every edgesitive 5, -weight of Q; is

charged at least once. ThiigQ;) = 01(Q;) < s; — 1, wheres; is the number of unbalanced
component of5 included in@;; here we used thatis not being charged.

Summing ovet yields the second part of the claif.

We continue with the proof of Theorem 2.4. First we note thgtsing Claim 2 and in-
duction, the local ratio algorithm ensures that its outhitsatisfies, for any feasible solution
P, the following:

S(LR) = b (LR) + 62(LR) < a26,(P) + 26,(P) = 26(P). (2.1)

Let OPT be a solution with a minimum number of moves(O PT') be the number of
moves ofOPT, andOP be the set of edges of the UFSINER feasible solution obtained
from OPT in Claim 1. LetL R be the set of edges selected by the local ratio approximation
algorithm when applied to the UF8INER instance,k(LR) be the number of connected
components of R which intersect4, andm(LR) be the number of moves of the solution
obtained in Claim 1 fronl R. The weight functiong, 61, andd. refer to the first call of the
local ratio algorithm, as does the reglwhich we note is at leagt We have:

9

m(LR) < |LR|+ k(LR) —c¢ byClaim1
=0(LR) +k(LR) —c
= ad1(LR) + 62(LR) + k(LR) — ¢
< a(261(OP) — k(LR)) + 62(LR) + k(LR) — ¢ by Claim 2
< 2a61(OP) — k(LR) + d2(LR) + k(LR) — ¢ sincea > 1
< 2a01(OP) +262(OP) — ¢ by Equation 2.1
<25(0OP)—c¢
=2|0OP|—-c¢
<2(m(OPT)+c¢)—c byClaim1
=2m(OPT)+c¢
<3m(OPT), sincem(OPT) > c.

This concludes the proof of Theorem 2[4.

Remark In the graph version with unlabeled chips, if we count as e every edge
traversed by a chip, minimizing the number of moves can beesoih polynomial time, as
described below. Construct a complete weighted bipartéplyB = (V U V', E) with
bipartition V: the vertices containing chips ariid: the vertices containing targets (with
obstacles in both sides of the bipartition). The weight okdge inE is equal to the length
of the shortest path it¥ connecting the endpoints of the edge. Now apply an algorftm
Minimum Weight Perfect Matching i3, and move accordingly: if the path a chipwould
take to reach its destination has another ehipn it, have the two chips switch destinations
and continue moving,. One can check that the number of moves does not exceed thbtwei
of the perfect matching. On the other hand, the optimum siuhust move chips to targets
and cannot do better than the total length of the shortelspata minimum matching.

3. Chips in grids. In this section we analyze the reconfiguration problem vétieled,
respectively unlabeled chips, in an infinite grid. Howewaesufficiently large finite section of
the grid containing all start and target positions, cleadffices for this purpose.

3.1. Hardness results. THEOREM3.1. The unlabeled version in the grid-GRID-RP
is NP-complete.

Proof. The decision version of U-GRID-RP is clearly in NP, so weydmhve to prove
its NP-hardness. We reduce tRectilinear Steiner Treproblem R-STEINER to U-GRID-
RP. An instance of R-STEINER consists »fpoints in the plane, and the problem is to
decide whether there is a rectilinear Steiner tree (thatti€e containing only horizontal and
vertical edges) of length at mogtvhich connects all points. For convenience the points can
be chosen with integer coordinates. R-STEINER is known t8tbengly NP-complete [12]
and thus we can assume all the coordinates are given in unary.

Consider an instanc® = {pi,...,p,} of R-STEINER withn points. Assume that
the z-coordinate of a leftmost point; € P is equal to zero. The instance of U-GRID-RP
is illustrated in Fig. 3.1. It haa — 1 chip-only vertices having the samgecoordinate with
p1 andz-coordinate®), —1,—2,...,—n + 1, andn — 1 target-only vertices located at the
other points{ps, ..., p,} of the R-STEINER instance. LdB be a smallest axis-aligned
bounding rectangle of all chip-only and target-only veaticandA,, A, be the dimensions
of B. Consider a sufficiently large axis-aligned rectangleenclosing the chip-only and
target-only vertices (thugl enclosesB) with obstacles placed at each other integer point.
The boundary o# is at distance\, + A, from the boundary oB. This construction is done

10

D1 000000

A

Fic. 3.1.Unlabeled chips in the grid obtained from a Rectilinear B¢eiTree instance with = 9
(sketch). Chip-only vertices are drawn as empty circlesl &mget-only vertices are drawn as filled
(black) circles. Obstacles (not shown) are placed at eableminteger point in the axis-aligned bound-
ing rectangle.

in time polynomial inA, x A,, which is polynomial in the size of the R-STEINER instance
since the coordinates are given in unary. The reduction rispbete once we establish the
following claim.

Claim. There is a rectilinear Steiner tree of length at mpi$and only if reconfiguration can
be done using at mogtmoves.

Proof of Claim: We start with the direct implication. Lef be a Steiner tree of length
connecting all target-only vertices apg. Pick a leaf ofl” which is an target-only vertex,
and fill it with a chip (obstacle or chip-only) that is closéstt in 7" by moving it along the
corresponding path ifi". If the chip comes from an obstacle vertex, a new target-eaitex
results in place of the leaf. The length of the resulting teenecting all target-only vertices
andp; is one less than the length 8t Continue by repeating this step until all targets have
been filled (note that there is a leaf target-only vertex ahesdep);y moves are performed in
total.

We continue with the converse implication. Denoteglifie length of a minimum Steiner
tree T' connecting the points irP. Consider a valid reconfiguration sequence of moves
my, ..., mg, Without loss of generality having a minimum number of mov&ach move
m; is an orthogonal path in the grid covering a set of elemé&fits;) in rectangleB (since
A is large enough, each move going outside rectafyieould result in a non-optimal re-
configuration sequence). In addition, we can assume thetiiglé pass throughy . Note that
V =V(m)U...UV(m,) is the vertex set of a connected grid graghhat includes all
chip-only elements, all target-only elements, and othetadies.

The number of edges @ is at leasy; + (n — 2), as in addition to the Steiner tree— 2
edges appear to the left pf; thus|V| > ¢ + (n — 2) + 1. Note thatV \ {pa,...,pn}
consists of chips or obstacles. Each of these chips or dbstanst participate at least once
in a move, and their number is at leggt+- 1) + (n — 2) — (n — 1) = ¢, as required.
This also concludes the proof of Theorem 1.
Remark Conform with the results of [4], there exists a polynontiale approximation
scheme for Rectilinear Steiner Tree. Thus our reductiors cha¢ give an inapproximabil-
ity result for U-GRID-RP, and we leave open the question oétiibr U-GRID-RP admits
a polynomial-time approximation scheme or not.

THEOREM 3.2. The labeled version in the grid-GRID-RPis NP-complete.

11

Proof. The argument, similar to that in the proof of Theorem 3.ill, stes a reduction
from R-STEINER. Consider an instané& = {p1,...,p,} of R-STEINER withn grid
points and let,, be a rightmost point il°. The instance of L-GRID-RP is illustrated in
Fig. 3.2. It hasn labeled chipssy, ..., s, located at the points i (s; atp;). Consider

510 S8 R

Fic. 3.2. Labeled chips in the grid obtained from a Rectilinear Steifree instance witm = 8
(sketch). Chip-only vertices are drawn as empty circlesl &nget-only vertices are drawn as filled
(black) circles. Obstacles (not shown) are placed at eableminteger point in the axis-aligned bound-
ing rectangle. The corridor and most of the target aledexcept its bottom row) are free.

a sufficiently large axis-aligned rectangle enclosingsthehips mentioned above and filled
with obstacles placed at each other integer point, exceptdifowing: make a thin (width
is one) long corridor connecting the rightmost chjpto a large rectangular “target areR’
located right of all the: chips mentioned above; both the corridor and all rowsaxcept
its bottom row are free. The bottom row containsratargetsty, . . ., t,,; heret; denotes the
target ofs;. R hasA, + A, + 2 rows andr columns, wheré\,, A, are as before.

Informally, the obstacles which form a minimum rectilin&teiner tree of the points
must go out in the target area and then come back in to thginatipositions. More precisely,
the reduction is complete once we establish the followirgntl(analogous to the claim in
the proof of Theorem 3.1).

Claim. There is a rectilinear Steiner tree of length at mp$and only if reconfiguration can
be done using at mo&t + 2 — n moves.

This concludes the proof of Theorem 3.

3.2. Labeled chips: upper and lower bounds on the number of mees. THEOREM
3.3. For the reconfiguration of: labeled chips in the infinite planar rectangular grid |
GRID-RP), 7n/4 moves are always enough, while /2 moves are sometimes necessary.

Proof. The lower bound is trivial (however it does not appear torlyal to improve on
it): take a pair of chips labeletland2, say next to each other, and have the target positions
switch them; that i$; = s, andt, = s;. Clearly three moves are needed to rearrange this
group of two, and by repeating it (with different labels),eogets a pair of configurations
which require3n/2 moves.

We now describe a reconfiguration algorithm which executesare tharin /4 moves
(as mentioned in the introduction, the problem can be saki@dlly in 2n moves).

Let .S andT be the start and target configurations. Consider the dilegpt@phG with
n edges (loops allowed) given ki — T'. Vertices are grid points of U T (the number of
vertices is between and2n). Each edge originates at a start chip and ends at some (free o

12

occupied) target cell. Note that each in-degree and outegeig at most one, s@ can be
partitioned into a collection of disjoint paths and cyclasd loops).

Consider the rows of numbered from top to bottont;, 2,...,r. Let D (resp. F) be
the set of elements in the odd (resp. even) rows; we can assithmut loss of generality
that| D| < |E|, thus|D| < n/2. Let A be the set of elements & whose target lie ir, and
let B (resp.C’) be the set of elements &f whose target lie in rows @b congruenttd (resp.
to 3) modulo4. Writea = |A|, b = |B|, ¢ = |C|. We can assume without loss of generality
thate < b.

1. Move (far) away the elements &f (row by row, and for each row, move elements
one by one, say from left to right) to form a set of corridors.

2. Move away the elements 6f (elements of the even rows are adjacent to corridors,
therefore any subset of chips of an even row can be moved away)

3. Select and move away an element from each cycle of thetedgcaphz remaining
among the elements of (not from the loops).

4. Fill (say, from left to right) the odd rows congruentitonodulo4 with the elements
of B and elements far away as follows: note that each even rowdset to an odd
row congruent t& modulo4; take out an element a8 from the even row through
the empty corridor congruent ®© modulo4, and then back in the target odd row
congruent ta modulo4.

5. Fill the even rows using the adjacent empty corridors gcoent to3 modulo4),
with elements fromA and elements far away. The elementsdofove directly to
their destination and such a move is possible as long as slEmeets ofA still
need to move, since we moved away one element from each dyttie directed
graphG contained inA.

6. Fill (say, from left to right) the odd rows congruentianodulo4 (the corridors)
with elements far away.

The number of non-target moves is at most

a a 3n
n (a+b+c)+2+c§n 5 b§4,
sincea + 2b > a + b+ ¢ > n/2. Therefore the total number of moves is not more than
n+3n/4="Tn/4.0

Remark The above lower bound clearly holds even in the strolifierg model when chips
can be lifted and placed back in the plane (see [7, 8] foredlaspects of disk reconfiguration
problems).

AcknowledgmentThe authors thank Sergey Bereg and Marius Zimand for sevengkrsa-
tions on the topic.

REFERENCES

[1] M. Abellanas, S. Bereg, F. Hurtado, A. G. Olaverri, D. Raport, and J. Tejel, Moving coin€omputational
Geometry: Theory and Application34 (2006), 35—48.

[2] P.Alimonti and V. Kann, Hardness of approximating perhk on cubic graph®roceedings of the 3rd Italian
Conference on Algorithms and ComplexitNCS 1203, Springer-Verlag (1997), 288-298.

[3] A. Archer, A modern treatment of this puzzle,American Mathematical MonthlyL06(1999), 793-799.

[4] S.Arora, Nearly linear time approximation schemes foclitlean TSP and other geometric probledmsjrnal
of the ACM 45(1998), 1-30.

[5] V.Auletta, A. Monti, M. Parente, and P. Persiano, A linéiane algorithm for the feasibility of pebble motion
in trees,Algorithmica 23(1999), 223-245.

[6] R.Bar-Yehuda, One for the price of two: a unified approfmhapproximating covering problemajgorith-
mica, 27 (2000), 131-144.

13

(7]
(8]
El

[10]
[11]

[12]
(23]
[14]
[15]
[16]
[17]
(18]
[19]

[20]
[21]

S. Bereg, A. Dumitrescu, and J. Pach, Sliding disks inglame, International Journal of Computational
Geometry & Applicationsto appear.

S. Bereg and A. Dumitrescu, The lifting model for reconfigtion, Discrete & Computational Geometrg5
(2006), 653-669.

A. Dumitrescu, Motion planning and reconfiguration fgstems of multiple objects; iMobile Robots: Per-
ception & Navigation Sascha Kolski (editor), Advanced Robotic Systems, 20075p3-542.

A. Dumitrescu and J. Pach, Pushing squares ard@Brahhs and Combinatoric®2 (2006), 37-50.

A. Dumitrescu, |. Suzuki and M. Yamashita, Motion plamnfor metamorphic systems: feasibility, decidabil-
ity and distributed reconfiguratiofE.EE Transactions on Robotics and Automafid®(2004), 409—-418.

M. Garey and D. Johnsoomputers and Intractability: A Guide to the Theory of NPatdetenessW. H.
Freeman and Company, 1979.

M. X. Goemans and D. P. Williamson, A general approxioratechnique for constrained forest problems,
SIAM Journal on Computing@4 (1995), 296-317.

M. X. Goemans and D. P. Williamson, The primal-dual noetlior approximation algorithms and its applica-
tion to network design problems, #pproximation Algorithms for NP-Hard Problemadited by D. S.
Hochbaum, PWS Publishing Co., 1995.

W. W. Johnson, Notes on thé puzzle. I.,American Journal of Mathematic® (1879), 397-399.

D. Kornhauser, G. Miller, and P. Spirakis, Coordingtjpebble motion on graphs, the diameter of permutation
groups, and application®roceedings of the 25-th Symposium on Foundations of Cem@gience
(FOCS '84), 241-250.

C. Papadimitriou, P. Raghavan, M. Sudan, and H. TanmM&ijon planning on a grapHProceedings of the
35-th Symposium on Foundations of Computer Scigi@@CS '94), 511-520.

C. Papadimitriou and M. Yannakakis, Optimization, apfimation, and complexity classeurnal of Com-
puter and System Sciencd8 (1991), 425-440.

D. Ratner and M. Warmuth, Finding a shortest solutiontfe (N x N)-extension of thel5-puzzle is
intractable Journal of Symbolic Computatipf0 (1990), 111-137.

W. E. Story, Notes on th&5 puzzle. Il.,American Journal of Mathematicg (1879), 399-404.

R. M. Wilson, Graph puzzles, homotopy, and the altengagroup,Journal of Combinatorial Theory, Series
B, 16 (1974), 86-96.

14

