
Interference-Aware Broadcast Scheduling in Wireless Networks✩

Gruia Calinescu1,∗, Sutep Tongngam2

Department of Computer Science, Illinois Institute of Technology, 10 W. 31st St., Chicago, IL 60616, U.S.A.

Abstract

In this paper, we study the I-A B S problem, where all nodes
in the Euclidean plane have a transmission range and an interference range equal tor andαr for
α ≥ 1, respectively. Minimizing latency is known to be NP-Hard even whenα = 1. The network
radiusD, the maximum graph distance from thesourceto any node, is also known to be a lower
bound.

We formulate the problem as Integer Programs (IP) and optimally solve moderate-size in-
stances. We also propose six variations of heuristics, which require no pre-processing of inputs,
based on the number of receivers gained by each additional simultaneous transmitting node. The
experimental results show that the best heuristics give solutions that exceed the optimal solutions
by only 13-20%. the optimum solutions. Further, anO(αD) schedule is proven to exist yielding
anO(α) approximation algorithm.

Keywords: latency minimization, broadcast, integer linear program,heuristics, approximation
algorithm

1. Introduction

Broadcast is a fundamental operation in wireless networks,the objective of which is to send
a message from a node, calledsource, to all other nodes in the network. Tseng et al. point out
in (1) many applications in ad-hoc networks, e.g., finding a route to a particular host, paging a
host, and sending an alarm signal, where the broadcast operation is used. They also consider the
characteristics of wireless equipment, mobile equipment in particular, such as power limitation,
channel utilization, and energy efficient requirement, which make a single hop communication
performed by a long transmission range node undesirable. For these cases, to distribute messages
over the network requires multi-hop communication, or dataforwarding.

In some situations, such as an emergency, disaster, storm forecasting, or other urgencies,
a message should be broadcast to all nodes as soon as possible, or within minimum timeslots.

✩A preliminary version appeared in Proc. of the 4th International Conference on Mobile Ad-hoc and Sensor Networks,
Wuhan, China, December 2008.
∗Corresponding author
Email addresses:calinescu@iit.edu (Gruia Calinescu),tongsut@iit.edu (Sutep Tongngam)

1Research supported in part by NSF grants CCF-0515088 and NeTS-0916743
2Research supported in part by NSF grant CCF-0515088 and by the Royal Thai Government. Current affiliation:

Department of Computer Science, National Institute of Development Administration, Thailand

Preprint submitted to Ad Hoc Networks December 28, 2010

The termtimeslotis used to represent a period of time for nodes to transmit. Ineach timeslot,
nodes which previously received the message can send that message (transmit). If a single node
transmits, all the nodes within its transmission range receive the message. Multple transmitting
nodes may cause interference and only some of the nodes within their transmission range receive
the message. Ascheduledictates which nodes transmit in which timeslots. Thelatencyof a
schedule is the number of timeslots used until all nodes in the network completely receive the
message. For a given network, the B S problem asks to find a schedule of
minimum latency. Such a schedule gives the latency of the network.

Without interference and collision in consideration, nodes that already received the message
are allowed to transmit that message in the next timeslot. Bycreating a graph representing nodes
by vertices and communications between nodes by edges (we call it the communication graph),
one can optimally solve the problem by applying breadth firstsearch (BFS) starting from the
source. The depth of the resulting tree will be the latency ofthe network; the schedule is that
nodes at graph distancej − 1 from the source transmit the message in timeslotj.

In the situation where interference and collision are of concern, nodes will not receive the
message if an interference and/or a collision occurs at them. A collision occurs at nodev if two or
more nodes within transmission range ofv transmit at the same time. Likewise, an interference
occurs atv when v is receiving the message from one node and some other node within the
interference range ofv is transmitting the message simultaneously. Note that the interference is
defined as a ratioα to the transmission range; whenα = 1 the definitions of interference and
collision coincide. This is a simplified model which, as we see below, was used in literature.
More realistic models appear in, for example, Moscibroda etal. (2). See also (3) and (4) for
scheduling in those models.

When the interference range is assumed to be equal to the transmission range, the interference
ratioα is equal to 1. However, as described in (5), the interferencerange can be different from,
in fact larger than, the transmission range, i.e.,α > 1. Therefore C-F B
S algorithms found in, for instance, (6), (7), (8), (9), or (10), where transmission range
and interference range are assumed to be the same, are not sufficient for the caseα > 1.

1.1. Previous work
The Euclidean model is used when identical nodes in the network can be represented as

points in the Euclidean plane and the distance between two nodes is denoted by the Euclidean
distance. We normalize the distances such that the transmission range is 1. The communication
graph of an instance is a special type of graph called unit disk graph (UDG). By defining the
collision and interference as at least two neighbors of nodev transmit packets at the same time,
i.e.,α = 1, Gandhi et al. prove in (10) that finding a minimum-latency broadcast schedule with
the collision constraint is NP-Hard in the Euclidean model.They also propose a distributed
C-F B S algorithm with latencyO(D), whereD is the radius of the
communication graph. The graph radiusD is defined as the maximum graph distance from the
source of the broadcast. ThusD is the depth of the BFS tree rooted at the source.

S.C.-H. Huang et al. propose three progressively improved approximation algorithms for the
same problem, also in the Euclidean model. Their centralized algorithms are based onconnected
dominating set, k-independent set, andnode coloringof the input graph. They claim in (11)
that their algorithms produce broadcast schedules with latency at most 24D − 23, 16D − 15, and
D +O(logD).

In a distributed setting, Emek et al. (12) obtain matching upper and lower bounds ofΘ(min(D+
g2,D logg)), whereg, called thegranularity of the network, is the inverse of the minimum dis-

2

tance between any two nodes. These bounds hold if all nodes are awake (and may transmit mes-
sages) from the beginning, and the upper bounds are obtainedby deterministic algorithms. They
also present algorithms and lower bounds for the case where the nodes other than the source are
initially idle and cannot transmit until they hear a messagefor the first time. Further discussion
of distributed algorithms appears in (13).

Recently, Z. Chen et al. (5) propose a centralized algorithmto approximately solve the
I-A B S problem forα > 1. Their algorithm is based on
breadth first search tree construction. They claim that their algorithm achieves a constant 26
approximation ratio when the interference range is twice the transmission range, i.e.,α = 2.
They further claim anO(α2) approximation ratio.

While this work was in preparation, Mahjourian et al. (14) published anO(α2)-approximation
algorithm and a greedy heuristic. They analyze experimentally their two algorithms, comparing
their results to the depth of the BFS tree, and to the results of the Chen et al. (5) algorithm.

1.2. New results
In this paper, we consider the I-A B S problem in the

Euclidean model. Our contributions include the Integer Programming (IP) formulations to opti-
mally solve moderate-size instances of the problem.

Six greedy heuristics are also presented in this paper, and they differ from the one in (14). Un-
like those proposed in (5) and (15), where instances need pre-processing, i.e., computing a BFS-
tree or a constant density spanner, respectively, our heuristics do not need any pre-processing of
instances. As of our knowledge, we are the first to compare theresults of greedy heuristics to the
optimum solutions obtained from Integer Programming.

According to our theoretical result, anO(αD) schedule can be computed by a centralized
algorithm inO(n2) time; therefore anO(α) approximation algorithm is obtained. Here an else-
where in the papern is the number of nodes in the given network/graph.

1.3. Related Work
Broadcasting has also been studied in thegraphmodel, where the communication graph is

an arbitrary undirected graph. It is easy to see that the graph radiusD with respect to the source
serves as a lower bound for the latency of any broadcast schedule (6). When collisions are
of concern, a complete message reception is defined as follows: a node has received a complete
message if and only if exactly one of its neighbors transmitsthat message at the time of receiving
(this is akin toα = 1). Most of the papers prove bounds in terms ofD.

Alon et al. (6) give a family of undirected radius-2 graphs with latencyΩ(log2 n). Chlamtac
and Weinstein present in (7) a centralized algorithm givinga bound ofO(D ln2(n/D)) on the
required timeslots, even in a directed graph. Gaber and Mansour later show in (16) the existence
of a broadcast schedule with latencyO(D + log5n) for any graph, and give a polynomial time
centralized algorithm to output such a schedule.

For distributed protocols, in general, neither global knowledge of node location and identity
nor synchronization is assumed to be prior known for all nodes. Each node only knows its
identity and its neighbors. Lower bounds on the number of rounds required for any deterministic
and randomized, distributed broadcasting protocol have been obtained by Bruschi and Pinto (8),
Kushilevitz and Mansour (9), and Kowalski and Pelc (17). Protocols with number of rounds
close to the lower bounds appear in (17), Chrobak et al. (18),and Chlebus (19).

M. Onus et al. (15) use the following model: the communication graph is a UDG or a more
general version of UDG, and the interference range given byα > 1 means that the transmission

3

s

y

x u

v

Figure 1: An UDG with nodesx andy at UDG distancen−2 and Euclidean distance at most 2. In our model withα = 2,
the transmission fromx to u causes interference aty, who cannot receive in the same timselot a packet fromv.

of a nodex interferes with the receiving byy of the message sent byz (with z , x) if the graph
distance fromx to y is at mostα. It should be noted that this is not the same as the Euclidean
model, as one can have two nodes at Euclidean distance 2 and UDG distancen− 2. See Figure
1 for an illustration. The main result of (15) is a distributed broadcasting protocol requiring,
with high probability,O(D+ logn) rounds/timeslots to deliver the message from thesourceto all
nodes, Their protocol is based on a givenconstant density spanner(see details in (20)). When
α is not considered as a constant, however, their protocol andproof give a schedule with latency
O(α2D + logn).

2. Preliminaries

Our work is based on the Euclidean model assuming all nodes have the transmission range
equalr and interference range beαr for α ≥ 1. When normalizingr to 1, the interference range
is equal toα. We use|v, x| to denote the Euclidean distance between nodesv andx.

We informally define the two problems we study, with precise definitions coming towards
the end of this section. The I-A B S problem is to find
the minimum number of timeslots until all nodes receive the message, in the model where a
nodev receives a packet if there is no interference atv while another node transmits tov. The
I-F B S problem, on the other hand, is to find the minimum
number of timeslots until all nodes receive the message, in the model where no interference
is allowed at nodes that did not receive the message yet. Thisconstraint prevents nodes from
receiving incorrect messages at all.

Next we give the definitions of collision and interference. Then we define message reception
followed by the definitions of correct schedules for both problems.

Definition 1. A collision occurs at a node vr in timeslot j if vr did not receive the message before
timeslot j and two distinct nodes within vr ’s transmission range are transmitting in timeslot j.

In Figure 2, for example, a collision will occur at nodeB if nodesX andY transmit at the
same time. In Figure 3, however, no collision occurs atB even when bothX andY transmit at
the same time sinceB already received the message.

4

= node has not yet received the message

= node that already received the message

A YX B C

1 1 11

Figure 2: First scenario.

= node has not yet received the message

= node that already received the message

A YX B C

1 1 11

Figure 3: Second scenario.

Definition 2. An interference occurs at a node vr in timeslot j if vr did not receive the message
before timeslot j and two distinct nodes, one within vr ’s transmission range and the other within
vr ’s interference range, are transmitting in timeslot j.

In Figure 3, givenα = 2, an interference will occur at nodeA if nodesX andB transmit at
the same time.

Definition 3. A node vr has received the message in timeslot j if some other node vt within a
transmission range of vr is transmitting the message and no collision/interference occurs at vr in
timeslot j.

Definition 4. Given set of nodes V and R0 = {source}, a correct interference-aware broad-
cast schedule S with latency T is a collection of sets of transmitting nodes in each timeslot
i ∈ {1, 2, ...,T}, called Bi, and of sets of receiving nodes in each timeslot i∈ {1, 2, ...,T}, called
Ri , such that

1. ∀i ∈ {1, 2, ...,T} Bi ⊆
⋃i−1

j=0 Rj

A node can transmit in a timeslot if and only if it has receivedthe message in some previous
timeslot.

5

2. ∀i ∈ {1, 2, ...,T} ∀vr ∈ Ri ∃vt ∈ Bi(|vr , vt| ≤ 1∧ ∀t′((vt′ ∈ Bi \ vt)→ (|vr , vt′ | > α)))
For any timeslot, a node vr receives the message if there exists only one node vt within
vr ’s transmission range that is transmitting the message, andno other node within vr ’s
interference range is transmitting.

3.
⋃T

i=0 Ri = V,
All nodes must receive the message within T timeslots.

4. ∀i ∈ {1, 2, ...,T} ∀ j ∈ {1, 2, ...,T} ((j , i)→ (Ri
⋂

Rj = φ)),
The reception of each node will be counted at most once (the first time), therefore no node
appears in more than one set of R.

In the scenarios from Figure 2, givenα = 2, in an interference-aware schedule it is allowed
for both nodesX andY to transmit at the same time: nodesA andC receive the message, while
nodeB does not.

Definition 5. Given n nodes in the Euclidean plane, a source node, and an interference rangeα
with α ≥ 1, theI-A B S (IABS) problem is finding a correct
interference-aware broadcast schedule with minimum latency.

Definition 6. Given set of nodes V and R0 = {source}, a correct interference-free broadcast
schedule Sc f with T timeslots is a collection of sets of transmitting nodes in each timeslot i∈
{1, 2, ...,T}, called Bi, and sets of receiving nodes in each timeslot i∈ {1, 2, ...,T}, called Ri , such
that

1. ∀i ∈ {1, 2, ...,T} Bi ⊆
⋃i−1

j=0 Rj

A node can transmit in a timeslot if and only if it has receivedthe message in some previous
timeslot.

2. ∀i ∈ {1, 2, ...,T} ∀vr ∈ Ri ∃vt ∈ Bi(|vr , vt| ≤ 1∧ ∀t′((vt′ ∈ Bi \ vt)→ (|vr , vt′ | > α)))
For any timeslot, a node vr receives the message if there exists only one node vt within
vr ’s transmission range that is transmitting the message, andno other node within vr ’s
interference range is transmitting.

3.
⋃T

i=0 Ri = V,
All nodes must receive the message within T timeslots.

4. ∀i ∈ {1, 2, ...,T} ∀ j ∈ {1, 2, ...,T} ((j , i)→ (Ri
⋂

Rj = φ)),
The reception of each node will be counted at most once (the first time), therefore no node
appears in more than one set of R.

5. ∀i ∈ {1, 2, ...,T} ∀v ∈ Bi ∀v′ ∈ V ((|v, v′| ≤ 1)→ v′ ∈ ⋃i
j=0 Rj)

In interference-free broadcast, no collision/interference occurs at any node which did not
already receive the message. Above there is a logically equivalent formulation, with the
non-trivial equivalence explained next. Indeed, the condition says that if v transmits at
time i and v′ is within the transmission range of v, then v′ is going to receive the message
at time i, unless it has received it before. Then indeed no interference can occur at some u
during timeslot i: an interference occuring at u means that uhas not received the message
previously, and there is a node x that transmits to u, and another node y whose transmission
interferes with u receiving the message from x. But in this case condition 2 above ensures
that u < Ri , and therefore u< ∪i

j=0Rj , and the condition 5 does not hold for i, v= x and
6

v′ = u. For the reverse, if condition 5 does not hold, then there exist a node v transmitting
at time i and a node v′ within the transmission range of v with v′ not receiving the message
during the first i timeslots (recall that each node v is counted as receiving the message only
the first time it receives it). This can happen only if an interference occurs at v′ in timeslot
i.

In the scenarios from Figure 3, givenα = 2, in an interference-free schedule it is allowed for
both nodesX andY to transmit at the same time: nodesA andC receive the message, while node
B already received it. However, in the scenario from Figure 2,givenα = 2, in an interference-
free schedule it is not allowed for both nodesX andY to transmit at the same time: a colli-
sion/interference happens at nodeB, who has not received the message.

Definition 7. Given n nodes in the Euclidean plane, a source node, and an interference range
α with α ≥ 1, theI-F B S (IFBS) problem is finding a correct
interference-free broadcast schedule with minimum latency.

3. Integer Programs for Broadcast Scheduling problems

Integer and linear programs have been proposed before for related problems. Björklund et
al. (21) do so for TDMA scheduling - where all interference isdisallowed. Our approach also
has 0-1 variables to represent which nodes transmit in a given timeslot, and differs as we also use
variables to represent which nodes are receivers in a given timeslot.

3.1. Interference-Aware Broadcast Scheduling

GivenT = number of timeslots, sourcev0, set of nodesV = {v1, v2, . . . , vN} where all nodes
have a path tov0, interference ratioα, and△i number of nodes within interference range ofvi ,
the objective is to find the maximum number of nodes that have received the message under the
defined constraints. If that number is equal to the number of nodes,N, the IABS instance has a
feasible solution with latencyT. We seek the minimum possible latency, so the program below
must be solved forT = 1, 2, . . . until the objective equalsN. Note thatT cannot exceedN, as
a solution withN timeslots always exists: while running BFS, in timeslotj, for j = 1, 2, . . . ,N,
the jth node extracted from the queue transmits.

The program has 0− 1 variablesxi, j , for 0≤ i ≤ N and 1≤ j ≤ T, andyi, j, for 0 ≤ i ≤ N and
0 ≤ j ≤ T. The idea is to havexi, j = 1 represent that a nodevi transmits the message at timeslot
j, andyi, j = 1 represent that nodevi receives the message for the first time at timeslotj. We use
the notationi′ ∼ i if |vi′vi | ≤ 1, andi′ ↔ i if |vi′vi | ≤ α. The integer program corresponding to the
IABS instance is the following:

Maximize
N,T
∑

i=1, j=1

yi, j

Subject to
t−1
∑

j=0

yi, j − xi,t ≥ 0; ∀i ∈ {0, 1, . . . ,N},∀t ∈ {1, 2, . . . ,T} (1)

7

T
∑

j=0

yi, j ≤ 1; ∀i ∈ {0, 1, . . . ,N} (2)

yi, j ≤
∑

i′∼i

xi′, j ; ∀i ∈ {1, 2, . . . ,N},∀ j ∈ {1, 2, . . . ,T} (3)

∑

i′↔i

xi′ , j + △iyi, j ≤ △i + 1; ∀i ∈ {1, 2, . . . ,N},∀ j ∈ {1, 2, . . . ,T} (4)

yi, j andxi, j ∈ {0, 1} ∀i ∈ {0, 1, . . . ,N},∀ j ∈ {1, 2, . . . ,T} (5)

y0,0 = 1 (6)

yi,0 = 0; ∀i ∈ {1, 2, . . . ,N} (7)

Claim 8. The IP (3.1) has a feasible solution, within T timeslots, with objective equal to the
number of nodes, N, if and only if there exists a correct interference-aware broadcast schedule
with latency T.

Proof. The first condition of Definition 4 is equivalent to Constraint 1 above. The third condi-
tion of Definition 4 is equivalent to the objective function of the IP beingN. The fourth condition
of Definition 4 implies Constraint 2 above, and is implied by Constraint 2 if the objective func-
tion of the IP isN. The second condition of Definition 4 is equivalent to constraints 3 and 4
above. Indeed, Constraint 3 says that if nodei is to receive the message in timeslotj (yi, j = 1),
one node which hasi in its transmission range must transmit (

∑

i′∼i xi′ , j ≥ 1). Also, no other node
should interfere: Constraint 4 makes

∑

i′↔i xi′ , j ≤ 1 wheneveryi, j = 1. �

3.2. Interference-Free Broadcast Scheduling
GivenT = number of timeslots, sourcev0, set of nodesV = {v1, v2, . . . , vN} where all nodes

have a path tov0, interference ratioα, and△i number of nodes within interference range ofvi ,
the objective is to find the maximum number of nodes that have received the message under the
defined constraints. If that number is equal to the number of nodes,N, the IFBS instance has a
feasible solution with latencyT. We seek the minimum possible latency, so the program below
must be solved forT = 1, 2, . . . until the objective equalsN. Note thatT cannot exceedN, as
a solution withN timeslots always exists: while running BFS, in timeslotj, for j = 1, 2, . . . ,N,
the jth node extracted from the queue transmits.

The program has 0− 1 variablesxi, j , for 0 ≤ i ≤ N and 1≤ j ≤ T, andyi, j, for 0 ≤ i ≤ N
and 0≤ j ≤ T. The idea is to havexi, j = 1 represent that a nodevi transmits the message at
timeslot j, andyi, j = 1 represent that nodevi receives the message for the first time at timeslot
j. Again, we use the notationi′ ∼ i if |vi′vi | ≤ 1, andi′ ↔ i if |vi′vi | ≤ α. The integer program
corresponding to the IFBS instance is the following:

Maximize
N,T
∑

i=1, j=1

yi, j

Subject to
t−1
∑

j=0

yi, j − xi,t ≥ 0; ∀i ∈ {0, 1, . . . ,N},∀t ∈ {1, 2, . . . ,T} (1)

8

T
∑

j=0

yi, j ≤ 1; ∀i ∈ {0, 1, . . . ,N} (2)

yi, j ≤
∑

i′∼i

xi′, j ; ∀i ∈ {1, 2, . . . ,N},∀ j ∈ {1, 2, . . . ,T} (3)

∑

i′↔i

xi′ , j + △iyi, j ≤ △i + 1; ∀i ∈ {1, 2, . . . ,N},∀ j ∈ {1, 2, . . . ,T} (4)

yi, j andxi, j ∈ {0, 1} ∀i ∈ {0, 1, . . . ,N},∀ j ∈ {1, 2, . . . ,T} (5)

y0,0 = 1 (6)

yi,0 = 0; ∀i ∈ {1, 2, . . . ,N} (7)
j
∑

j′=0

yi′ , j′ − xi, j ≥ 0; ∀i, i′ ∈ {0, 1, 2, . . . ,N} with i′ ∼ i,∀ j ∈ {1, 2, . . . ,T} (8)

Claim 9. The IP (3.2) has a feasible solution, within T timeslots, with objective equal to N, if
and only if there exists a correct interference-free broadcast schedule with latency T.

Proof. The first condition of Definition 6 is equivalent to Constraint 1 above. The third condi-
tion of Definition 6 is equivalent to the objective function of the IP beingN. The fourth condition
of Definition 6 implies Constraint 2 above, and is implied by Constraint 2 if the objective func-
tion of the IP isN. The second condition of Definition 6 is equivalent to constraints 3 and 4
above. Indeed, Constraint 3 says that if nodei is to receive the message in timeslotj (yi, j = 1),
one node which hasi in its transmission range must transmit (

∑

i′∼i xi′ , j ≥ 1). Also, no other node
should interfere: Constraint 4 makes

∑

i′↔i xi′ , j ≤ 1 wheneveryi, j = 1. The fifth condition of
Definition 6 is equivalent to Constraint 8 above. �

3.3. Integrality Gap
Constraint 4 can be slightly improved to:

∑

i′↔i

xi′, j + (△i − 1)yi, j ≤ △i; ∀i ∈ {1, 2, . . . ,N},∀ j ∈ {1, 2, . . . ,T}.

In respect to the integrality gap, the relevant question is:If the linear programming relaxation,
obtained by replacing Constraints (5) by 0≤ yi, j and 0≤ xi, j, has objectiveN for a certain value
T, is it true that the integer program has objectiveN for βT? β would be the approximation ratio.

The linear programming relaxation always has a solution with objective valueN for T =
D + 1: If vertexv is at distanced > 0 from the root, setyv,d = xv,d+1 = yv,d+1 = xv,d+2 = 1/2, and
setx0,1 = x0,2 = 1/2. In non-Euclidean instances, as in Subsection 1.3,β could be as large as
Θ(log2 n), and in Euclidean instancesβ could be as large asΘ(α), as shown later in Lemma 10.
In conclusion, this linear programming relaxation is not useful for an approximation algorithm.

4. Greedy Heuristics

In this section, we present six variations of greedy algorithms. Here, we defineBi as the set
of nodes which transmit the message in timesloti andRj as the set of nodes which receive the
message in timeslotj. R0 = {source}.

9

4.1. Interference-Free Greedy

We termIF-FA the Interference-Free First Availablegreedy heuristic (Algorithm 1 has the
pseudocode). The heuristic starts at timeslot 0 - when the source is put inR0. Then, fork, the
next timeslot, the heuristic finds from allRj with 0 ≤ j < k, the first nodevt such that, whenvt

transmits, it does not interfere with the reception of existing nodes inRk, and existing nodes in
Bk do not interfere with nodes receiving fromvt.

Once that nodevt is found, the heuristic puts it inBk, and puts the additional receivers in
Rk. The process continues until all nodes are checked once as candidates forvt. After that, the
heuristic begins the next timeslot and repeats until all thenodes have been put in someRj.

To reduce the running time (analyzed using the pseudocode),we use the following imple-
mentation. For each nodev, we keep as linked listsIv, the set of nodes within interference range
of v, andCv, the set of nodes within transmission/communication range ofv. We also keep
M j = ∪ j−1

i=0Ri , andQ j as the set of nodes not inM j interfered byB j. The setsRj, B j, M j andQ j

are kept as bit vectors. The pseudocode is given in Algorithm1.

Algorithm 1 Interference-Free First Availablegreedy
1: timeS lot=0; M1 = {source}.
2: while (Mtimeslot+1 , V) do
3: timeSlot++
4: Initialize BtimeS lot= ∅, RtimeS lot= ∅, Qtimeslot= ∅
5: for (each nodev) do
6: if (v ∈ MtimeS lot) then
7: v is good
8: for (each nodew ∈ Iv) do
9: if (w ∈ RtimeS lot) then

10: v is bad
11: end if
12: end for
13: for (each nodew ∈ Cv) do
14: if (w ∈ QtimeS lot) then
15: v is bad
16: end if
17: end for
18: if (v still good)then
19: BtimeS lot= BtimeS lot∪ {v}
20: RtimeS lot= RtimeS lot∪Cv \ MtimeS lot

21: QtimeS lot= QtimeS lot∪ Iv \ MtimeS lot

22: end if
23: end if
24: end for
25: MtimeS lot+1 = MtimeS lot∪ RtimeS lot

26: end while
27: Outputtimeslot

For a fixed j, it takesO(n) time to initialize B j, Rj , and Q j , and to updateM j . All the
conditions theif statements or thefor statements must check can be checked in constant time.

10

Thus the running time isO(n2) per timeslot. At least one node is added each timeslot, as when
B j = Rj = ∅, the connectivity of the communication graph implies thereis an edge in this graph
with one endpoint inM j and one outsideM j ; the endpoint inM j would enterB j. Thus the
number of timeslots does not exceedn, and the total running time of IF-FA (Algorithm 1) is
O(n3). A more careful analysis yieldsO(n ·∑N

v=0(|Iv| + 1)).
The Interference-Free Max Available(IF-MA) greedy heuristic differs from IF-FA in that

IF-MA finds an available node which yields the maximum numberof new receivers among all
the available nodes. That is, we do not execute lines 18-22 ofAlgorithm 1 for the first “good”
v met, but first compute for each suchv the number of receivers of nodev not in MtimeS lot, and
only execute lines 18-22 for thev maximizing the number above. This comes at the expense of
longer running time since before updatingB j we try all possible nodes asv. And this extra loop
can cause anothern rounds; therefore the running time of this heuristic isO(n4).

4.2. Interference-Aware Marginal Greedy

We termIA-FAM the Interference-Aware First Available Marginalgreedy heuristic (Algo-
rithm 2 has the pseudocode). The heuristic starts at timeslot 0 when the source is put inR0.
Then, fork, the next timeslot, the heuristic finds from allRj with 0 ≤ j < k, the first nodevt such
that, whenvt transmits, it does not interfere with the reception of existing nodes inRk, and there
are new receivers ofvt that are not receiving interference from existing nodes ofBk.

Once that nodevt is found, the heuristic puts it inBk and puts the additional receivers in
Rk The process continues until all nodes are checked once as candidates forvt. After that, the
heuristic begins the next timeslot and repeats until all thenodes have been put in someRj.

To reduce the running time (analyzed after pseudocode), we use the following data structures,
as in the previous algorithm. Precisely, for each nodev, we keep as linked listsIv, the set of nodes
within interference range ofv, andCv, the set of nodes within transmission/communication range
of v. We also keepM j = ∪ j−1

i=0 Ri , andQ j as the set of nodes not inM j interfered byB j. The sets
Rj , B j, M j andQ j are kept as bit vectors. The pseudocode is given in Algorithm2.

For a fixed j, it takesO(n) time to initialize B j, Rj , and Q j , and to updateM j . All the
conditions theif statements or thefor statements must check can be checked in constant time.
Thus the running time isO(n2) per timeslot. At least one node is added each timeslot, as when
B j = Rj = ∅, the connectivity of the communication graph implies thereis an edge in this graph
with one endpoint inM j and one outsideM j ; the endpoint inM j would enterB j. Thus the
number of timeslots does not exceedn, and the total running time of IF-FA (Algorithm 2) is
O(n3). A more careful analysis yieldsO(n ·

∑N
v=0(|Iv| + 1)).

The Interference-Aware Max Available Marginal(IA-MAM) greedy heuristic differs from
IA-FAM in that IA-MAM finds an available node which gives the maximum number of new
receivers. We keep track for each eligiblev of the quantity|(Cv \ (Qtimeslot∪ MtimeS lot)| in lines
13-17 instead of just setting theprogressvariable.. Lines 18-22 of Algorithm 2 are not executed
for the first “good”v with progress, but for thev maximizing the quantity above. This comes at
the expense of longer running time since before updatingB j we try all possible nodes asv. And
this extra loop can cause anothern rounds; therefore the running time of this heuristic isO(n4).

4.3. Interference-Aware Accumulated Greedy

We termIA-FAA the Interference-Aware First Available Accumulatedgreedy heuristic (Al-
gorithm 3 has the pseudocode). The heuristic starts at timeslot 0 when the source is put inR0.
Then, fork, the next timeslot, the heuristic finds from allRj with 0 ≤ j < k, the first nodevt

11

Algorithm 2 Interference-Aware First Available Marginalgreedy
1: timeS lot=0; M1 = {source};
2: while (Mtimeslot+1 , V) do
3: timeSlot++
4: Initialize BtimeS lot= ∅, RtimeS lot= ∅, Qtimeslot= ∅
5: for (each nodev) do
6: if (v ∈ MtimeS lot) then
7: v is good;progressis bad
8: for (each nodew ∈ Iv) do
9: if (w ∈ RtimeS lot) then

10: v is bad
11: end if
12: end for
13: for (each nodew ∈ Cv) do
14: if (w < (QtimeS lot∪ Mtimeslot)) then
15: progressis good
16: end if
17: end for
18: if (v andprogressare good)then
19: BtimeS lot= BtimeS lot∪ {v}
20: RtimeS lot= RtimeS lot∪ (Cv \ (Qtimeslot∪ MtimeS lot)
21: QtimeS lot= QtimeS lot∪ Iv \ MtimeS lot

22: end if
23: end if
24: end for
25: MtimeS lot+1 = MtimeS lot∪ RtimeS lot

26: end while
27: Outputtimeslot

12

such that, whenvt transmits, the number of new receivers ofvt that are not within interference
range from existing nodes ofBk exceeds the number of existing receivers fromRk that are within
interference range fromvt.

Once such nodevt is found, the heuristic puts it inBk and updatesRk. The process continues
until all nodes are checked once as candidates forvt. After that, the heuristic begins the next
timeslot and repeats until all the nodes have been put in someRj .

To reduce the running time (analyzed after pseudocode), we use the following data structures,
as in the previous algorithms. Precisely, for each nodev, we keep as linked listsIv, the set of
nodes within interference range ofv, andCv, the set of nodes within transmission/communication
range ofv. We also keepM j = ∪ j−1

i=0Ri , andQ j as the set of nodes not inM j interfered byB j. The
setsRj, B j, M j andQ j are kept as bit vectors. The pseudocode is given in Algorithm3.

Algorithm 3 Interference-Aware First Available Accumulatedgreedy
1: timeS lot=0; M1 = {source}.
2: while (Mtimeslot+1 , V) do
3: timeSlot++
4: Initialize BtimeS lot= ∅, RtimeS lot= ∅, Qtimeslot= ∅
5: for (each nodev) do
6: if (v ∈ MtimeS lot) then
7: if (|RtimeS lot∩ Iv| < |Cv \ (Qtimeslot∪ MtimeS lot)|) then
8: BtimeS lot= BtimeS lot∪ {v}
9: RtimeS lot= (RtimeS lot\ Iv) ∪ (Cv \ (Qtimeslot∪ MtimeS lot))

10: QtimeS lot= QtimeS lot∪ Iv \ MtimeS lot

11: end if
12: end if
13: end for
14: MtimeS lot+1 = MtimeS lot∪ RtimeS lot

15: end while
16: Outputtimeslot

For a fixedj, it takesO(n) time to initializeB j, Rj, andQ j in line 4, and to updateM j in line
14. In lines 7-11, all the set operations including countingcan be done inO(|Iv| + 1) by going
throughIv andCv and using the bitmaps ofRj , Q j , andM j . Thus the running time isO(n2) per
timeslot. At least one node is added each timeslot, as whenB j = Rj = ∅, the connectivity of
the communication graph implies there is an edge in this graph with one endpoint inM j and one
outsideM j ; the endpoint inM j would enterB j. Thus the number of timeslots does not exceed
n, and the total running time of IA-FAA (Algorithm 3) isO(n3). A more careful analysis yields
O(n ·∑N

v=0(|Iv| + 1)).
TheInterference-Aware Max Available Accumulated(IA-MAA) greedy heuristic differs from

IA-FAA in that IA-MAA finds an available node that gives the maximum increase inRj. We keep
track for eachv ∈ M j of the quantity|Cv \ (Qtimeslot∪ MtimeS lot)| − |RtimeS lot∩ Iv|. Lines 8-10 of
Algorithm 3 are not executed for the firstv with positive quantity above, but for thev maximizing
the quantity. This comes at the expense of longer running time since before updatingB j we try
all possible nodes asv. And this extra loop can cause anothern rounds; therefore the running
time of this heuristic isO(n4).

13

5. Experimental Results

In this section, we show the results of experiments for all six variations of the greedy heuris-
tic. Considering networks of nodes randomly distributed over a 4× 4 area, and thesourcenode
is also randomly located within the area, we vary number of nodes,sourceincluded, to 21, 41,
61, and 81. Based on the UDG model, the transmission range of each node is set to 1, while the
interference range is set to 2. We generate 20 instances for each network size and use the same
instances for all IPs and heuristics. Note that informationshown in all tables are the average
of the mentioned number of instances on each heuristic. We compare the results from heuris-
tics and optimum solutions obtained from solving integer programs. Due to the NP-Complete
hardness of Integer Programming and computing capacity limitation of our computer, we cannot
timely solve an instance with much more than 81 nodes. Note that our HP-XW8000 has spent an
average of 6 hours to solve IPs for an 81-instance but a coupleof seconds to run the heuristics.

Table 1 shows the depth of BFS trees of the given instances andoptimum solution obtained
from related IPs. Note that the interference-free IP yieldsslightly higher solutions than those
obtained in the interference-aware model, and both are higher than the depth of BFS tree, which
is the lower bound. Recall that the IP in subsection 3.2 has the constraints of the one from
subsection 3.1, and has an additional set of constraints.

Table 1: Average Depth of BFS trees and optimum solutions

#nodes BFS Intf-aware IP Intf-free IP
21 5.7 7.1 7.1
41 6.3 7.4 7.4
61 5.9 7.4 7.6
81 5.7 7.5 7.7

Next, in Table 2, we compare the experimental results among heuristics and optimum so-
lutions in the interference-aware category. The greedy heuristics based on maximum available
improvement, i.e., IA-MAM and IA-MAA, overcome the other two heuristics based on first
available improvement. The more greedy, the better. But onemay need to trade-off the running
time because, on maximum available concept, IA-MAM and IA-MAA have to run through all
the capable nodes before selecting one to transmit, while IA-FAM and IA-FAA run through all
the capable nodes only once per timeslot. Also note that morecomplex IA-MAA usually gives
better solutions than IA-MAM does. As described in details in section 4, IA-MAA has to re-
compute the set of receiversR in that timeslot every time an additional node is being considered,
while IA-MAM computes only the number of receivers gained bythat additional node.

The comparison in interference-free category is shown in Table 3. As earlier, the more greedy
version, IF-MA, performs significantly better than the simpler version, IF-FA. One can also
observe that the results of heuristics in the interference-free category is slightly higher than those
of the interference-aware category.

Tables 4 and 5 show the differences in percentage of outputs from each heuristic over opti-
mum solutions. The best heuristic for each instance gives the output exceeding the optimum by
only 13-20%.

14

Table 2: Average optimum interference-aware and related heuristics

#nodes Intf-aware IP IA-FAM IA-MAM IA-FAA IA-MAA
21 7.1 8.6 8.5 8.2 8.1
41 7.4 8.8 8.5 8.9 8.6
61 7.4 9.5 8.9 9.4 9.0
81 7.5 9.7 8.7 9.7 8.5

Table 3: Average optimum interference-free and related heuristics

#nodes Intf-free IP IF-FA IF-MA
21 7.1 8.5 8.4
41 7.4 8.9 8.6
61 7.6 9.5 9.1
81 7.7 10.0 8.7

6. Theoretical Results

Lemma 10. There are Euclidean instances of IABS that have minimum latency at least(π/6)(α−
2)D.

Proof. We assumeα > 2, or else there is nothing to prove. Take a square grid with adjacent
points at distance (

√
2/2)(1+ ǫ), whereǫ is suitable small. Pick an arbitrary point on the grid,

as the sources, and keep only the points at Euclidean distance at mostα/2 from s. This is the
Euclidean instance of IABS.

The points remaining make a UDG with vertex degree at most 4. If we want to maximize
graph distance fromswhile keeping Euclidean distance small we alternate horizontal and vertical
edges (see Figure 4). ThereforeD ≤ 2(α/2) = α.

To prove the lemma, we first define theouter disk as the disk centered at the sources with
radiusα/2. Letn be the number of nodes in the instance mentioned above, whichis equal to the
number of grid points within this outer disk.

Then, we draw a square whose area is (1/2)(1+ǫ)2, i.e., any side of the square is (
√

2/2)(1+ǫ),
centered at each grid point. If any arbitrary pointy is within the area of the square,y is said to be

Table 4: Differences in percentage between related heuristics and optimum, the interference-aware case

#nodes IA-FAM IA-MAM IA-FAA IA-MAA
21 21 20 15 14
41 19 15 20 16
61 28 20 26 21
81 29 16 29 13

15

Table 5: % Differences in percentage between related heuristics and optimum, the interference-free case

#nodes IF-FA IF-MA
21 20 18
41 20 16
61 25 20
81 30 13

covered by that grid point. We further draw another circle, called inner disk, centered ats with
(α − (1+ ǫ))/2 radius (see also Figure 4).

Let b (see Figure 5) be an arbitrary point within the inner disk andcovered by a grid pointc
which is outside the inner disk. The distance betweenb andc is at most (1+ ǫ)/2, asb is in a
square centered atc and with sides of length (

√
2/2)(1+ ǫ). Now we can show thatc is within

the outer disk.
Sinceb is in the inner disk as given, the distance betweenb and the sources is at most

(α − (1+ ǫ))/2, the radius of the inner disk, now we have:

|s, c| ≤ |s, b| + |b, c| (1)

≤ (α − (1+ ǫ))/2+ (1+ ǫ)/2 (2)

≤ α/2. (3)

We conclude thatc is within the outer disk.
Because the area of the inner disk is covered byn grid points within the outer disk, by

comparing areas, we can computen as the following:

n(1/2)(1+ ǫ)2 ≥ π((α − (1+ ǫ))/2)2 (4)

(n/2)(1+ ǫ)2 ≥ (π/4)(α− (1+ ǫ))2 (5)

n ≥ ((π/2)(α− (1+ ǫ))2)/(1+ ǫ)2 (6)

Any transmitting node will cause interference at all the other nodes, since the nodes are all in
a disk of diameterα. So no two nodes can transmit succesfully at the same time. A transmission
by nodev , s can reach at most three new vertices - as one neighbor ofv must have gotten the
message beforev.

The latencyT of this instance can be derived as follows: after one time slot, there will be
five nodes which received the message, and after that in each round only three more nodes can
receive the message. Thus afterj timeslots at most 5+ 3(j − 1) can receive the message, and
therefore:

n ≤ 5+ 3(T − 1). (7)

Recall thatD ≤ α. Using this and Equations 6 and 7, we obtain:

T ≥ n/3− 5/3+ 1 (8)

≥ n/3− 2/3 (9)

≥ ((π/6)(α− (1+ ǫ))2)/(1+ ǫ)2 − 2/3 (10)

16

r

R

Figure 4: Maximized graph distance:Rdenotesα/2, r denotes (α − (1+ ǫ))/2

b

c

d

s

Figure 5: Point coverage. The grid is given by the dotted lines, and the solid lines separate and define the coverage areas
of grid points.

17

≥ (π/6)(
α− (1+ ǫ))2

(1+ ǫ)2
)(D/α) − 2/3 (11)

≥ (π/6)(
α− 2(1+ ǫ) + (1+ǫ)2

α

(1+ ǫ)2
)D − 2/3 (12)

We can find someǫ that makesT ≥ (π/6)(α − 2)D − 1. �

Our main technical result is:

Theorem 11. Let I = (V, s, α) be an Euclidean instance of IABS with|V| = n nodes, source s and
interference rangeα, and let G= (V,E) be the communication graph of I and D be the radius
of G with respect to s. There is a centralized O(n2) algorithm to produce an interference-free
broadcast schedule of I with at most64(2+ ⌈

√
2(α + 3)⌉)D + 8(⌈

√
2(α + 3)⌉)2 + 1 timeslots.

Proof. Note that the communication graphG = (V,E) of I is a UDG . First we partition the
plane into squares of diameter 1 (thus the side of a square haslength

√
2/2), such that no node

is on the border of such a square. Then we construct an auxiliary graphH = (V(H),E(H)) as
follows: V(H) has one vertex for each cell that contains a node ofV, and two vertices/cells of
V(H) are adjacent if there exist two nodes ofV, one in each cell, that are adjacent inV. Let
H′ = (V(H′),E(H′)) be the bi-directed version ofH; that isV(H′) = V(H) and for each edge
e= {u, v} of E(H), H′ has two directed arcs:uvandvu. See Figure 6 for an illustration.

2

3

s

5

6

9

1

3,10

5,8

9,10

11,12

11

12

13

13

14

15

7,16

4

17

18,22 19

23

20

21

6
2,4

1

7

8

10

11

5
6

Figure 6: Ignoring the arrows and numbers for the moment, we use solid line segments to represent a treeT in the UDG
G and dotted and dashed segments and arcs to representH. The arrows andT are used for an illustration of Claim 12: if
the conflict-free broadcast schedule inH′ uses the dashed line segments with arrows at timeslots givenby the numbers
next to each arc, the construction of the claim results in thetimeslots given next to each vertex ofG (there is indeed
redundancy), with communication following the arrows ofT.

18

For a vertexv ∈ V, denote bycell(v) the cell ofV(H) containingv. For every arce′ ∈ E(H′),
pick adjacent nodes ofV, t(e′) andh(e′), such thatcell(t(e′)) is the tail ofe′ (in H′) andcell(h(e′))
is the head ofe′ (in H′). Such nodest(e′) andh(e′) must exist, as otherwisee′ cannot be an arc
of H′, and if there are several choices fort(e′) andh(e′), make an arbitrary choice. Note that
constructingH′, and the functionscell : V → V(H), t : E(H′) → V, andh : E(H′) → V can be
easily done inO(n2).

Call two arcse1 ande2 of H′ conflictingif |t(e1), t(e2)| ≤ α + 3. Let Q be a subgraph ofH′.
A conflict-freebroadcast schedule forQ with root r ∈ V(Q) andt timeslots consists oft sets of
arcs ofE(Q), X1,X2, . . . ,Xt, such that:

1. for eachi ∈ {1, 2, ..., t}, no two arcs ofXi are conflicting, and
2. for anyi ∈ {1, 2, . . . , t} and any arce ∈ Xi , either the tail ofe is r, or there existi′ < i and

arce′ ∈ Xi′ such that the tail ofe is the head ofe′, and
3. any vertex ofV(Q) \ r is the head of some arc in∪t

i=1Xi .

Claim 12. If H ′ has a conflict-free broadcast schedule with t timeslots rooted at cell(s), then
I has an interference-free broadcast schedule with source sand 2t + 1 timeslots. Moreover,
constructing the schedule for I from the one of H′ can be done in O(n2).

Proof. For an illustration, see again Figure 6.
For i = 1, 2, . . . , t, defineB2i = {t(e′) | e′ ∈ Xi} andB2i+1 = {h(e′) | e′ ∈ Xi}. Also define

R0 = B1 = {s}, and for j = 1, 2, . . . , 2t + 1, defineRj = {v ∈ V | ∃v′ ∈ B j such thatvv′ ∈
E(G)} \

(

∪ j−1
i=0Ri

)

. Doing this construction inO(n2) is straightforward. Now we verify that this is
a correct interference-free broadcast schedule forI ; we note that it hassas the source and 2t + 1
timeslots.

Indeed, the lack of interference/collisions follows from the fact that for alli = 1, 2, . . . , t,
any two nodes ofB2i are at Euclidean distance at least (α + 3) (since the nodes come from non-
conflicting arcs ofE(H′)), and any two nodes ofB2i+1 are at Euclidean distance at least (α + 1).
This last statement is true since, otherwise, ifv1, v2 ∈ B2i+1 are such that|v1, v2| ≤ α + 1, and
v1 = h(e1) andv2 = h(e2), with e1, e2 ∈ Xi , then, using that for everye ∈ E(H′), t(e) andh(e) are
adjacent inG, |h(e1), h(e2)| ≤ |t(e1), h(e1)|+ |t(e1), t(e2)|+ |h(e2), t(e2)| ≤ 1+(α+1)+1= α+3, and
thereforee1 ande2 are conflicting, a contradiction to the fact we started with anon-conflicting
broadcast schedule forH′.

Next, we note thatB1 ⊆ R0, that for i = 1, 2, . . . , t, B2i+1 ⊆
⋃2i

j=0 Rj since every vertex of
B2i+1 is adjacent inG to some vertex ofB2i (for everye′ ∈ E(H′), t(e′) andh(e′) are adjacent in
G). Also, for i = 1, 2, . . . , t, every vertex inB2i is t(e) for somee ∈ Xi . Since we started with
a conflict-free broadcast schedule ofH′, either the tail ofe is cell(s), or there existi′ < i and
arce′ ∈ Xi′ such that the tail ofe is the head ofe′. In the first case,t(e) ∈ cell(s) and therefore
t(e) ∈ (R0 ∪ R1). In the second case,t(e) andh(e′) are in the same cell and thus adjacent inG,
and sinceh(e′) ∈ B2i′+1, we deduce thatt(e) ∈ ⋃2i′+1

j=0 Rj ⊆
⋃2i−1

j=0 Rj.

Finally,
⋃2t+1

i=0 Ri = V, as we prove in this paragraph. Ifv = s, thenv ∈ R0, and if cell(v) =
cell(s), thenv ∈ R1. Otherwise, there exist somei ∈ {1, 2, . . . , t} ande ∈ Xi such that (inH′)
the head of the arce is cell(v). Then, unlessv ∈ ∪2i

j=1Rj, v is put inR2i+1, ascell(v) = cell(h(e)),
h(e) ∈ B2i+1, and the Euclidean distance between two nodes of the same cell is at most 1. Thus we
can convert a conflict-free broadcast schedule ofH′ into an interference-free broadcast schedule
of I . �

19

We continue with the proof of Theorem 11. Observe that the radius of H′, starting from
cell(s), is at mostD. Indeed, for any verticesv1 andv2 adjacent inV, cell(v1) andcell(v2) are
either identical or adjacent inH, and thus any path inG has an equivalent path inH′ of at most
the same length.

Based on the claim above, to prove the theorem it is enough to construct inH′ a conflict-free
broadcast schedule fromcell(s) with 32(2+ ⌈

√
2(α + 3)⌉)D+ 4(⌈

√
2(α + 3)⌉)2 timeslots. LetTH

be a BFS tree ofH rooted atcell(s).
We further partition the Euclidean plane, andV(H), into squareblocks, where a block has

⌈
√

2(α + 3)⌉× ⌈
√

2(α + 3)⌉ cells. Note that a block occupies a square with sides of length (α+3)
as each cell has sides of length

√
2/2. We group the blocks together into bigger squares, each

containing four blocks, and color the four blocks in a group with colors 0, 1, 2, and 3 according
to the four quadrants. See Figure 7 for an illustration.

0 1 0 1

0 1 0 1

23 3 2

3 2 23

Figure 7: Block coloring with four colors, where each block has⌈
√

2(α + 3)⌉ × ⌈
√

2(α + 3)⌉ cells

The blocks are large enough such that, if we follow the rule ofusing only blocks of the same
color and for each such block picking only one arc ofE(H′) with the tail in the block, we do
not pick any pair of conflicting arcs. We construct our non-conflicting broadcast schedule forH′

using this rule, and the treeTH , as explained below.
In timesloti, we only use blocks coloredi mod 4. The schedule has two phases,inter-block

andfill-block, with the intuition that in the inter-block phase we reach blocks, and in the fill-block
phase we fill them.

First we pruneTH with the goal that we only keep an arce if e is needed to reach fromcell(s)
cells in blocks other than the block containing the tail ofe. For an illustration, see Figure 8,
ignoring the pathsPe for the moment. This is accomplished as follows. ProcessTH in postorder,
and for eachv ∈ V(TH), construct a list (as a bitmap) with the coordinates of the blocks where
the descendants ofv, including itself, lie. In a second postorder traversal, for everyv , cell(s)
of TH , removev from TH if the list of v has only one element and the parent ofv is in the same
block asv. Call T′ the tree obtained after these removals; it is indeed a tree since for every vertex
removed fromTH , its descendants are also removed. We treatT′ as directed, with arcs going
from parent to child. Note that every arc ofTH with tail and head in different blocks is inT′.

The constructionT′ from TH, done as described above, takesO(n2) time. In the inter-block
phase, we make sure that each vertex ofV(T′) \ {cell(s)} appears as the head of some arc in some

20

B
41

45

57

5361

69

65

49

37

2529 33

P3 P2 P1

P4

59

Figure 8: The arcs entering and inside a block (the square inside the solid lines). The dotted arcs and the vertices they
reach do not appear in the pruned treeT′, which contains only solid and dashed arcs. The inter-blockphase described
later uses pathsPe, four of which appear here with dashed arcs. For example, thepathP4 is in fact Pe4 wheree4 has
label 65 here. The possible timeslots could be:P1 has two arcs with timeslots 5 and 9;P2 has seven arcs with timeslots
25, 33, 41, 45, 53, 61, and 69;P3 has two arcs with timeslots 29 and 37;P4 has three arcs with timeslots 49, 57, and 65.

Xi . This is accomplished as follows.

Detailed description of the inter-block phase
The algorithm proceeds timeslot by timeslot and constructsthe setsXi starting withX1 and

then incrementingi - once it starts working on timesloti it will not modify X j for j < i. At
timeslot j, call a cellv ∈ V(H) reachedif v = cell(s) or v is the head of some arc in∪ j−1

i=0 Xi .
Consider a blockB. Let Out(B) be the set of arcs ofT′ with the tail inB and the head outside

B. See Figure 9. For each arce ∈ Out(B), consider the subpathPe of T′ which ends withe and
is shortest starting at eithercell(s) or some vertex ofH such that the parent inT′ of that vertex is
outsideB. For an illustration, see Figure 8.

B

2

B

Figure 9: The arcs going out of a block B could look as above. The solid arcs are some (but not all) edges ofG.

21

Initialization: For each arce ∈ E(T′), we compute if there is some blockB with e ∈ Out(B),
and if so explicitly constructPe as a linked list. For any suche, we keep a pointerle, initialized
to NULL, to arcs ofPe. We also keep as a bitmap the set of vertices reached; initially only cell(s)
is reached. A pathPe is eligible if its first vertex has been reached and its last vertex has notbeen
reached; in an invariant of the algorithm that all these paths havele , NULL. For each blockB,
we keep a queueQB; an invariant of the algorithm is that, except during the processing a pathPe

as described below,QB contains the eligible pathsPe for all e ∈ Out(B). This queue is initialized
to be empty for everyB’s which does not containcell(s). For everyB which containscell(s), all
the pathsPe, for e ∈ Out(B), that havecell(s) as the first vertex, are put in the queueQB, and for
any suche, le is set to be the first arc ofPe.

Processing one timeslot:We process timeslotsj in order starting with 1. For each blockB,
if it is colored j mod 4 andQB , ∅, then we extract fromQB a pathPe, which we process as
follows. We put inX j the arc pointed at byle and mark the head ofeas reached. If this arc is not
e, then we makele point to the next arc ofPe, and enqueuePe in QB (round-robin policy). Else
(le does point ate), we search for all possiblePe′ such that the head ofe is the first vertex ofPe′ .
For each suche′, we setle′ to be the first arc ofPe′ , and enqueuePe′ in QB′ of the appropiateB′.
Figure 8 shows an example of repeatedly running this processing on a block colored 1 and with
four paths.

Stopping: The inter-block phase finishes once every vertex ofT′ is reached, which we test
using a bitmap after each timeslot.

Claim 13. The inter-block phase outputs a conflict-free broadcast schedule for T′ with at most
D · 32(2+ ⌈

√
2(α + 3)⌉) timeslots.

Proof. It is crucial to notice|Out(B)| ≤ 4 · 2 · (2 + ⌈
√

2(α + 3)⌉), since only the cells
which are not inB but have a corner at Euclidean distance at most 1 fromB could have an arc
of T′ incoming fromB (see Figure 9), andT′ being a tree implies that no such cell can have two
incoming arcs.

The bound on|{Pe | e ∈ Out(B)}| and the round-robin policy ensure that, once the first vertex
of a pathPf is reached, in each interval of 4· 8 · (2+ ⌈

√
2(α + 3)⌉) timeslots,Pe is processed and

at least one arc ofPf is used. Thus, by immediate induction on|Pf | (here|Pf | is the length of
the pathPf - the number of arcs in it), the head off is reached after|Pf | · 32(2+ ⌈

√
2(α + 3)⌉)

timeslots from the moment the first vertex ofPf is reached.
Forv ∈ V(T′) we letd(v) be the length of theT′-path fromcell(s) to v. This algorithm indeed

reaches all vertices ofT′: anyx ∈ T′ either has its parent in a different block, in which case the
arc fromx′s parent tox appears ase in someOut(B), or has a descendant in a different block.
Let y be one such descendant ofx, closest tox in T′. Then the arc fromy′s parent toy appears
ase in Out(B), wherex ∈ B, and thusx is on Pe. Therefore alwaysx is on somePe, and then
x is reached provided the first vertex ofPe is reached. This first vertex is also inT′ and closer
to cells(s), the root ofT′. Thus we can apply induction ond(x) and obtain not only thatx is
reached, but also that it is reached after at mostd(x) · 32(2+ ⌈

√
2(α + 3)⌉) timeslots. �

Claim 14. Computing the schedule of the inter-block phase takes O(n2) time.

Proof. We have at mostn arcs inT′ andn blocks in total, so determining ife ∈ Out(B)
for someB can be done inO(n2). ConstructingPe for a givene can be done inO(n) time using
parent pointers inT′. Thus all the steps ofInitialization takeO(n2) time.

22

All the steps ofProcessing one timeslotcan be easily implemented to run in constant time
per block and timeslot, except for searching, given a blockB and one edgee ∈ Out(B), for all
possiblePe′ with the head ofe is the first vertex ofPe′ . All (for every timeslot and every block)
such searches can be done inO(n2) since this is done exactly once for eache, and inO(n) we can
teste′.

Testing the stopping condition is done inO(n) after each timeslot. Thus, except for the
searches, the time spent by the algorithm processing one timeslot isO(n). The number of times-
lots given by the previous claim may not beO(n), so we are not yet done.

Note that if there is are unreached vertices inT′ at timeslotj, then at least an arc ofT′ will be
put in one ofX j ,X j+1,X j+2,X j+3, as argued next. Letx be an unreached vertex highest inT′; x′s
parenty is reached. We have two cases: if the arcyx ∈ Out(B) for someB, then lete= yx. If not,
theny andx are in the same blockB′, and the construction ofT′ ensures thatx has an descendent
in another block and thus there exists an edgee′ ∈ Out(B′) such that bothx andy belong toPe′ .
In either case, the pathPe (or Pe′) is eligible, as it has both reached and unreached vertices,and
since one cannot reach a vertex without reaching all its ancestors inT′, the first vertex of the
path must be reached and the last vertex unreached. Therefore,QB (or QB′) is not empty. In both
cases,B or B′ will be processed in one of the timeslotsj, j + 1, j + 2, j + 3 and thus one arc from
somePf (f may or may not beeor e′) will be put in one ofX j ,X j+1,X j+2,X j+3.

T′ has at mostn − 1 arcs, and as long as there are unreached vertices, each fourtimeslots
a new arc will be assigned to someX j . Thus there are at most 4n timeslots for the inter-block
phase.

Combining theO(n) timeslots withO(n) time per timeslot (except for searches),O(n2) total
time for searches, andO(n2) time for the initialization gives the running time bound ofthe claim.

�

We continue with the proof of Theorem 11. Now that the inter-block phase is complete. The
fill-block phase is done as follows: for any timeslotj and for each block coloredj mod 4, we
pick a cellv of H in that block which is not reached but whose parent inTH is reached. Then we
add toX j the arc from the parent ofv to v, resulting inv being reached. If no such cellv exists,
then we stop the algorithm. As there are at most (⌈

√
2(α + 3)⌉)2 cells in a block, the fill-block

phase uses at most 4(⌈
√

2(α + 3)⌉)2 timeslots. Finally, every cellv is reached, since, ifx is the
closest ancestor ofv in TH with x ∈ V(T′), thenx is reached in the inter-block phase, and the
path fromx to v in TH, includingx andv, is contained entirely in one block (this is since, for any
vertexx of TH but notT′, x′sparent inTH is in the same block asx).

By putting together the number of timeslots of the fill-blockphase, and using Claims 12, 13,
and 14, we finish the proof of Theorem 11.

At the expense of slightly complicating the proof, if one uses a hexagonal grid instead of a
square grid, we believe that the upper bound in the theorem above can be slightly improved to
48
√

3(α + 4)D + 12(α + 4)2 + 1.

Theorem 15. There exists a centralized algorithm with running time O(n2) that gives an O(αD)
interference-free broadcast schedule for any Euclidean instance of IABS.

Proof. Another algorithm is to construct the UDGG andH′ as above, but treatH′ as one single
block and fill its cells one by one.H′ can have at mostπ(D + 1)2/(1/2) cells, since each cell of
H′ has area 1/2 and diameter 1, which implies it is completely included in the disk rooted ats
with Euclidean radiusD + 1. Thus we can find a conflict-free broadcast schedule forH′ with

23

2π(D + 1)2 timeslots and, as in Claim 12, an interference-free broadcast schedule forI with
4π(D + 1)2 + 1 timeslots.

Now we just balance the bound above with the one from Theorem 11. If D < 10α, we use
the bound above, giving us a schedule with at most 4π(10α+ 1)(D+ 1)+ 1 timeslots. Otherwise,
if D ≥ 10α, we use Theorem 11 to get an interference-free broadcast schedule with 64(2+
⌈
√

2(α + 3)⌉)D + 8(⌈
√

2(α + 3)⌉)(⌈
√

2(D/10+ 3)⌉ + 1 timeslots. In both cases, the existence of
anO(αD) interference-free broadcast schedule follows.

Recall that any interference-aware broadcast schedule haslatency at leastD. Then an im-
mediate consequence of the theorem above is:

Corollary 16. There is an O(α)-approximation algorithm forI-A andI-
F B S on Euclidean instances.

7. Conclusion

We formulated the NP-Hard B S problems with interference-aware or
interference-free transmissions as integer programs and are able to optimally solve moderate-
size random instances of the problem.

Then, we presented six variations of heuristics based on availability of and maximum marginal
receivers gained by simultaneously transmitting nodes. Note that our heuristics do not need any
pre-processing of instances. The experimental results show that the greedy heuristics based on
maximum marginal receivers gained by simultaneously transmitting nodes produce outputs clos-
est to optimum solutions, for uniform random instances. In addition, the average solutions from
the best heuristics in each category exceeds the average of the optimum solutions by only 13-
20%. Our algorithms may very well perform no worse on real-world instances.

Finally, we show that anO(αD) schedule can be computed centralized inO(n2), thus giving
anO(α)-approximation algorithm. We leave open the issue of whether anO(1) approximation is
achievable in the Euclidean model.

References

[1] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, J.-P. Sheu, The broadcast storm problem in a mobile ad hoc network, Wireless
Networks 8 (2002) 153–167.

[2] T. Moscibroda, R. Wattenhofer, Y. Weber, Protocol Design Beyond Graph-Based Models, in: 5th Workshop on Hot
Topics in Networks (HotNets), Irvine, California, USA, 2006.

[3] T. Moscibroda, R. Wattenhofer, The complexity of connectivity in wireless networks, in: Proc. 25th IEEE Interna-
tional Conference on Computer Communications (INFOCOM), 2006, pp. 1–13. doi:10.1109/INFOCOM.2006.23.

[4] O. Goussevskaia, T. Moscibroda, R. Wattenhofer, Local Broadcasting in the Physical Interference Model, in:
ACM SIGACT-SIGOPT International Workshop on Foundations of Mobile Computing (DialM-POMC), Toronto,
Canada, 2008.

[5] Z.Chen, C.Qiao, J.Xu, T.Lee, A constant approximation algorithm for interference aware broadcast in wireless
networks, in: IEEE INFOCOM, 2007, pp. 740–748.

[6] N.Alon, A.Bar-Noy, N.Linial, D.Peleg, A lower bound forradio broadcast, Journal of Computer and System Sci-
ences (1991) 290–298.

[7] I.Chlamtac, O.Weinstein, The wave expansion approach to broadcasting in multihop radio networks, IEEE Trans-
actions on Communications (1991) 426–433.

[8] D.Bruschi, M.D.Pinto, Lower bounds for the broadcast problem in mobile radio networks, Distributed Computing
(1997) 129–135.

[9] E.Kushilevitz, Y.Mansour, Anω(dlog(n/d)) lower bound for broadcast in radio networks, SIAM J.Comput. (1998)
702–712.

24

[10] R. Gandhi, A. Mishra, S. Parthasarathy, Minimizing broadcast latency and redundancy in ad hoc networks,
IEEE/ACM Trans. Netw. 16 (4) (2008) 840–851. doi:http://dx.doi.org/10.1109/TNET.2007.905588.

[11] S.C.-H.Huang, P.-J.Wan, X.Jia, H.Du, W.Shang, Minimum-latency broadcast scheduling in wireless ad hoc net-
works, in: IEEE INFOCOM, 2007, pp. 733–739.

[12] Y. Emek, L. Gasieniec, E. Kantor, A. Pelc, D. Peleg, C. Su, Broadcasting in UDG radio networks with unknown
topology, in: PODC ’07: Proceedings of the twenty-sixth annual ACM symposium on Principles of Distributed
Computing, 2007, pp. 195–204. doi:http://doi.acm.org/10.1145/1281100.1281130.

[13] Y. Emek, E. Kantor, D. Peleg, On the effect of the deployment setting on broadcasting in Euclidean radio networks,
in: PODC ’08: Proceedings of the twenty-seventh ACM symposium on Principles of Distributed Computing, 2008,
pp. 223–232. doi:http://doi.acm.org/10.1145/1400751.1400782.

[14] R. Mahjourian, F. Chen, R. Tiwari, M. Thai, H. Zhai, Y. Fang, An approximation algorithm for conflict-aware
broadcast scheduling in wireless ad hoc networks, in: MobiHoc ’08: Proceedings of the 9th ACM international
symposium on Mobile Ad Hoc Networking and Computing, ACM, New York, NY, USA, 2008, pp. 331–340.
doi:http://doi.acm.org/10.1145/1374618.1374663.

[15] M.Onus, A.Richa, K.Kothapalli, C.Scheideler, Efficient broadcasting and gathering in wireless ad-hoc networks,
in: IEEE ISPAN, 2005, pp. 346–351.

[16] I.Gaber, Y.Mansour, Broadcast in radio networks, in: SODA, 1995, pp. 577–585.
[17] D.R.Kowalski, A.Pelc, Broadcasting in undirected ad hoc radio networks, in: PODC, 2003, pp. 73–82.
[18] M.Chrobak, L. asieniec, W.Rytter, Fast broadcasting and gossiping in radio networks, in: FOCS, 2000, pp. 575–

581.
[19] B.S.Chlebus, L. asieniec, A.Gibbons, A.Pelc, Deterministic broadcasting in unknown radio networks, Distributed

Computing (2002) 861–870.
[20] M.Onus, A.Richa, K.Kothapalli, C.Scheideler, Constant density spanners for wireless ad-hoc networks, in: ACM

SPAA, 2005, pp. 116–125.
[21] P. Bjorklund, P. Varbrand, D. Yuan, A column generationmethod for spatial TDMA in ad hoc radio networks, Ad

Hoc Networks 2 (4) (2004) 405–418.

25

