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Abstract

In this paper, we study theterFERENCE-AWARE BroADCAST ScHEDULING problem, where all nodes
in the Euclidean plane have a transmission range and afeireace range equal tcandar for

a > 1, respectively. Minimizing latency is known to be NP-Hawee whenr = 1. The network
radiusD, the maximum graph distance from theurceto any node, is also known to be a lower
bound.

We formulate the problem as Integer Programs (IP) and ofitirealve moderate-size in-
stances. We also propose six variations of heuristics, wigéquire no pre-processing of inputs,
based on the number of receivers gained by each additionaltsineous transmitting node. The
experimental results show that the best heuristics givgisols that exceed the optimal solutions
by only 13-20%. the optimum solutions. Further,@fD) schedule is proven to exist yielding
anO(a) approximation algorithm.

Keywords: latency minimization, broadcast, integer linear progrhauristics, approximation
algorithm

1. Introduction

Broadcast is a fundamental operation in wireless netwalkesobjective of which is to send
a message from a node, calleaurce to all other nodes in the network. Tseng et al. point out
in (1) many applications in ad-hoc networks, e.g., findingate to a particular host, paging a
host, and sending an alarm signal, where the broadcasttmpeisaused. They also consider the
characteristics of wireless equipment, mobile equipmeptirticular, such as power limitation,
channel utilization, and energyheient requirement, which make a single hop communication
performed by a long transmission range node undesirabiehEse cases, to distribute messages
over the network requires multi-hop communication, or datevarding.

In some situations, such as an emergency, disaster, stogvafiing, or other urgencies,
a message should be broadcast to all nodes as soon as passibithin minimum timeslots.
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The termtimeslotis used to represent a period of time for nodes to transmieabrh timeslot,
nodes which previously received the message can send tisaage (transmit). If a single node
transmits, all the nodes within its transmission rangeivedfie message. Multple transmitting
nodes may cause interference and only some of the nodes Witkir transmission range receive
the message. Acheduledictates which nodes transmit in which timeslots. Tatencyof a
schedule is the number of timeslots used until all nodesemitwork completely receive the
message. For a given network, theoBocast ScuepuLing problem asks to find a schedule of
minimum latency. Such a schedule gives the latency of theorkt

Without interference and collision in consideration, notieat already received the message
are allowed to transmit that message in the next timeslotrBgting a graph representing nodes
by vertices and communications between nodes by edges (wetha communication graph
one can optimally solve the problem by applying breadth §estrch (BFS) starting from the
source. The depth of the resulting tree will be the latencthefnetwork; the schedule is that
nodes at graph distange- 1 from the source transmit the message in timeglot

In the situation where interference and collision are ofaswn, nodes will not receive the
message if an interference gada collision occurs at them. A collision occurs at nedfgwo or
more nodes within transmission rangevdfansmit at the same time. Likewise, an interference
occurs atv whenv is receiving the message from one node and some other nolim whe
interference range of is transmitting the message simultaneously. Note thatritegference is
defined as a ratia to the transmission range; when= 1 the definitions of interference and
collision coincide. This is a simplified model which, as we $low, was used in literature.
More realistic models appear in, for example, Moscibrodalef(2). See also (3) and (4) for
scheduling in those models.

When the interference range is assumed to be equal to tleission range, the interference
ratio « is equal to 1. However, as described in (5), the interfereange can be élierent from,
in fact larger than, the transmission range, ice.> 1. Therefore Gruision-FREE BroADCAST
ScuepuLING algorithms found in, for instance, (6), (7), (8), (9), or \,\@here transmission range
and interference range are assumed to be the same, ardfimestifor the case > 1.

1.1. Previous work

The Euclidean model is used when identical nodes in the n&ta@an be represented as
points in the Euclidean plane and the distance between twesis denoted by the Euclidean
distance. We normalize the distances such that the tragiemisange is 1. The communication
graph of an instance is a special type of graph called unit giaph (UDG). By defining the
collision and interference as at least two neighbors of nomansmit packets at the same time,
i.e.,a = 1, Gandhi et al. prove in (10) that finding a minimum-latenoydulcast schedule with
the collision constraint is NP-Hard in the Euclidean mod€&hey also propose a distributed
CoLLisioN-FREE Broapcast ScHeEDULING algorithm with latencyD(D), whereD is the radius of the
communication graph. The graph radiDgs defined as the maximum graph distance from the
source of the broadcast. ThDsis the depth of the BFS tree rooted at the source.

S.C.-H. Huang et al. propose three progressively impropgdaximation algorithms for the
same problem, also in the Euclidean model. Their centrhidgorithms are based @onnected
dominating setk-independent seandnode coloringof the input graph. They claim in (11)
that their algorithms produce broadcast schedules wigmétat most 2B — 23,16D - 15, and
D + O(logD).

In a distributed setting, Emek et al. (12) obtain matchingarand lower bounds @&(min(D+
g?. Dlogg)), whereg, called thegranularity of the network, is the inverse of the minimum dis-
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tance between any two nodes. These bounds hold if all nodeswaake (and may transmit mes-
sages) from the beginning, and the upper bounds are obthynéeterministic algorithms. They
also present algorithms and lower bounds for the case wheneddes other than the source are
initially idle and cannot transmit until they hear a messtmgehe first time. Further discussion
of distributed algorithms appears in (13).

Recently, Z. Chen et al. (5) propose a centralized algorithrapproximately solve the
INTERFERENCE-AWARE BRroapcast ScuepuLing problem fora > 1. Their algorithm is based on
breadth first search tree construction. They claim that thlgorithm achieves a constant 26
approximation ratio when the interference range is twiaetthnsmission range, i.ey, = 2.
They further claim af©(a?) approximation ratio.

While this work was in preparation, Mahjourian et al. (14ppshed arO(a?)-approximation
algorithm and a greedy heuristic. They analyze experintigriteeir two algorithms, comparing
their results to the depth of the BFS tree, and to the restitteecChen et al. (5) algorithm.

1.2. New results

In this paper, we consider th&TerRFERENCE-AWARE BroaDcAST ScHEDULING problem in the
Euclidean model. Our contributions include the IntegegPamming (IP) formulations to opti-
mally solve moderate-size instances of the problem.

Six greedy heuristics are also presented in this paperhaydiifer from the one in (14). Un-
like those proposed in (5) and (15), where instances neefrpeessing, i.e., computing a BFS-
tree or a constant density spanner, respectively, our $tesrdo not need any pre-processing of
instances. As of our knowledge, we are the first to comparesthéts of greedy heuristics to the
optimum solutions obtained from Integer Programming.

According to our theoretical result, &(aD) schedule can be computed by a centralized
algorithm inO(n?) time; therefore al®(«) approximation algorithm is obtained. Here an else-
where in the papar is the number of nodes in the given netwaph.

1.3. Related Work

Broadcasting has also been studied ingh@h model, where the communication graph is
an arbitrary undirected graph. It is easy to see that thehgragliusD with respect to the source
serves as a lower bound for the latency of any broadcast atzhég). When collisions are
of concern, a complete message reception is defined as fllwode has received a complete
message if and only if exactly one of its neighbors transthdsmessage at the time of receiving
(this is akin toe = 1). Most of the papers prove bounds in term®of

Alon et al. (6) give a family of undirected radius-2 graphshwatencyQ(log? n). Chlamtac
and Weinstein present in (7) a centralized algorithm gianigound ofO(D In?(n/D)) on the
required timeslots, even in a directed graph. Gaber and Manater show in (16) the existence
of a broadcast schedule with laten®¢D + log®n) for any graph, and give a polynomial time
centralized algorithm to output such a schedule.

For distributed protocols, in general, neither global kiemlge of node location and identity
nor synchronization is assumed to be prior known for all sodEach node only knows its
identity and its neighbors. Lower bounds on the number ofidsuequired for any deterministic
and randomized, distributed broadcasting protocol haee bbtained by Bruschi and Pinto (8),
Kushilevitz and Mansour (9), and Kowalski and Pelc (17). téeols with number of rounds
close to the lower bounds appear in (17), Chrobak et al. éiR),Chlebus (19).

M. Onus et al. (15) use the following model: the communicaticaph is a UDG or a more
general version of UDG, and the interference range givesm byl means that the transmission
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Figure 1: An UDG with nodeg andy at UDG distancen— 2 and Euclidean distance at most 2. In our model with 2,
the transmission from to u causes interference gtwho cannot receive in the same timselot a packet from

of a nodex interferes with the receiving by of the message sent laywith z # x) if the graph
distance fromx to y is at moste. It should be noted that this is not the same as the Euclidean
model, as one can have two nodes at Euclidean distance 2 a@ddiitancen — 2. See Figure

1 for an illustration. The main result of (15) is a distribditeroadcasting protocol requiring,
with high probability,O(D + log n) roundgtimeslots to deliver the message from gwairceto all
nodes, Their protocol is based on a givamstant density spannésee details in (20)). When

a is not considered as a constant, however, their protocopamaf give a schedule with latency
O(a?D + logn).

2. Preliminaries

Our work is based on the Euclidean model assuming all nodestha transmission range
equalr and interference range lag for « > 1. When normalizing to 1, the interference range
is equal tor. We usdy, x| to denote the Euclidean distance between nedeslx.

We informally define the two problems we study, with precigdéirdtions coming towards
the end of this section. ThevierrerReENCE-AwARE Broapcast ScuepurLing problem is to find
the minimum number of timeslots until all nodes receive thessage, in the model where a
nodev receives a packet if there is no interference athile another node transmits to The
INTERFERENCE-FREE BrOADCAST ScHEDULING problem, on the other hand, is to find the minimum
number of timeslots until all nodes receive the messageheénntodel where no interference
is allowed at nodes that did not receive the message yet. cbiistraint prevents nodes from
receiving incorrect messages at all.

Next we give the definitions of collision and interferencéen we define message reception
followed by the definitions of correct schedules for bothiyiems.

Definition 1. A collision occurs at a node ¥n timesilot j if y did not receive the message before
timeslot j and two distinct nodes withip'ytransmission range are transmitting in timeslot j.

In Figure 2, for example, a collision will occur at no8ef nodesX andY transmit at the
same time. In Figure 3, however, no collision occur8aven when bottX andY transmit at
the same time sincB already received the message.
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Figure 2: First scenario.
1 1 1 1
~ = = = =

O [ o [ J o

A X B Y C
@ = node that already received the messag
(@) = node has not yet received the message

Figure 3: Second scenario.

Definition 2. An interference occurs at a nodein timeslot j if v did not receive the message
before timeslot j and two distinct nodes, one withils ransmission range and the other within
V;'s interference range, are transmitting in timeslot j.

In Figure 3, givenr = 2, an interference will occur at nodeif nodesX andB transmit at
the same time.

Definition 3. A node y has received the message in timeslot j if some other nodéhin a
transmission range of,\is transmitting the message and no colliginterference occurs at\n
timeslot j.

Definition 4. Given set of nodes V andyR= {source, a correct interference-aware broad-
cast schedule S with latency T is a collection of sets of traftisig nodes in each timeslot
i €{1,2,..,T}, called B, and of sets of receiving nodes in each timeslet{L, 2, ..., T}, called
R;, such that

1. Vie{l,2,..T} B c UZR
A node can transmit in a timeslot if and only if it has receitteelmessage in some previous
timeslot.



2.Vie{l,2,.., T}V, e R vt € Bi(vi, vl < LA VY (W € Bi \ W) — (i, W] > @)))
For any timeslot, a node,weceives the message if there exists only one npdéthin
V;'s transmission range that is transmitting the message, rmather node within Nvs
interference range is transmitting.

3. UL,R=V
All nodes must receive the message within T timeslots.
4. Vie{l2,. . . T}Vje{lL2. . .TH(j#1) > (RNR; =9)),

The reception of each node will be counted at most once (#tdifire), therefore no node
appears in more than one set of R.

In the scenarios from Figure 2, given= 2, in an interference-aware schedule it is allowed
for both nodes< andY to transmit at the same time: nodésandC receive the message, while
nodeB does not.

Definition 5. Given n nodes in the Euclidean plane, a source node, and arfénénce ranger
with @ > 1, the INTERFERENCE-AWARE Broapcast ScHepuLING (IABS) problem is finding a correct
interference-aware broadcast schedule with minimum aten

Definition 6. Given set of nodes V andy R {sourcg, a correct interference-free broadcast
schedule & with T timeslots is a collection of sets of transmitting rodeeach timeslot &
{1,2,..., T}, called B, and sets of receiving nodes in each timeskt1i, 2, ..., T}, called R, such
that

1. Vie{l,2,.. T} B c UZR;
A node can transmit in a timeslot if and only if it has receitteelmessage in some previous
timeslot.

2.¥ie{l,2,.., T}V e R vy € Bi(vi, wi| S LA VY (W € Bi \ W) — (i, | > @)))
For any timeslot, a node,weceives the message if there exists only one npdéthin
V;'s transmission range that is transmitting the message, mmather node within ys
interference range is transmitting.

3. UL,R =V,
All nodes must receive the message within T timeslots.
4.¥ie{l2,. TIVjie (L2 . T}((j#0) - (RNR = ¢)),

The reception of each node will be counted at most once (#tdifire), therefore no node
appears in more than one set of R.

5.¥ie{l2. . TIWeB W eV ((mvI<1) -V eloR)
In interference-free broadcast, no collisjorierference occurs at any node which did not
already receive the message. Above there is a logicallyetpnt formulation, with the
non-trivial equivalence explained next. Indeed, the cbodisays that if v transmits at
time i and Vv is within the transmission range of v, thehis going to receive the message
at time i, unless it has received it before. Then indeed rerfiatence can occur at some u
during timeslot i: an interference occuring at u means thatas not received the message
previously, and there is a node x that transmits to u, andlerotode y whose transmission
interferes with u receiving the message from x. But in thgeaandition 2 above ensures
that u¢ R;, and therefore w uijZOR,—, and the condition 5 does not hold for i,=/x and



V' = u. For the reverse, if condition 5 does not hold, then therstexnode v transmitting
attime i and a node’wvithin the transmission range of v with ot receiving the message
during the firsti timeslots (recall that each node v is codrde receiving the message only
the first time it receives it). This can happen only if an ifgeFnce occurs at'in timeslot

i.

In the scenarios from Figure 3, given= 2, in an interference-free schedule it is allowed for
both nodes< andY to transmit at the same time: nodeandC receive the message, while node
B already received it. However, in the scenario from FigurgiZena = 2, in an interference-
free schedule it is not allowed for both nodésandY to transmit at the same time: a colli-
sionyinterference happens at noBewho has not received the message.

Definition 7. Given n nodes in the Euclidean plane, a source node, and arfém¢nce range
a With @ > 1, theINTERFERENCE-FREE BroaDcAST ScHEDULING (IFBS) problem is finding a correct
interference-free broadcast schedule with minimum latenc

3. Integer Programs for Broadcast Scheduling problems

Integer and linear programs have been proposed beforel&dedeproblems. Bjorklund et
al. (21) do so for TDMA scheduling - where all interferencelisallowed. Our approach also
has 0-1 variables to represent which nodes transmit in agiwesslot, and dfers as we also use
variables to represent which nodes are receivers in a givessiot.

3.1. Interference-Aware Broadcast Scheduling

GivenT = number of timeslots, sourag, set of node¥ = {vi,vs,...,vn} where all nodes
have a path tayp, interference ratiar, anda; number of nodes within interference rangevof
the objective is to find the maximum number of nodes that hageived the message under the
defined constraints. If that number is equal to the numbepdes,N, the IABS instance has a
feasible solution with latency. We seek the minimum possible latency, so the program below
must be solved foll = 1,2,... until the objective equalbl. Note thatT cannot exceed, as
a solution withN timeslots always exists: while running BFS, in timesjptor j = 1,2,...,N,
the j node extracted from the queue transmits.

The program has 0 1 variabless; j, for0<i < Nand 1< j < T, andy; j, for 0<i < N and
0<j<T.Theideais to have ; = 1 represent that a nodetransmits the message at timeslot
j» andy; ; = 1 represent that node receives the message for the first time at timegl®e use
the notatiori’ ~ i if |vivi| < 1, andi” « i if |vivi| < @. The integer program corresponding to the
IABS instance is the following:

N, T
Maximize Z Vi

i=1j=1

Subject to
t-1

Vij—Xt>0; Vie{0,1,...,N},Vte{l,2,...,T}(1)
=0
7
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DML Vie{oL....N}(2)
j=0

J
Vi< > Xej Vie(L2.. . NLVje(L2,...,T)(@)
i~
Doy <A+l Vie(L2.  NLVje(1,2,...,T)(4)
"ol

yijandx ; €{0,1} Vie{0,1,...,N},Vje(l,2,...,T}(5)

Yoo = 1(6)
yl,O:O; VI €{1729"'7N} (7)

Claim 8. The IP (3.1) has a feasible solution, within T timeslotshvadbjective equal to the
number of nodes, N, if and only if there exists a correct fietence-aware broadcast schedule
with latency T.

Proof. The first condition of Definition 4 is equivalent to Consttalnrabove. The third condi-
tion of Definition 4 is equivalent to the objective functioftibe IP being\. The fourth condition
of Definition 4 implies Constraint 2 above, and is implied byrGtraint 2 if the objective func-
tion of the IP isN. The second condition of Definition 4 is equivalent to coaistis 3 and 4
above. Indeed, Constraint 3 says that if noéeto receive the message in timesjdly; ; = 1),

one node which hasdn its transmission range must transmi};(; X j = 1). Also, no other node
should interfere: Constraint 4 makgs.; X ; < 1 whenevey; j = 1. O

3.2. Interference-Free Broadcast Scheduling

GivenT = number of timeslots, sourag, set of node¥ = {vi,vs,...,vn} wWhere all nodes
have a path twyp, interference ratiar, anda; number of nodes within interference rangevof
the objective is to find the maximum number of nodes that hageived the message under the
defined constraints. If that number is equal to the numbepdgsn,N, the IFBS instance has a
feasible solution with latency. We seek the minimum possible latency, so the program below
must be solved foll = 1,2,... until the objective equalbl. Note thatT cannot exceedl, as
a solution withN timeslots always exists: while running BFS, in timesjpfor j = 1,2,...,N,
the j!" node extracted from the queue transmits.

The program has 8 1 variablesx j, forO <i < Nand 1< j < T, andy;j, forO<i <N
and 0< j < T. The idea is to have; ; = 1 represent that a nodg transmits the message at
timeslot j, andy; j = 1 represent that nodg receives the message for the first time at timeslot
j- Again, we use the notatian ~ i if |vivi| < 1, andi’ & i if |viVvi| < @. The integer program
corresponding to the IFBS instance is the following:

N, T
Maximize Z Vi
i=1,j=1
Subject to
t-1
Vij—%t=0; Vie{0,1...,NLVte{l,2,...,T} (1)
=0
8



T

DML Vie{oL....N}(2)
j=0

J
Vi < ) % Vie{l2. . NLYje(l,2....T}(@)
i~
Doy <A+l Vie(L2.  NLVje(1,2,...,T)(4)

"o

yijandx ; €{0,1} Vie{0,1,...,N},Vje(l,2,...,T}(5)

Yoo =1 (6)
Vio=0; Vie{l,2,...,N} (V)
j
D =% 20; Vi.i'€{0,1,2,.. Njwithi’ ~i,Vje(1,2....T}(8)
=0

Claim 9. The IP (3.2) has a feasible solution, within T timeslotshvabjective equal to N, if
and only if there exists a correct interference-free braagtschedule with latency T.

Proof. The first condition of Definition 6 is equivalent to Consttalnabove. The third condi-
tion of Definition 6 is equivalent to the objective functioftioe IP being\N. The fourth condition
of Definition 6 implies Constraint 2 above, and is implied byrGtraint 2 if the objective func-
tion of the IP isN. The second condition of Definition 6 is equivalent to coaistis 3 and 4
above. Indeed, Constraint 3 says that if nodeto receive the message in timesjdl; ; = 1),

one node which hasdn its transmission range must transmi};(; X j = 1). Also, no other node
should interfere: Constraint 4 makgs . X ; < 1 whenevery;; = 1. The fifth condition of
Definition 6 is equivalent to Constraint 8 above. O

3.3. Integrality Gap
Constraint 4 can be slightly improved to:

D xej+ (ai- Dy < A Viell2. . NLVje(1,2...,T)
el
In respect to the integrality gap, the relevant questiof thie linear programming relaxation,
obtained by replacing Constraints (5) b0y ; and 0< x; j, has objective\ for a certain value
T, is it true that the integer program has objectiVéor AT ? 8 would be the approximation ratio.
The linear programming relaxation always has a solutiom whjective valueN for T =
D + 1: If vertexv is at distancel > 0 from the root, sefy g = Xv.d+1 = Yv.d+1 = Xvd+2 = 1/2, and
setxp1 = Xo2 = 1/2. In non-Euclidean instances, as in SubsectionA&uld be as large as
O(log? n), and in Euclidean instanc@scould be as large a(«e), as shown later in Lemma 10.
In conclusion, this linear programming relaxation is nafusfor an approximation algorithm.

4. Greedy Heuristics

In this section, we present six variations of greedy alpang. Here, we definB; as the set
of nodes which transmit the message in timeskadR; as the set of nodes which receive the
message in timeslgt Ry = {source.

9



4.1. Interference-Free Greedy

We termlF-FA the Interference-Free First Availablgreedy heuristic (Algorithm 1 has the
pseudocode). The heuristic starts at timeslot 0 - when theceds put inRy. Then, fork, the
next timeslot, the heuristic finds from & with 0 < j < k, the first nodes such that, whem
transmits, it does not interfere with the reception of émgghodes inRy, and existing nodes in
By do not interfere with nodes receiving from

Once that node; is found, the heuristic puts it iBy, and puts the additional receivers in
R«. The process continues until all nodes are checked oncendidedes fow;. After that, the
heuristic begins the next timeslot and repeats until alhthees have been put in soiRe

To reduce the running time (analyzed using the pseudocedelse the following imple-
mentation. For each nodewe keep as linked listk, the set of nodes within interference range
of v, andC,, the set of nodes within transmissjoommunication range of. We also keep
M; = ui”olRi, andQj as the set of nodes not M interfered byB;. The setR;, B;, M; andQ;

are kept as bit vectors. The pseudocode is given in Algorithm

Algorithm 1 Interference-Free First Availablgreedy
1: timeSlot0; M; = {source.
2: while (Miimesioe1 # V) do
3. timeSlot+
4 Initialize Biimesiot= 0, Rimesiot= 0, Qtimesiot= 0
5. for (each node) do
6 if (V€ Mimesio) then
7 vis good
8
9

for (each nodev € |,) do
if (W € Riimes Ioa then

10: vis bad

11: end if

12: end for

13: for (each nodev e C,) do

14: if (W€ Qiimeslo) then

15: vis bad

16: end if

17: end for

18: if (v still good)then

19: Btimesiot= BtimesiotU {V}

20: Rimesiot= RimesiotU Cv \ Miimes|ot
21: Qtimesiot= QtimesiotY v \ Mtimes ot
22: end if

23: end if

24: end for

25: Mtimesior1 = MtimesiotU Rimesiot
26: end while

27: Outputtimeslot

For a fixedj, it takesO(n) time to initialize Bj, R;, and Q;, and to updateM;. All the
conditions thdf statements or thior statements must check can be checked in constant time.
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Thus the running time i©(n?) per timeslot. At least one node is added each timeslot, @nwh
Bj = R; = 0, the connectivity of the communication graph implies thisran edge in this graph
with one endpoint inM; and one outsidé/;; the endpoint inM; would enterB;. Thus the
number of timeslots does not exceedand the total running time of IF-FA (Algorithm 1) is
O(n%). A more careful analysis yield3(n- X0 (1] + 1)).

The Interference-Free Max Availabl@F-MA) greedy heuristic dters from IF-FA in that
IF-MA finds an available node which yields the maximum numienew receivers among all
the available nodes. That is, we do not execute lines 18-Zgufrithm 1 for the first “good”

v met, but first compute for each suetthe number of receivers of nodenot in Mgmesios @and

only execute lines 18-22 for themaximizing the number above. This comes at the expense of
longer running time since before updatiBgwe try all possible nodes as And this extra loop

can cause anotherounds; therefore the running time of this heuristio®).

4.2. Interference-Aware Marginal Greedy

We termlA-FAM the Interference-Aware First Available Margingireedy heuristic (Algo-
rithm 2 has the pseudocode). The heuristic starts at ti@skethen the source is put iRo.
Then, fork, the next timeslot, the heuristic finds from B}l with 0 < j < k, the first node; such
that, whenv; transmits, it does not interfere with the reception of éngshodes inRy, and there
are new receivers of that are not receiving interference from existing hodeBof

Once that node: is found, the heuristic puts it iBx and puts the additional receivers in
R« The process continues until all nodes are checked once d&edes forv;. After that, the
heuristic begins the next timeslot and repeats until alhthées have been put in soiRe

To reduce the running time (analyzed after pseudocode)se/¢he following data structures,
as in the previous algorithm. Precisely, for each nadee keep as linked listls, the set of nodes
within interference range of andC,, the set of nodes within transmissfoommunication range
of v. We also keefM; = Ui';olRi, andQj as the set of nodes not M; interfered byB;. The sets
R;, Bj, M; andQj are kept as bit vectors. The pseudocode is given in Algorhm

For a fixedj, it takesO(n) time to initialize Bj, R;, and Q;, and to updateM;. All the
conditions thef statements or thfor statements must check can be checked in constant time.
Thus the running time i©(n?) per timeslot. At least one node is added each timeslot, anwh
Bj = R; = 0, the connectivity of the communication graph implies thisran edge in this graph
with one endpoint inM; and one outsidé/;; the endpoint inM; would enterB;. Thus the
number of timeslots does not exceedand the total running time of IF-FA (Algorithm 2) is
O(n3). A more careful analysis yield3(n - Z\',“zo(ll\,l +1)).

The Interference-Aware Max Available Margin@dlA-MAM) greedy heuristic dffers from
IA-FAM in that IA-MAM finds an available node which gives theaximum number of new
receivers. We keep track for each eligiblef the quantity{(C, \ (QimesiotY Mimesiod| in lines
13-17 instead of just setting thprogressvariable.. Lines 18-22 of Algorithm 2 are not executed
for the first “good”v with progress but for thev maximizing the quantity above. This comes at
the expense of longer running time since before updainge try all possible nodes as And
this extra loop can cause anotmaiounds; therefore the running time of this heuristiO@®).

4.3. Interference-Aware Accumulated Greedy

We termlA-FAA the Interference-Aware First Available Accumulatgreedy heuristic (Al-
gorithm 3 has the pseudocode). The heuristic starts at litn@svhen the source is put iR,.
Then, fork, the next timeslot, the heuristic finds from &) with 0 < j < k, the first nodex
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Algorithm 2 Interference-Aware First Available Margingreedy

1: timeSlot0; M; = {source;
2: while (Mtimesk)t;]_ * V) do

3. timeSlot++
4 Initialize Biimesiot= 0, Rimesiot= 0, Qtimeslot= 0
5. for (each node) do
6 if (V€ Mimesio) then
7 vis good;progresss bad
8 for (each nodev € 1,) do
9 if (W € Rimes Ioa then
10: vis bad
11: end if
12: end for
13: for (each nodev e C,) do
14: if (W ¢ (Qtimes otV Miimesiod) then
15: progresss good
16: end if
17: end for
18: if (vandprogressare goodthen
19: Btimesiot= BtimesiotU {V}
20: Riimes lot= Rtimes|otY (Cv \ (QtimeslotU Mtimes Ioa
21 Qtimesiot= QtimesiotY Iv \ Mtimes ot
22: end if
23: end if
24: end for
25: Mtimesiot1 = MtimesiotV Rimesiot
26: end while

27: Outputtimeslot
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such that, when; transmits, the number of new receiversvpthat are not within interference
range from existing nodes & exceeds the number of existing receivers figpthat are within
interference range from.

Once such node, is found, the heuristic puts it iB, and updateR«. The process continues
until all nodes are checked once as candidatesifoAfter that, the heuristic begins the next
timeslot and repeats until all the nodes have been put in $gme

To reduce the running time (analyzed after pseudocode)se¢he following data structures,
as in the previous algorithms. Precisely, for each ngdee keep as linked listk,, the set of
nodes within interference rangewgfandC,, the set of nodes within transmissioommunication
range ofv. We also keep; = ui';gRi, andQ; as the set of nodes not M; interfered byB;. The
setsR;, Bj, Mj andQj are kept as bit vectors. The pseudocode is given in AlgorBhm

Algorithm 3 Interference-Aware First Available Accumulatgbedy
1: timeSlot0; My = {source.
2: while (Mimesiot1 # V) do
3.  timeSlot++

4:  Initialize Bgmesiot= 0, Rimesiot= 0, Qtimesiot= 0

5.  for (each node) do

6: if (V€ Mimesio) then

7 if (|RtimeS otN Ivl < [Cy \ (QtimeslotU Mtimes ION) then

8: Btimesiot= BtimesiotU {V}

9 RtimeS lot= (Rtimes Iot\ |v) U (Cv\ (QtimeslotU IVltimeS Ioa)
10: Qtimesiot= QtimesiotY lv \ Miimesiot

11: end if

12: end if

13:  end for

14: Mtimesioe1 = MiimesiotV Rimesiot
15: end while

16: Outputtimeslot

For a fixedj, it takesO(n) time to initialize Bj, R;, andQj in line 4, and to updat®l; in line
14. In lines 7-11, all the set operations including countiag be done i©(|l,| + 1) by going
throughl, andC, and using the bitmaps &;, Q;, andM;. Thus the running time i©(n?) per
timeslot. At least one node is added each timeslot, as vihea R; = 0, the connectivity of
the communication graph implies there is an edge in thistgvéth one endpoint iM; and one
outsideMj; the endpoint inM; would enterB;. Thus the number of timeslots does not exceed
n, and the total running time of IA-FAA (Algorithm 3) i©(n®). A more careful analysis yields
O(n- C‘:o(||v| +1)).

Thelnterference-Aware Max Available Accumula{d-MAA) greedy heuristic dffers from
IA-FAA in that IA-MAA finds an available node that gives the rii@um increase ifir;. We keep
track for eactv € M; of the quantitylC, \ (QtimesiotY Miimesio)l — IRiimesiotN lvl. Lines 8-10 of
Algorithm 3 are not executed for the finstvith positive quantity above, but for thamaximizing
the quantity. This comes at the expense of longer running simce before updating; we try
all possible nodes as And this extra loop can cause anotmerounds; therefore the running
time of this heuristic i©(n%).
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5. Experimental Results

In this section, we show the results of experiments for alvariations of the greedy heuris-
tic. Considering networks of nodes randomly distributedrav4x 4 area, and theourcenode
is also randomly located within the area, we vary number afesgsourceincluded, to 21, 41,
61, and 81. Based on the UDG model, the transmission rangecbfreode is set to 1, while the
interference range is set to 2. We generate 20 instanceadbrreetwork size and use the same
instances for all IPs and heuristics. Note that informashbown in all tables are the average
of the mentioned number of instances on each heuristic. Weace the results from heuris-
tics and optimum solutions obtained from solving integergpams. Due to the NP-Complete
hardness of Integer Programming and computing capacitialiimn of our computer, we cannot
timely solve an instance with much more than 81 nodes. Natsotilr HP-XW8000 has spent an
average of 6 hours to solve IPs for an 81-instance but a catfigieconds to run the heuristics.

Table 1 shows the depth of BFS trees of the given instancesptitdum solution obtained
from related IPs. Note that the interference-free IP yialightly higher solutions than those
obtained in the interference-aware model, and both areshitjan the depth of BFS tree, which
is the lower bound. Recall that the IP in subsection 3.2 hasctnstraints of the one from
subsection 3.1, and has an additional set of constraints.

Table 1: Average Depth of BFS trees and optimum solutions

#nodes| BFS | Intf-aware IP| Intf-free IP
21 5.7 7.1 7.1
41 6.3 7.4 7.4
61 5.9 7.4 7.6
81 5.7 7.5 7.7

Next, in Table 2, we compare the experimental results ameungistics and optimum so-
lutions in the interference-aware category. The greedyisigzs based on maximum available
improvement, i.e., IA-MAM and IA-MAA, overcome the other awheuristics based on first
available improvement. The more greedy, the better. Buthoang need to tradefbthe running
time because, on maximum available concept, IA-MAM and |A4have to run through all
the capable nodes before selecting one to transmit, whilEAR and IA-FAA run through all
the capable nodes only once per timeslot. Also note that eamelex IA-MAA usually gives
better solutions than IA-MAM does. As described in detailséction 4, IA-MAA has to re-
compute the set of receiveRin that timeslot every time an additional node is being coesd,
while IA-MAM computes only the number of receivers gainedit additional node.

The comparison in interference-free category is shownloela. As earlier, the more greedy
version, IF-MA, performs significantly better than the slerpversion, IF-FA. One can also
observe that the results of heuristics in the interferdneecategory is slightly higher than those
of the interference-aware category.

Tables 4 and 5 show theftirences in percentage of outputs from each heuristic ouxer op
mum solutions. The best heuristic for each instance givestiput exceeding the optimum by
only 13-20%.
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Table 2: Average optimum interference-aware and relateddsies

#nodes| Intf-aware IP| IA-FAM | IA-MAM | IA-FAA | IA-MAA
21 7.1 8.6 8.5 8.2 8.1
41 7.4 8.8 8.5 8.9 8.6
61 7.4 9.5 8.9 9.4 9.0
81 7.5 9.7 8.7 9.7 8.5

Table 3: Average optimum interference-free and relatedisiis

#nodes| Intf-free IP | IF-FA | IF-MA
21 7.1 8.5 8.4
41 7.4 8.9 8.6
61 7.6 9.5 9.1
81 7.7 10.0 8.7

6. Theoretical Results

Lemma 10. There are Euclidean instances of IABS that have minimumdstet leas{r/6)(a—
2)D.

Proof. We assume > 2, or else there is nothing to prove. Take a square grid withcadt
points at distance{2/2)(1 + €), wheree is suitable small. Pick an arbitrary point on the grid,
as the sourcs, and keep only the points at Euclidean distance at mgatfrom s. This is the
Euclidean instance of IABS.

The points remaining make a UDG with vertex degree at most #elwant to maximize
graph distance frorawhile keeping Euclidean distance small we alternate hata@nd vertical
edges (see Figure 4). Theref@e< 2(a/2) = a.

To prove the lemma, we first define tbater disk as the disk centered at the sousagith
radiusa/2. Letn be the number of nodes in the instance mentioned above, vughéual to the
number of grid points within this outer disk.

Then, we draw a square whose area j@J{1+¢)?, i.e., any side of the square is/2/2)(1+¢),
centered at each grid point. If any arbitrary poj$ within the area of the squarngis said to be

Table 4: Diferences in percentage between related heuristics andwnptithe interference-aware case

#nodes| IA-FAM | IA-MAM | IA-FAA | IA-MAA
21 21 20 15 14
41 19 15 20 16
61 28 20 26 21
81 29 16 29 13
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Table 5: % Diferences in percentage between related heuristics andwpfithe interference-free case

#nodes| IF-FA | IF-MA
21 20 18
41 20 16
61 25 20
81 30 13

covered by that grid point. We further draw another circhdledinner disk, centered a$ with
(¢ = (1 + €))/2radius (see also Figure 4).

Letb (see Figure 5) be an arbitrary point within the inner disk aodered by a grid point
which is outside the inner disk. The distance betwlkeamdc is at most (1+ €)/2, asbis in a
square centered atand with sides of length¥2/2)(1+ €). Now we can show that is within
the outer disk.

Sinceb is in the inner disk as given, the distance betwbesnd the source is at most
(¢ — (1 + €)/2, the radius of the inner disk, now we have:

Is,cl < Isbl+[b,c] 1)
< (@-(A+¢€)/2+(1L+¢€)/2 2
< a/2. )

We conclude that is within the outer disk.
Because the area of the inner disk is coverechbyrid points within the outer disk, by
comparing areas, we can computas the following:

n(1/2)(1+€)? > a((a-(1+¢€)/2) (4)
(n/2)(1+€)? > (n/4)(@-(1+¢))? 5)
n > ((1/2)@-1+e€)?)/(1+e)? (6)

Any transmitting node will cause interference at all thespthodes, since the nodes are all in
a disk of diametew. So no two nodes can transmit succesfully at the same timensinission
by nodev # s can reach at most three new vertices - as one neighbomafst have gotten the
message befone

The latencyT of this instance can be derived as follows: after one timg #here will be
five nodes which received the message, and after that in eacid only three more nodes can
receive the message. Thus affdimeslots at most 5 3(j — 1) can receive the message, and
therefore:

n<5+3(T - 1) (7

Recall thatD < @. Using this and Equations 6 and 7, we obtain:

T > n/3-5/3+1 (8)
> n/3-2/3 9)
> ((n/6)@—(1+€)7)/(1+€)*-2/3 (10)

16



[
[
1
L

Figure 4: Maximized graph distancR:denotesy/2, r denotesd¢ — (1 + €))/2

Figure 5: Paint coverage. The grid is given by the dottedsliaed the solid lines separate and define the coverage areas
of grid points.
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a—(1+¢€)?

> (/8N g7 )P/a) =213 (11)

6 (;y—2(1+e)+(125)2 D23 1

> (WP (12)

We can find some that makes > (7/6)(a — 2)D — 1. O

Our main technical result is:

Theorem 11. Let | = (V, s, @) be an Euclidean instance of IABS wjtf = n nodes, source s and
interference rangey, and let G= (V, E) be the communication graph of | and D be the radius
of G with respect to s. There is a centralize€) algorithm to produce an interference-free
broadcast schedule of | with at ma&t(2+ [ V2(a + 3)1)D + 8( V2(« + 3)1)2 + 1 timeslots.

Proof. Note that the communication gra@ = (V,E) of | is a UDG . First we partition the
plane into squares of diameter 1 (thus the side of a squarkehgh v2/2), such that no node
is on the border of such a square. Then we construct an ayxijjraphH = (V(H), E(H)) as
follows: V(H) has one vertex for each cell that contains a nod¥,cdnd two verticegells of
V(H) are adjacent if there exist two nodes\6f one in each cell, that are adjacentMn Let
H’ = (V(H’), E(H")) be the bi-directed version d¢i; that isV(H’) = V(H) and for each edge
e ={u, v} of E(H), H’ has two directed arcsivandvu. See Figure 6 for an illustration.

1 11,12 13

N T

- 5/757/0 ~_ -~
3,10

19

Figure 6: Ignoring the arrows and numbers for the moment, seesolid line segments to represent a féa the UDG
G and dotted and dashed segments and arcs to repitds@ie arrows and are used for an illustration of Claim 12: if
the conflict-free broadcast scheduleHn uses the dashed line segments with arrows at timeslots givéime numbers
next to each arc, the construction of the claim results intitheslots given next to each vertex @f (there is indeed
redundancy), with communication following the arrowsTof
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For a vertew € V, denote bycell(v) the cell ofV(H) containingv. For every ar& € E(H’),
pick adjacent nodes &f, t(¢') andh(¢’), such thatell(t(¢')) is the tail ofe’ (in H’) andcell(h(¢'))
is the head o (in H"). Such nodef{¢’) andh(e’) must exist, as otherwis# cannot be an arc
of H’, and if there are several choices t¢&) andh(e’), make an arbitrary choice. Note that
constructingH’, and the functionsell : V — V(H),t: E(H’) — V, andh : E(H’) - V can be
easily done ir0O(n?).

Call two arcse; ande; of H’ conflictingif |t(e1), t(e2)| < @ + 3. LetQ be a subgraph dfi’.
A conflict-freebroadcast schedule f@ with rootr € V(Q) andt timeslots consists dfsets of
arcs ofE(Q), X1, Xz, ..., X, such that:

1. foreach € {1, 2, ...,t}, no two arcs ofX; are conflicting, and

2. foranyi € {1,2,...,t} and any ar@ € X;, either the tail okisr, or there exist’ < i and
arc€ € X such that the tail o¢ is the head o€, and

3. any vertex oW/(Q) \ r is the head of some arc if_, X;.

Claim 12. If H’ has a conflict-free broadcast schedule with t timeslotsedat cel(s), then
| has an interference-free broadcast schedule with soure@ds2t + 1 timeslots. Moreover,
constructing the schedule for | from the one dfddn be done in (v?).

Proof. For an illustration, see again Figure 6.

Fori = 1,2,...,t, defineBy = {t(¢) | € € X;} andBy,1 = {h(€) | € € X}. Also define
Ry = By = {s}, and forj = 1,2,...,2t + 1, defineR; = {v € V | IV € Bjsuchthawv ¢
E(G)}\ (ui’;éR.). Doing this construction i®(n?) is straightforward. Now we verify that this is
a correct interference-free broadcast schedulé;fae note that it has as the source and 2 1
timeslots.

Indeed, the lack of interferen®llisions follows from the fact that for all = 1,2,...,t,
any two nodes oBy; are at Euclidean distance at leastH 3) (since the nodes come from non-
conflicting arcs ofe(H")), and any two nodes d,;,; are at Euclidean distance at least{ 1).
This last statement is true since, otherwise,ifv, € By,1 are such thavy,v»| < @ + 1, and
vy = h(ep) andv; = h(ey), with e1, &, € X;, then, using that for everye E(H’), t(e) andh(e) are
adjacentirG, |h(e1), h(ez)| < [t(e1), h(er)l +It(ey), t(ez)+IN(e2), t(e2)l < 1+ (a+1)+1=a+3, and
thereforee; ande, are conflicting, a contradiction to the fact we started withoa-conflicting
broadcast schedule fot'. _

Next, we note thaB; € Ry, that fori = 1,2,...,t, Byis1 C U,Z':o R; since every vertex of
B.i;1 is adjacent irG to some vertex oBy; (for everye € E(H’), t(¢') andh(¢’) are adjacent in
G). Also, fori = 1,2,...,t, every vertex inBy is t(e) for somee € X;. Since we started with
a conflict-free broadcast scheduleldf, either the tail ofe is cell(s), or there exist’ < i and
arce€ e X such that the tail oé is the head of'. In the first caset(e) € cell(s) and therefore
t(e) € (Ro U Ry). In the second casé(e) andh(e’) are in the same cell and thus adjacenGin
and sinceh(€') € Bi-,1, we deduce tha(e) € ULs' R; ¢ UZLR;.

Finally, ?;51 R =V, as we prove in this paragraph.\f= s, thenv € Ry, and ifcell(v) =
cell(s), thenv € R;. Otherwise, there exist somes {1,2,...,t} ande € X; such that (inH")
the head of the areis cell(v). Then, unless € UJ?ilej, vis put inRyi;1, ascell(v) = cell(h(e)),
h(e) € Byi.1, and the Euclidean distance between two nodes of the sahi®atahost 1. Thus we
can convert a conflict-free broadcast scheduldointo an interference-free broadcast schedule
of I. O
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We continue with the proof of Theorem 11. Observe that théusadf H’, starting from
cell(s), is at mostD. Indeed, for any verticeg andv, adjacent inV, cell(v;) andcell(v,) are
either identical or adjacent iH, and thus any path i® has an equivalent path i’ of at most
the same length.

Based on the claim above, to prove the theorem it is enougbristict inH” a conflict-free
broadcast schedule frogell(s) with 32(2+ [ V2(a + 3)1)D + 4(] V2(« + 3)1)? timeslots. LefTy
be a BFS tree ofl rooted atcell(s).

We further partition the Euclidean plane, avi(H), into squareblocks where a block has
[ V2(a + 3)1x[ V2(a + 3)] cells. Note that a block occupies a square with sides of lefagt 3)
as each cell has sides of lengtf2/2. We group the blocks together into bigger squares, each
containing four blocks, and color the four blocks in a groufhwolors 0, 1, 2, and 3 according
to the four quadrants. See Figure 7 for an illustration.

Figure 7: Block coloring with four colors, where each blo@shv2(e + 3)] x [ V2(a + 3)] cells

The blocks are large enough such that, if we follow the rulesifig only blocks of the same
color and for each such block picking only one arckgH’) with the tail in the block, we do
not pick any pair of conflicting arcs. We construct our nomdtioting broadcast schedule fé’
using this rule, and the trély, as explained below.

In timesloti, we only use blocks colorédnod 4. The schedule has two phaseter-block
andfill-block, with the intuition that in the inter-block phase we reaabdis, and in the fill-block
phase we fill them.

First we prunél'y with the goal that we only keep an ad eis needed to reach frooell(s)
cells in blocks other than the block containing the taileofFor an illustration, see Figure 8,
ignoring the path®, for the moment. This is accomplished as follows. Prodess postorder,
and for eactv € V(Ty), construct a list (as a bitmap) with the coordinates of tloeks where
the descendants of including itself, lie. In a second postorder traversat,daeryv # cell(s)
of Ty, removev from Ty if the list of v has only one element and the parentdd in the same
block asv. Call T’ the tree obtained after these removals; it is indeed a tnee $or every vertex
removed fromTy, its descendants are also removed. We tféas directed, with arcs going
from parent to child. Note that every arcBf; with tail and head in dferent blocks is ifT”’.

The constructio’ from Ty, done as described above, tak¥®?) time. In the inter-block
phase, we make sure that each verteX @) \ {cell(s)} appears as the head of some arc in some
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Figure 8: The arcs entering and inside a block (the squargeirtke solid lines). The dotted arcs and the vertices they
reach do not appear in the pruned tii€e which contains only solid and dashed arcs. The inter-bftise described
later uses pathBe, four of which appear here with dashed arcs. For examplepalieP, is in fact Ps, wherees has
label 65 here. The possible timeslots could Bghas two arcs with timeslots 5 and B; has seven arcs with timeslots
25, 33, 41, 45, 53, 61, and 6B3 has two arcs with timeslots 29 and 3 has three arcs with timeslots 49, 57, and 65.

Xi. This is accomplished as follows.

Detailed description of the inter-block phase

The algorithm proceeds timeslot by timeslot and constril@ssetsX; starting withX; and
then incrementing - once it starts working on timeslatit will not modify X; for j < i. At
timeslotj, call a cellv e V(H) reachedf v = cell(s) or vis the head of some arc w]’ Xi.

Consider a blociB. Let Out(B) be the set of arcs df’ with the tail inB and the head outside
B. See Figure 9. For each aec Out(B), consider the subpat?, of T’ which ends withe and
is shortest starting at eitheell(s) or some vertex oH such that the parent ifi’ of that vertex is
outsideB. For an illustration, see Figure 8.

Figure 9: The arcs going out of a block B could look as above gdiid arcs are some (but not all) edgesof
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Initialization: For each are € E(T’), we compute if there is some blo&with e € Out(B),
and if so explicitly construcle as a linked list. For any sud) we keep a pointdg, initialized
to NULL, to arcs ofP.. We also keep as a bitmap the set of vertices reached; iniialy cell(s)
is reached. A patR. is eligibleif its first vertex has been reached and its last vertex habeen
reached; in an invariant of the algorithm that all these pativel. # NULL. For each blociB,
we keep a queu@g; an invariant of the algorithm is that, except during thegessing a patRe
as described below@g contains the eligible path. for all e € Out(B). This queue is initialized
to be empty for ever’s which does not contaicell(s). For everyB which containgell(s), all
the path$, for e € Out(B), that havecell(s) as the first vertex, are put in the queRg, and for
any sucle, | is set to be the first arc dfe.

Processing one timeslotWe process timeslotsin order starting with 1. For each blogk
if it is colored j mod 4 andQg # 0, then we extract fron@Qg a pathPe, which we process as
follows. We put inX; the arc pointed at bl and mark the head @fas reached. If this arc is not
e, then we maké, point to the next arc oP,, and enqueul, in Qg (round-robin policy). Else
(le does point a&), we search for all possibley such that the head éfis the first vertex oPy .
For each suck’, we setly to be the first arc oPy, and enqueuBy in Qg of the appropiat®’.
Figure 8 shows an example of repeatedly running this protgss a block colored 1 and with
four paths.

Stopping: The inter-block phase finishes once every verteX‘ois reached, which we test
using a bitmap after each timeslot.

Claim 13. The inter-block phase outputs a conflict-free broadcasedale for T with at most
D - 32(2+ [ V2(a + 3)]) timeslots.

Proof. It is crucial to noticelOut(B)| < 4 - 2 - (2 + [ V2(a + 3)]), since only the cells
which are not inB but have a corner at Euclidean distance at most 1 fBocould have an arc
of T” incoming fromB (see Figure 9), an@’ being a tree implies that no such cell can have two
incoming arcs.

The bound on{P, | € € Out(B)}| and the round-robin policy ensure that, once the first vertex
of a pathPy is reached, in each interval of 8- (2 + [ V2(a + 3)]) timeslots,P. is processed and
at least one arc dP¢ is used. Thus, by immediate induction [5ty| (here|P+| is the length of
the pathP; - the number of arcs in it), the head bfis reached aftelP;| - 32(2+ [ V2(a + 3)])
timeslots from the moment the first vertexmf is reached.

Forv e V(T’) we letd(v) be the length of th&’-path fromcell(s) to v. This algorithm indeed
reaches all vertices d@f’: anyx € T’ either has its parent in afterent block, in which case the
arc fromx’s parent tox appears ae in someOut(B), or has a descendant in afdrent block.
Lety be one such descendantxgfclosest tax in T’. Then the arc frony’s parent toy appears
asein Out(B), wherex € B, and thusx is on P.. Therefore always is on someP,, and then
x is reached provided the first vertex Bf is reached. This first vertex is also T and closer
to cellqs), the root of T’. Thus we can apply induction af(x) and obtain not only that is
reached, but also that it is reached after at na¢st- 32(2+ [ V2(a + 3)]) timeslots. O

Claim 14. Computing the schedule of the inter-block phase tak@d)dme.

Proof. We have at mosh arcs inT’ andn blocks in total, so determining & € Out(B)
for someB can be done i©(n?). ConstructingPe for a givene can be done i©(n) time using
parent pointers iff’. Thus all the steps dhitialization takeO(n?) time.
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All the steps ofProcessing one timeslotan be easily implemented to run in constant time
per block and timeslot, except for searching, given a biBand one edge € Out(B), for all
possiblePy with the head ot is the first vertex oPy. All (for every timeslot and every block)
such searches can be don€ifn®) since this is done exactly once for eagland inO(n) we can
teste.

Testing the stopping condition is done @(n) after each timeslot. Thus, except for the
searches, the time spent by the algorithm processing oesititisO(n). The number of times-
lots given by the previous claim may not ©¢n), so we are not yet done.

Note that if there is are unreached vertice$ irat timeslotj, then at least an arc af will be
put in one ofXj, Xj.1, Xj+2, Xj+3, as argued next. Letbe an unreached vertex highesfif x’'s
parenty is reached. We have two cases: if theaxe Out(B) for someB, then lete = yx. If not,
theny andx are in the same blodR’, and the construction Gf’ ensures that has an descendent
in another block and thus there exists an edge Out(B’) such that bothx andy belong toPe .

In either case, the pat (or Py) is eligible, as it has both reached and unreached vertres,
since one cannot reach a vertex without reaching all itsstoceinT’, the first vertex of the

path must be reached and the last vertex unreached. The@fofor Qg') is not empty. In both

casesB or B’ will be processed in one of the timeslgtg + 1, j + 2, j + 3 and thus one arc from
someP; (f may or may not be or €) will be put in one ofXj, X;.1, Xj+2, Xjx3.

T’ has at mosh — 1 arcs, and as long as there are unreached vertices, eactinfestots
a new arc will be assigned to sorXg. Thus there are at mosh4imesilots for the inter-block
phase.

Combining theO(n) timeslots withO(n) time per timeslot (except for searche®(n?) total
time for searches, ar@(n?) time for the initialization gives the running time boundtbé claim.

O

We continue with the proof of Theorem 11. Now that the intirek phase is complete. The
fill-block phase is done as follows: for any timesloand for each block colorefimod 4, we
pick a cellv of H in that block which is not reached but whose parerfins reached. Then we
add toX; the arc from the parent afto v, resulting inv being reached. If no such cellexists,
then we stop the algorithm. As there are at m@sfd(a + 3)1)2 cells in a block, the fill-block
phase uses at mostf4(2(a + 3)1)? timeslots. Finally, every cell is reached, since, K is the
closest ancestor ofin Ty with x € V(T’), thenx is reached in the inter-block phase, and the
path fromxtovin Ty, includingx andyv, is contained entirely in one block (this is since, for any
vertexx of Ty but notT’, X'sparent inTy is in the same block as).

By putting together the number of timeslots of the fill-blqutkase, and using Claims 12, 13,
and 14, we finish the proof of Theorem 1

At the expense of slightly complicating the proof, if one sisehexagonal grid instead of a
square grid, we believe that the upper bound in the theoremeatan be slightly improved to
48V3(a + 4)D + 12( + 42 + 1.

Theorem 15. There exists a centralized algorithm with running timg®) that gives an QD)
interference-free broadcast schedule for any Euclideataimce of IABS.

Proof. Another algorithm is to construct the UDGandH’ as above, but tre&él’ as one single

block and fill its cells one by oned’ can have at most(D + 1)?/(1/2) cells, since each cell of

H’ has area /2 and diameter 1, which implies it is completely includedhie tisk rooted as

with Euclidean radiu® + 1. Thus we can find a conflict-free broadcast schedulédifowith
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27(D + 1)? timeslots and, as in Claim 12, an interference-free braostoszhedule fot with
47(D + 1) + 1 timeslots.

Now we just balance the bound above with the one from TheoremfID < 10a, we use
the bound above, giving us a schedule with at ma$1@x + 1)(D + 1) + 1 timeslots. Otherwise,
if D > 102, we use Theorem 11 to get an interference-free broadcastisighwith 64(2+
[ V2(a + 3)])D + 8( V2(e + 3)1)(] V2(D/10+ 3)] + 1 timeslots. In both cases, the existence of
anO(aD) interference-free broadcast schedule follovs.

Recall that any interference-aware broadcast schedullateasy at leasD. Then an im-
mediate consequence of the theorem above is:

Corollary 16. There is an Qu)-approximation algorithm forNTERFERENCE-AWARE and|NTERFERENCE-
Free Broapcast ScHEDULING ON Euclidean instances.

7. Conclusion

We formulated the NP-Hard #apcast ScuepuLing problems with interference-aware or
interference-free transmissions as integer programs endlde to optimally solve moderate-
size random instances of the problem.

Then, we presented six variations of heuristics based dlabitdy of and maximum marginal
receivers gained by simultaneously transmitting nodege Mt our heuristics do not need any
pre-processing of instances. The experimental results et the greedy heuristics based on
maximum marginal receivers gained by simultaneously trattisg nodes produce outputs clos-
est to optimum solutions, for uniform random instances.ddition, the average solutions from
the best heuristics in each category exceeds the averape optimum solutions by only 13-
20%. Our algorithms may very well perform no worse on reattdimstances.

Finally, we show that a®(«D) schedule can be computed centralize®{n?), thus giving
anO(a)-approximation algorithm. We leave open the issue of wiaretimO(1) approximation is
achievable in the Euclidean model.
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