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Abstract

We consider the problem of Single-Tiered Relay Placement with Basesta-
tions, which takes as input a set S of sensors and a set B of basestations described as
points in a normed space (M,d), and real numbers 0 < r ≤ R. The objective is to place
a minimum cardinality set Q of wireless relay nodes that connects S and B according
to the following rules. The sensors in S can communicate within distance r, relay nodes
in Q can communicate within distance R, and basestations are considered to have an
infinite broadcast range. Together the sets S, B, and Q induce an undirected graph
G = (V,E) defined as follows: V = S ∪ B ∪ Q and E = {uv|u, v ∈ B} ∪ {uv|u ∈ Q

and v ∈ Q ∪ B and d(u, v) ≤ R} ∪ {uv|u ∈ S and v ∈ S ∪ Q ∪ B and d(u, v) ≤ r}.
Then Q connects S and B when this induced graph is connected. In the case of the
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two-dimensional Euclidean plane, we get a (1+ ln 6+ ǫ) < 2.8-approximation algorithm,
improving the previous best ratio of 3.11.

Let ∆ be the maximum number of points on a unit ball with pairwise distance strictly
bigger than 1. Under certain assumptions, we have a (1 + ln(∆ + 1) + ǫ)-approximation
algorithm.

When biconnectivity is required, we show that a variant of our previously proposed
algorithm has approximation ratio of ∆+2. In the case of the two-dimensional Euclidean
plane, our ratio of 7 improves our previous bound of 16.

1 Introduction

Wireless sensor networks are made up of a large number of autonomous sensors that are
densely deployed into an environment. Each of these sensors will typically have limited power,
memory, and computational power to reduce the cost of the network. To solve the problems
caused by these limitations, additional nodes can be added to a sensor network called relays.
The relay nodes will be equipped with more powerful broadcasting hardware, giving them
a larger communication range but making relays more expensive than the sensor nodes. We
consider one further generalization to this problem by adding a set of basestations to the input,
which have practically infinite broadcasting range (being part of the wired infrastructure). In
this paper we study the problem of placing the minimum number of relay nodes to produce a
network that connects all sensors and basestations.

In order to make the discussion more general, we use normed spaces. A normed space
is a metric space (X, d), given by a set X (of points) and a symmetric function (distance)
d : X ×X → R

+ that obeys the triangle inequality: ∀x, y, z ∈ X , d(x, y) ≤ d(x, z) + d(z, y),
and the property that d(x, y) = 0 if and only if x = y. As defined in the literature [4], a
normed space also has the following property (and others that we do not use): ∀x, y ∈ X and
∀α ∈ [0, 1], there exists z ∈ X such that d(x, y) = d(x, z) + d(z, y) and d(x, z) = α · d(x, y).
In other words, the normed space contains all the Steiner points. Normed spaces of interest
to wireless networks are the two and three dimensional Euclidean space, with d being the
Euclidean distance (the l2 norm).

Formally, we first consider the problem of Single-Tiered Relay (Node) Placement
with Basestations (RPwB), which is defined as follows: As input we are given two sets S
and B of points in a normed space (M, d), which are the coordinates of the sensor nodes and
basestations respectively, and two real numbers r and R, 0 < r ≤ R, which are the broadcast
ranges of sensor and relay nodes respectively (Basestations have infinite broadcast range).
When B = ∅, we have the Single-Tiered Relay Placement problem.

A solution to the problem is a set Q of points to place relay nodes at. The sets S, B
and Q induce an undirected graph G = (V,E) defined as follows: V = S ∪ B ∪ Q and
E = {uv|u, v ∈ B} ∪ {uv|u ∈ Q and v ∈ Q ∪ B and d(u, v) ≤ R} ∪ {uv|u ∈ S and
v ∈ S ∪Q ∪B and d(u, v) ≤ r}. A solution Q is feasible if the induced graph of S, B and Q
is connected. The objective is to find a feasible solution of minimum cardinality.

Note that in Single-Tiered Relay Placement (with Basestations), sensor nodes
can communicate with any other node within distance r. A related problem is Two-Tiered
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Relay Node Placement, which only differs in that sensors cannot communicate directly
with other sensors.

Single-Tiered Relay Placement in the two-dimensional Euclidean plane was pro-
posed Lloyd and Xue [21], who showed that an algorithm based on Minimum Spanning Tree
achieves approximation ratio 7. This algorithm works as follows. It first constructs an undi-
rected edge-weighted complete graph of the set of sensors, where the edge weight is the distance
between two sensors. Then it computes a minimum spanning tree (MST) of that graph. Fi-
nally, if the length of an edge, d, is greater than sensor’s transmission range, r, but less than
or equal to 2r, the algorithm places a relay node on the middle of the edge. If d > 2r, it places
two relay nodes at the points, the distance of which is r from each endpoint of the edge, and
another ⌈d−2r

R
⌉−1 relay nodes on the rest of the edge, keeping the same distance between any

two consecutive relay nodes on this edge. One can easily check that this distance is at most
R. The analysis of this algorithm is improved in [6] to 6, which is also shown to be tight. We
use this result which we present in a more general form. No other submission based on [6]
was made (since in the time between the final version of [6] was submitted and the date it
was published, a better result - next paragraph - was published).

For Two-Tiered Relay Node Placement in the two-dimensional Euclidean plane,
Efrat, Fekete, Gaddehosur, Mitchell, Polishchuk, and Suomela, [10] claim a polynomial time
approximation scheme (PTAS) (a description with proof sketches appears in [11], a version
of [10] that we obtained online). Further, they show that the Single-Tiered problem ad-
mits no PTAS, assuming P6=NP, and presented a 3.11-approximation algorithm for the two-
dimensional Euclidean plane.

We improve this to 2.8, for the generalized problem with basestations. Our approximation
ratio is based on using Zelikovsky’s Relative Greedy [27] algorithm for Steiner tree and results
on the k-restricted ratio (defined later) of Cohen and Nutov [9]. Thus this paper follows
closely [9], who consider the special case where r = R , with the following main difference.
We use our own (generalized from [6]) α2 ratio (defined later), which differs from the same
ratio in the case r = R (which was settled by [22]).

In order to discuss generalizations, we use the strict Hadwiger number of the unit ball in
the normed space, defined as follows: let ∆ be the maximum number of points on a unit ball
with distance strictly bigger than 1 between any pair of points. It is known [25, 23] that ∆ is
the maximum degree of a minimum-degree Minimum Spanning Tree in the normed space. It
is known that in the Euclidean two-dimensional space, ∆ = 5, and in the three dimensional
space, ∆ = 12. In Section 2, we will prove the following theorem:

Theorem 1 Single-Tiered Relay Placement with Basestations in the case of Eu-
clidean R

2 admits a polynomial time algorithm with approximation ratio (1 + ln 6 + ǫ) < 2.8.
In arbitrary normed spaces, the ratio is 1 + ln(∆+ 1) + ǫ, provided that instances of Single-
Tiered Relay Placement with Basestations on a constant number of sensors can be
(1 + ǫ)-approximated in polynomial time.

A related problem has the same input and output type, except that we explicitly allow
any combination of two sensors and/or relays to have the same coordinates, and we require
that G be two-connected. Our paper [29] introduced Single-tiered Relay Placement
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for Biconnectivity and obtain, in the Euclidean two-dimensional space, an approximation
ratio of 14 by computing a 2-approximation (using [19]) of the minimum-cost spanning two-
connected subgraph, with costs as in the previously mentioned MST-based approximation
for Single-Tiered Relay Placement, followed by placing, also as above, the necessary
number of relays on each edge of the two-connected subgraph produced by the approximation
algorithm. For Biconnectivity with basestations (2-RPwB) in the Euclidean two-dimensional
plane, [29] claimed a 16-approximation using a similar approach.

We incorporate results from [29] to prove, in Section 4, the next theorem. No other
submission based on [29] was made, and, even though [29] has more than 100 citations, we
could not find any improvements in the approximation ratio for the single-tiered results.

Theorem 2 Single-tiered Relay Placement for Biconnectivity with Basesta-
tions admits a polynomial-time algorithm with approximation ratio ∆+ 2. In the Euclidean
two-dimensional plane, the approximation ratio is 7.

This is obtained by a variant of the algorithm used by [9], with the only significant dif-
ference being computing a (different) average degree bound of certain trees. This part comes
from [29], overcoming some technical difficulties to improve by an additive term of 1 for the
version with basestations.

1.1 Related Work

In [26], Tang, Hao, and Sen present a 4.5-approximation algorithm for Single-tiered Relay
Placement and its version where two connectivity is required. However, [26] assumes that
R > 4r and that the sensors are uniformly distributed.

MSPT (Minimum Number of Steiner Points Tree with bounded edge length) is Single-
Tiered Relay Placement in the case R = r. In the case of Euclidean R

2, MSPT was
introduced by Lin and Xue [20] and proven NP-hard. They also prove that the Minimum
Spanning Tree heuristic achieves an approximation ratio of 5. Mandoiu and Zelikovsky [22]
give a tight analysis of 4 for the MST-based algorithm and generalize the proof to arbitrary
normed spaces obtaining a ratio of ∆−1. Chen, Du, Hu, Lin, Wang, and Xue also prove in [7]
the same ratio of 4 but with a different approach, and present a 3-approximation algorithm.
Later, Cheng, Du, Wang, and Xu [8] improve the running time of some of the algorithms
found in [7] and present a randomized algorithm with approximation ratio 2.5. In arbitrary
normed spaces, Nutov and Yaroshevitch [24] obtain a (⌊(∆ + 1)/2⌋+ 1 + ǫ)-approximation.
Recently, Cohen and Nutev [9] propose a (1 + ln(∆− 1) + ǫ)-approximation for this problem
using Zelikovsky’s Relative Greedy [27] local replacement algorithm.

The MSPT variant where two-connectivity is required was introduced by Kashyap, Khuller,
and Shayman [17, 18], and they obtain an approximation ratio of 10 (= 2∆) in the Euclidean
R

2. A variant of the same algorithm, was shown by [5] to have approximation ratio of ∆ in
arbitrary normed spaces. Here and later, elements of S ∪B are also called terminals.
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2 Proof of Theorem 1

Given a tree T on S ∪ B ∪ Q, a Steiner component is a maximal subtree all whose internal
vertices (if any) are from Q. The edges of T are partitioned into these Steiner components.
If, for a tree T , each of its Steiner components has at most k vertices from B ∪ S, they form
a k-restricted decomposition of T .

Call a feasible solution Q of the Single-Tiered Relay Placement problem a bead-
solution if the graph G induced by S, B, and Q contains a spanning tree T where each node
from Q has degree exactly two. The MST-based algorithm produces a bead solution. In a
bead-solution, we may call the relay nodes beads.

For x, y ∈ S ∪ B, define

w(x, y) =







0 if ||x, y|| ≤ r or x, y ∈ B

1 + ⌈ ||x,y||−2r
R

⌉ if r < ||x, y|| and x, y ∈ S

1 + ⌈ ||x,y||−r−R
R

⌉ otherwise.

One can easily verify that w(x, y) is the minimum number of relay nodes required to
connect x and y. Moreover, if one is to construct a bead-solution, then only the spanning tree
T matters, and we may as well directly construct a spanning tree with minimum number of
beads - that is a tree T ′ spanning S with minimum

∑

xy∈E(T ′)w(x, y).

Our approximation algorithm is based on Zelikovsky’s Relative Greedy [27]. The general
idea is that we first select a group of up to k sensors and basestations that if connected opti-
mally improve the approximation given by a minimum spanning tree. Then this k-restricted
Steiner component is connected, and the algorithm repeats until no k-restricted Steiner com-
ponent improves the spanning tree approach. Finally, a minimum spanning tree is used to
finish connecting the sensors.

In an arbitrary normed space, Theorem 1 depends on the existence of a method for finding a
(1+ǫ)-approximation to the problem with a fixed number of sensors. Even in the Euclidean R

2,
there is no known way to compute an exact solution to Single Tiered Relay Placement
with Basestations on a set of up to k sensors for our k-restricted Steiner components. Still,
from the definition of a k-restricted components, the sensors and basestation nodes make up
the leafs of a tree in the induced graph.

In fact, we never need more than one basestation in the same Steiner component, as they
are already connected by a path of total weight 0. With no basestation, we can consider the
problem on these at most k sensors to be an instance of Two-Tiered Relay Node Place-
ment. Since [11] claims a PTAS for this problem in R

2, we will use a (1 + ǫ)-approximation
of the optimal solution in our algorithm. One basestation does not change the approach of
[11].

We remark that, using this PTAS, a (1 + ǫ)-approximation of the single tiered problem
can be done in time exponential in the number of sensors.

We will briefly sketch the approximation argument of Zelikovsky [27] to show the result of
replacing optimal solutions on subproblems with (1 + ǫ)-approximations. For a problem in-
stance I, we use opt(I) to denote the optimal solution to I and τk(I) to denote the optimal solu-

tion that decomposes into k-restricted Steiner components. Then we define αk = supI∈I
τk(I)
opt(I)

.
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Lemma 3 For any integer k ≥ 2 and ǫ > 0, Single-Tiered Relay Placement with
Basestations admits a polynomial time approximation with approximation ratio (1+ǫ)αk(1+
lnα2).

Proof. The lemma follows immediately from the the following statement, with β = 1 + ǫ.
It just happens that the approximation ratio proof of Relative Greedy given by [16] (The-

orem 3.1) goes through when one uses a β-approximation instead of finding the optimum way
when connecting k terminals, given an overall ratio of βαk(1 + lnα2).

If one wants to check, please refer to [16] for most of the notions below (which differs from
what we use in the rest of the paper). We denote the number of relays our β-approximation
uses to connect a set of terminals T by appr(T ) and, (to match [16]) by |T | denote the optimum
number of relays to connect T . Here R denotes the set of terminals (in our Lemma, this is
S ∪ B). Let Ti be the set of terminals that our algorithm chooses to connect in iteration i,
and ji be the index that achieves the minimum in their Equation (10). Then

appr(Ti+1)/β

MST (R/T1...Ti)−MST (R/T1...TiTi+1)
(1)

≤
appr(T ∗

ji
)/β

MST (R/T1...Ti)−MST (R/T1...TiT
∗
ji
)

(2)

≤
|T ∗

ji
|

MST (R/T1...Ti)−MST (R/T1...TiT ∗
ji
)

(3)

Then the same proof will work with appr(Ti)/β instead of |Ti|. The final result will be

imax
∑

i=0

appr(Ti)/β = smtk + smtk ln
MST (R)

smtk
.

The βαk(1 + lnα2) ratio immediately follows.

The method proposed by Cohen and Nutov [9] for the special case when r = R and B = ∅
uses the result in [7] to solve the k-restricted Steiner trees exactly in the two-dimensional
Euclidean plane. However, [7] has the limitation of requiring a polynomial bound on the
distance between any two sensors. This bound is required because their method enumerates
out all possible candidate points for relays, which may be exponentially large between distant
relays. Our work avoids this issue by utilizing the existing PTAS for the Two-Tiered problem.
This PTAS gives its output as a set of points to place relays and lines to place relays evenly
along. This allows it to output a solution with an exponential number of relays in polynomial
time.

Then all that remains in order to prove Theorem 1 is to give an upper bound on the values
of α2 and αk.

Lemma 4 α2 ≤ ∆+ 1.

The proof of this lemma is deferred to Section 3. This result is tight in the two-dimensional
Euclidean plane as shown by the example given in Figure 1.

Cohen and Nutov [9] proved that for ST-MSP, αk approaches 1 as k grows. We adapt
their proof to apply it to RPwB to get the following Lemma.
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2 3

1 2 3

= Sensor node

= Relay node

R=5r R=5r

A)

B)

r

1

Figure 1: A) is an optimal solution B) is an output from the MST-based algorithm. For such
an example where the optimal solution requires |Q| relays (here |Q| = 3), the MST solution
will be 4 + 6(|Q| − 1). Thus the ratio approaches 6 in the Euclidean two-dimensional plane.

Lemma 5 For any integer k ≥ 4∆− 2, αk ≤ 1 + 2
⌊lg⌊k/(2∆−1)⌋⌋

Proof. This lemma can be found by adapting a lemma used in [9] to prove a similar result
for the special case when r = R follows. Their lemma is as follows:

Lemma 6 [Lemma 9 of [9]] Let T = (V, F ) be a tree of maximum degree δ ≥ 2, let S ⊆ V ,
and let Q = V \ S. Then for any integer k ≥ 2δ − 2 there exists a connected hypergraph

H = (S, E) of rank ≤ k such that
∑

A∈E |VA ∩Q| ≤
(

1 + 2
⌊lg⌊k/δ−1⌋⌋

)

|Q|.

The hyperedges of this lemma are k-restricted Steiner components. Combining this with
the proof below that the induced graph of any feasible solution has a spanning tree with
maximum degree at most 2∆ will let us conclude Lemma 5.

Let Q be a feasible solution to the problem on sensor set S. (Basestations are handled as in
Lemma 7 below). To find this degree bounded spanning tree, we use the following construction.
Assign every edge in the graph induced by S and Q weight equal to the Euclidean distance
between the endpoints. Then let T be a minimum-weight spanning tree of this graph. It is
known that for ST-MSP (ie when r = R and thus all edges can have length from 0 to r), there
exists such a minimum weight tree with maximum degree ∆ [25, 23] .

We partition our tree T into two edge-disjoint forests F1 and F2, where an edge is in F1

if and only if its length is less or equal to r, and F2 has all remaining edges. Each tree in
these forests must be a minimum weight tree, otherwise T could be shortened. All edges in
F1 have lengths between 0 and r, inclusive. So we can use the previously mentioned result on
each tree in F1 to find another minimum weight tree the same nodes with maximum degree
∆. Similarly, all edges in F2 have length greater than r, which implies they are all have relays
or basestations as both endpoints. Therefore all edges in F2 have lengths between 0 and R.
Using the same result as before, we can find another minimum-weight tree for each tree in F2

with maximum degree ∆. By taking the union of F1 and F2 after these modifications, we get
a minimum weight tree with maximum degree 2∆.
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This degree bounded tree along with the Lemma 6 allows us to conclude Lemma 5.

By combining Lemma 3 with the upper bounds given by Lemmas 4 and 5, we find that for

any k ≥ 4∆−2, we can compute a
(

(1 + ǫ)(1 + 2
⌊lg⌊k/(2∆−1)⌋⌋

)(1 + ln(∆ + 1))
)

-approximation

in polynomial time. For large enough k, the approximation ratio becomes (1+ǫ′)(1+ln(∆+1)),
which completes our proof of Theorem 1.

3 Proof of Lemma 4

Lemma 4 follows immediately from the lemma below, whose proof only has minor modifica-
tions compared to our proof from [6].

Lemma 7 Given Q̄ a solution to the Single-Tiered Relay Placement with Basesta-
tions problem with input S, we can construct a bead-solution Q̄′ for S with |Q̄′| ≤ (∆+1)|Q̄|.

Proof. Let G be the connected graph induced by Q̄ and the input S and B. We assign each
edge between basestations in G weight zero, and all other edges weight equal to the distance
between the endpoints. Let T̄ be a minimum spanning tree in G where ties are broken such
that edges between two nodes of S∪B are lighter than edges with only one endpoint in S∪B.

Now consider the Steiner components in T̄ . It is sufficient to prove that each Steiner
component can be connected by a bead solution with at most ∆ + 1 times more relays.
Therefore we will let T be a single subtree, S to be the sensors in T , Q to be the relays
of Q̄ in T . If Q 6= ∅, this component must have at most one edge incident to a basestation
(otherwise a lighter spanning tree is created by replacing one of those edges with a basestation
to basestation edge), and let b to be the single basestation in our component, if one exists (in
which case b is a leaf in T ).

Partition Q into X and Y : the nodes of X have a neighbor from S in T , and the nodes
of Y do not. So a node of Y has, in T , only neighbors from Q ∪ {b}. T will be a minimum
Euclidean spanning tree since it only contains one vertex in B. This implies, from a standard
argument [25, 23] that each node of Y has at most ∆ neighbors from Q∪{b}. Our proof, like
[20, 22], is based on replicating nodes of Q, which means replacing a node by a number of
beads placed in the same position.

Take a maximal set A of Y which is connected in T . A together with the nodes of X
adjacent to it induces a subtree TA of T (this is akin to the Steiner component used for the
Steiner tree problem [28, 3]). We use the standard argument of doubling each edge of TA, and
doing an Eulerian tour of TA starting from a node of X . Each node of X other than the start
appears once in this tour, and each node of Y exactly as many times as its degree in TA, that
is, at most ∆ times. Replicate each node of Y according to its degree, and replace TA by the
Eulerian tour above minus the last edge of the tour. Do this for all such A and obtain a new
tree T ′ with node set S ∪X ∪ Y ′ ∪ {b}, where Y ′ are the nodes obtained by replicating nodes
of Y , and such that T ′ is spanning and each node of Y ′ has degree at most two, i.e., is a bead.
Note that |Y ′| ≤ ∆|Y |.

Repeatedly remove nodes of X ∪ Y ′ if they have degree one, resulting in a spanning tree
T ′′ with node set S ∪X ′ ∪ Y ′′ ∪ {b}, where Y ′′ and X ′ respectively, are those nodes of Y ′ and
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X respectively, not removed. Thus in T ′′ all the leaves are from S ∪ {b}, and all the nodes of
Y ′′ have degree exactly two and neighbors only in X ′ ∪ Y ′′ ∪ {b}.

Root T ′′ at b if it exists and at an arbitrary leaf otherwise, and then execute a postorder
traversal of T ′′, processing each node of x ∈ X ′ as described below. While doing this we
construct a new tree T3, initialized to be T ′′. Node x must have, in T ′′, at least one neighbor
in S - and in fact, since the neighbors of x from S in T ′′ are exactly neighbors of x from S in
T , we can derive that x has at most ∆ neighbors from S in T ′′.

During the postorder traversal, we maintain the following invariant: each node of x ∈ X ′

ready to be processed (that is, with all its descendants in X ′ already processed) has, in T3,
between one and ∆ children, and all are from S. Also, except for x, all its descendants are
nodes from S or beads. In addition, at all times, nodes from Y ′′ remain beads (have degree
two) with neighbors only from Y ′′ ∪X ′ ∪ {b} or are newly introduced beads.

Note that this invariant holds for nodes from X ′ which do not have proper descendants
from X ′: such a node x′ must have descendants or it would have been removed, and if x′ has
a child y from Y ′′, then y must be on path to a node s from S (or all the subtree rooted at y
would have been removed, starting with the leafs). Now, on the path from y to s there must
be a node from X ′ - since nodes of Y ′′ are not adjacent in T ′′ to nodes of S. Thus if y is a
child of x′, we obtain that x′ has proper descendants from X ′ - a contradiction.

Now we describe how a node x from X ′ is processed: let s1, s2, . . . , sk be its children; recall
that all belong to S and that 1 ≤ k ≤ ∆. If the parent of x in T3 is a node s from S, change
T3 by replicating x k times connecting, by paths of length two with the middle node a bead,
s1 to s2, s2 to s3, and so on until sk is connected to s. If the parent of x in T3 is b, change T3

as before with b instead of s.
If the parent of x in T3 is not from S ∪ {b}, then there is a path P from x to an ancestor

node x′ ∈ X ′ ∪ {b} with all the intermediate nodes from Y ′′ - this is since the root is from S
or is b, and nodes in Y ′′ are never adjacent in T3 with nodes from S. If x′ ∈ X ′ then let s′ be
some node of S adjacent to x′, otherwise let s′ = b. For ease of presentation, we consider two
subcases: P has two nodes or strictly more than two.

In the first subcase, x is the child of x′. Change T3 by replicating x k times into beads
x1, x2, . . . , xk, and adding a new bead, called x′′, connecting by beads s1−x1−s2−x2 . . . xk−1−
sk−xk −x′′− s′. This is possible by placing x′′ at the same position as x′. If x′ is left without
children, remove it from T3. Otherwise x′ stays in T3, with one less neighbor (x is gone, and
the new nodes are not adjacent directly to x′), until all its descendants are processed. See
Figure 2 for an illustration. The result is that all the nodes of the subtree rooted at x go in a
subtree rooted at s′, and this subtree consists only of nodes of S and beads. In total, instead
of x, we introduced up to k + 1 ≤ ∆+ 1 beads.

In the second subcase, let y1 be the second node of P and y2 be the next to last node of
P ; note that y1, y2 ∈ Y ′′, and it is possible y1 = y2. Replicate x k times, connecting by paths
of length two with the middle node a bead: s1 and s2, etc, sk−1 to sk, and sk to y1. Also, add
another bead x′′ connecting y2 to s′ by a path of length two. This is possible with x′′ being a
bead in the same position as x′. If x′ is left without children, remove it from T3. Otherwise
x′ stays in T3, with one less neighbor (y2 is not adjacent to x′ anymore, and the new nodes
are not adjacent directly to x′), until all its descendants are processed. See Figure 3 for an
illustration. As before, the result is that all the nodes in the subtree rooted at y2 go in a
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Figure 2: Illustration of the first subcase
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Figure 3: Illustration of the second subcase

subtree rooted at s′, and this subtree consists only of nodes of S and beads. In total, instead
of x, we introduced up to k + 1 ≤ ∆+ 1 beads.

Note that in no case a node of X ′ maintains children from X ′ ∪ Y ′′ when it is time to
be processed - such children are now adjacent to some newly introduced bead x′′, and x′′ is
adjacent to some node in S. Thus the invariant is maintained, each node of X ′ is replaced by
∆ + 1 beads, and by the time we finish this postorder processing T3 consists of beads only,
with the number of new beads being at most (∆ + 1)|X ′|.

We conclude that the final T3 has only nodes of S and beads, and the number of beads
does not exceed

|Y ′′|+ (∆ + 1)|X ′| ≤ |Y ′|+ (∆ + 1)|X| ≤ (∆ + 1)(|Y |+ |X|) = (∆ + 1)|Q|.

4 Proof of Theorem 2

Definition 8 For a subset C of nodes of a graph G = (V,E), let us use the following notation:
ΓG(C) is the set of neighbors of C in G; δG(C) = δE(C) is the set of edges in E with exactly
one endpoints in C; E(C) is the set of edges in E with both endpoints in C. Given S ⊆ V , a
Steiner component of G is a subgraph of G with node set C∪ΓG(C) and edge set E(C)∪δG(C),
where C is a connected component of G \ (S ∪B). Let E(X, Y ) to be the set of edges in E(G)
with one endpoint in X and the other in Y .
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Continuing to follow [9] with simplified notation, we consider the fractional bead solutions
to the standard cut linear program relaxation problem of bead solutions 2-RPwB. Thus G
below is the complete simple graph of S ∪ B, with we for e = uv being equal to w(u, v). We
can assume that our weighted complete graph is simple, as parallel edges have no effect on
two-connectivity. The variables of the program are “capacities” xe for all e ∈ E(G).

minimize
∑

e∈E

wexe

subject to
∑

e∈E(V (G)\X,X)

xe ≥ 2 ∀ X ⊆ V (G), ∅ 6= X 6= V (G)

∑

e∈E(V (G)\({z}∪X),X)

xe ≥ 1 ∀ z ∈ V (G) ∀ ∅ 6= X ⊂ V (G) \ {z}

0 ≤ xe ≤ 1 ∀e ∈ E.

Using Menger’s theorem, one can check that, for a simple graph G and for an integral
vector x valid for the linear program above, the set E ′ of edges e of E(G) with xe = 1 is such
that the graph (V (G), E ′) is two-connected. Thus one can think of a valid fractional vector x
as being “fractional-two-connected”. We use τ ∗ to denote the optimal solution to our linear
program.

We will show that for any problem instance I the ratio τ∗(I)
opt(I)

is at most ∆+2
2

. Now notice
that an approximation algorithm that produce a bead solution of cost at most ρτ ∗, will
then give 2-RPwB a

(

ρ∆+2
2

)

-approximation. The 2-approximation for minimum-cost two-
connected subgraph of Fleischer, Jain, and Williamson [12] (also handling a more general
problem) is based on iterative rounding and does have ρ = 2 above, and thus we have a
(∆ + 2)-approximation.

To prove our upper bound on the gap between the optimal relay placement and the optimal
fractional bead solution, we need the two lemmas below. The first of these, Lemma 9, is a
special case of a theorem proven in [9].

Lemma 9 [from Theorem 5 of [9], also implicit in the journal version of [5]] Let G be a
two-connected graph such that V (G) = S ∪ B ∪ Q, and such that no proper two-connected
subgraph J ′ of G exists such that S ∪ B ⊆ V (J ′). Then every Steiner component of G is a
tree. Furthermore for any subset C of Steiner components of G, replacing each C ∈ C by a
fractional DFS cycle of capacity 1/2 results in a two-connected fractional bead solution.

Aside from the existence of basestations, the next lemma is our Lemma 3.3 of [29] with
∆ instead of 5. With basestations, it improves by an additive term of 1 the bound in Lemma
3.7 of [29].

Lemma 10 Let Q be a feasible solution to 2-RPwB on sensor set S and basestation set B.
Then the induced graph has a two-connected subgraph that can be decomposed in to Steiner
components such that each component is a tree and satisfies the following: Let Q′ denote the
set of relays of some Steiner component. Then

∑

v∈Q′ degree(v) ≤ (∆ + 2)|Q′|.

11



Proof. Let G be the induced graph of S, B, and Q. We will first find a subgraph G′ of
G that is still two-connected, but has at most one edge incident to a basestation per Steiner
component. We assume that there are at least three basestations in total, we will handle the
case of two or less basestations in the last paragraph of our analysis.

We construct G′ as follows: Start with G′ being a cycle going through all basestations in
G. While there are sensors in G that are not in G′, find a path starting and ending in G′

containing such a sensor (such a path exists because G has two paths, disjoint except the
sensor endpoint, between the sensor and G′). Add this path to G′ and repeat. Note that this
corresponds to an ear-decomposition and G′ is two-connected; at the end, S ∪B ⊆ V (G′).

Our algorithm maintains the loop invariant that all Steiner components in G′ have at most
one edge incident to a basestation. This is trivially true in the initial cycle. Each path added
to G′ can be connected, without using sensors, to at most two basestations (from the first and
last vertex of the path). If there are indeed exactly two basestation, since the path contains
a sensor, these two basestations will be incident to different Steiner components. Therefore
any Steiner component created has at most one adjacent basestation. An existing Steiner
component only becomes larger when an added path starts or ends in it. Then by the same
argument, no edge incident to a basestation can be added to this component.

Let G′′ by a subgraph of G′ such that no proper two-connected subgraph J ′ of G′′ exists
such that S ∪ B ⊆ V (J ′). Now, by Lemma 9, all the Steiner components are trees, and we
still have that each Steiner components has at most one basestation. Further assume that the
total length (in the normed space) of the edges of G′′ is minimized, and ties are broken such
that two nodes of S are considered closer than any other combination of two nodes, if their
pairwise length is the same. Let Q′′ be the set of relays of G′′. We use the following version
of Lemma 3.2 of [29].

Claim 11 Every vertex of Q′′ has at most ∆ neighbors in S.

Proof. Assume that there is a relay node y ∈ Q′′ that has at least ∆ + 1 neighbors in S.
We will show that this assumption leads to another another two-connected Ĝ subgraph of G′

with S ∪ B ⊆ V (Ĝ), contradicting the shortest length assumption of G′′.
Recall that ∆ is the maximum number of points on a unit ball with pairwise distance

strictly bigger than 1. Let x1, x2, . . . , xk be the neighbors of y in S. As k > ∆, two of these,
say, x1 and x2, satisfy d(x1, x2) ≤ r and thus the undirected edge x1x2 is induced by S.
In fact, then next paragraph (whole argument taken from [25]) shows that we can assume
d(x1, x2) ≤ d(y, x1).

Draw a ball of radius ǫ (using distance d) around x, where ǫ < d(y, xi) for all i. Let x
′
i be

the intersection of a segment yxi with the boundary of this ball. Since k exceeds the Hadwiger
number of the unit ball in the normed space, there exist i, j with d(x′

i, x
′
j) ≤ ǫ. Assume by

symmetry that d(y, xi) ≤ d(y, xj). Drawing the ball of radius d(y, xi) around y; and let x′′
j

be the point where the segment yxj used for finding x′
j intersects the boundary of this bigger

ball. Then we also have d(xi, x
′′
j ) ≤ d(y, xi), and therefore

d(y, xj) = d(y, x′′
j ) + d(x′′

j , xj) = d(y, xi) + d(x′′
j , xj) ≥ d(xi, x

′′
j ) + d(x′′

j , xj) ≥ d(xi, xj),

and all that remains is to relabel xj = x1 and xi = x2. use yi as y and yj as z, and then
d(x1, x2) ≤ d(y, x1) as desired.

12



We first prove the following proposition.

(a): G′′ does not contain edge x1x2.

x1

x2

xky

(a)

x1

x2

xky

(b)

Figure 4: G′′ cannot contain the edge x1, x2. In case (a), the edge yx1 can be removed, and
in case (b), the edge yx2 can be removed.

Since G′′ is two-connected, there is a path π in G′′ connecting xk and x1 without using
node y. If π does not go through x2, we have a scenario as shown in Fig. 4(a). If π goes
through x2, we have a path π′ in G′′ connecting xk and x2 without using nodes y and x1, as
shown in Fig. 4(b). In the first scenario (see Fig. 4(a)), G′′ contains a cycle going through
x1, x2, y, and xk and a chord (edge connecting two non-consecutive vertices of the cycle) yx1.
Deleting the chord yx1 fromG′′ will reduce the length without destroying two-connectivity [13],
contradicting the shortest length assumption of G′′. Similarly, deleting the chord yx2 will lead
to a contradiction in the second scenario (refer to Fig. 4(b)). This proves (a).

Let Ĝ be the subgraph of the graph induced by S, B, and Q′′ that is obtained from G′′

by replacing the edge yx1 with x1x2. Note that Ĝ has smaller total edge length compared to
G′′. Next we prove

(b): For any two u, v ∈ S ∪B, there exists a pair of internally-disjoint paths in Ĝ connecting
u and v.

Since G′′ is two-connected, there exists a pair of internally-disjoint paths π1 and π2 in
G′′ connecting u and v. If neither path uses edge y, x1, then π1 and π2 also form a pair of
internally-disjoint paths in Ĝ. Now we consider the case where one of the paths (WLOG,
assuming π1) uses edge yx1.

First, consider the subcase where {u, v} = {x1, x2}. In this case, π2 and the edge x1x2

form two internally-disjoint x1–x2 paths in Ĝ (note that π2 is a path in G′′ and the edge x1x2

was proven not to be in G′′, and thus π2 is internally-disjoint from the edge x1x2).
Next, consider the subcase where u = x1 but v 6= x2. Since π1 goes through y (which is a

relay node), π2 does not go through y. If π2 goes through x2, G
′′ contains the cycle formed

by the two paths π1 and π2, as well as a chord yx2. This contradicts the shortest length
assumption of G′′ (see Fig. 5(a) and the similar argument used in the proof of (a)).

Therefore π2 does not go through x2 (see Fig. 5(b)). We can replace π1 with a new v–x1

path π3 which goes from v to y along π1, then to x2 via edge yx2, then to x1 via edge x2x1

(see Fig. 5(c)). π2 and π3 form a pair of node disjoint xi–x1 paths in Ĝ. This shows that (b)
is true in this subcase.

If v = x2 and u 6= x1, and π1 uses the edge yx1, we may as well replace (if needed) the
portion of π1 between y and x2 by the edge yx2. If π1 still contains yx1, the we replace in π1
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x1

x2

vy

(a)

x1

x2

vy

(b)

x1

x2

vy

(c)

Figure 5: Replacing the edge yx1 with the edge x1x2. The situation in (a) is impossible.
Subfigure (b) shows part of G′′ (before) and subfigure (c) shows part of Ĝ (after).

the edges x2y and yx1 by x2x1, resulting in a path of Ĝ that is still internally-disjoint from π2

(which remains a path of Ĝ). This shows that (b) is true in this subcase.
Finally we consider the subcase where {u, v} ∩ {x1, x2} = ∅. Since π1 goes through y, π2

does not go through y. If π2 goes through x2, then G′′ contains the cycle formed by the two
paths π1 and π2, as well as a chord yx2, contradicting the shortest length assumption of G′′.
Therefore π2 does not go through x2. We can replace π1 with a new u–v path π3 which goes
from u to y along π1, then to x2 via edge yx2, then to x1 via edge x2x1, then to v following
the subpath on π1. π2 and π3 form a pair of node disjoint u–v paths in Ĝ. This shows that
(b) is true in this subcase, and completes the proof for (b).

Thus according to (b), for any two distinct u, v ∈ S ∪B, there exists a pair of internally-
disjoint paths in Ĝ connecting u and v. If Ĝ is not two-connected, it has a vertex z such
that removing z from Ĝ results in at least two connected components, and one of these
components contains no vertex of S ∪B, since we have two internally-disjoint paths between
any two vertices of S ∪ B. Change Ĝ by removing one such component, and note this does
not decrease the connectivity between the vertices of S ∪ B.

The total edge length of Ĝ also does not increase, so we did reach the contradiction of
finding in Ĝ a two-connected subgraph subgraph of G′ with S ∪B ⊆ V (Ĝ), contradicting the
shortest length assumption of G′′. This completes the proof of the claim.

Let Q′ denote the set of relays of some Steiner component of G′′. Therefore we have at
most ∆|Q′| edges between sensors and relays in this Steiner component.

All internal nodes of the Steiner component are relays, and therefore our tree has |Q′| − 1
relay to relay edges. When summing over the degree of all relays, these edges will be counted
twice. Combining this, with our bound on the number of edges incident to a sensor and
incident to a basestation the total degree of relays in our Steiner component is bounded by:

∑

v∈Q′

δ(v) ≤ 1 + 2(|Q′| − 1) + ∆ · |Q′| < (∆ + 2)|Q′|

This analysis assumed that we had at least three basestations. If there are two or fewer
basestations, then we can bound the number of edges of a Steiner component incident to a
basestation by 2 (the Steiner component being a tree where basestations, if any, are leafs),
which gives

∑

v∈Q′ δ(v) ≤ (∆ + 2)|Q′| by the same arguments. This finishes the proof of
Lemma 10.

For a given Steiner component in the optimal solution, we can create a cycle by using a
depth first traversal and duplicating each relay every time it is visited. From Lemma 10, we
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know this cycle will have at most ∆ + 2 beads per relay node on average. Then by Lemma
9, assigning the cycle in each Steiner component of the optimal relay placement capacity 1/2
we find a fractional bead solution with cost at most ∆+2

2
times more than the optimal relay

placement.

5 Conclusion

We have shown that the method presented by Cohen and Nutov for ST-MSP can be extended
to give a (1 + ln(∆ + 1) + ǫ)-approximation to Single-Tiered Relay Placement with
Basestations. In the case of relay placement on a Euclidean plane, this result improves the
best known approximation from 3.11 to 2.8.

In three dimensions, our result (Theorem 1) is conditional on the existence of a (1 + ǫ)-
approximation for a constant number k of sensors. Actually, the running time of this ap-
proximation can be any function of k, but must be polynomial in the length of the (binary)
representation of R and the coordinates of the sensors. We comment on the existence of such
an algorithm. A (1 + ǫ)-approximation seems possible if the solution is at least k2 (the sensor
are far apart), since the minimum Euclidean-length Steiner tree can be approximated ([1])
and used, with nodes relay on the Steiner points and beads on the edges, losing only 12k beads
compared to an optimum solution. When the sensors are close to each-other, the typical ap-
proach is to construct a finite set of points (a large number such as kk) using rigidity/motion
planning and/or local changes arguments (in two dimensions, this appears in [7, 11]), and
argue that an optimum or close-to-optimum solution exists with all the relays place on this
finite set of points. We leave the existence of such an algorithm open. If it exists, then this
paper gives a 3.57-approximation. It is not clear to us whether the approach of [10] extends
to three dimensions at all.

We also considered the biconnected version of relay node placement with basestations
and obtained a (∆ + 2)-approximation. We choose to base our presentation on [9] and [12]
as it allows for citations instead of longer proofs. We believe that using the variant of [19]
proposed by Auletta, Dinitz, Nutov, and Parente [2], with Gabow’s [15] implementation of the
Frank-Tardos algorithm [14] gives the same approximation ratio without the (slower) iterative
rounding method of [12]. This would be a variant of our [29] algorithm.

A more general problem has as input connectivity requirements ruv ∈ {0, 1, 2} and the
induced graph is required to have ruv-internally disjoint between for each u, v ∈ S ∪ B. We
failed in generalizing our (∆ + 2)-approximation for this model, precisely the claim inside the
proof of Lemma 10 does not seem to hold, in light of the example of Fig. 4 of [17], when
connectivity requirements are 1 between any two sensors other than the (already) adjacent
sensors, where connectivity requirements are 2.
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