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We study the problem of separating n points in the plane, no two of whih have the same

x- or y-oordinate, using a minimum number of vertial and horizontal lines avoiding

the points, so that eah ell of the subdivision ontains at most one point. Extending

previous NP-hardness results due to Freimer et al. we prove that this problem and some

variants of it are APX-hard. We give a 2-approximation algorithm for this problem, and

a d-approximation algorithm for the d-dimensional variant, in whih the points are to be

separated using axis-parallel hyperplanes. To this end, we redue the point separation

problem to the retangle stabbing problem studied by Gaur et al. Their approximation

algorithm uses LP-rounding. We present an alternative LP-rounding proedure whih

also works for the retangle stabbing problem. We show that the integrality ratio of the

LP is exatly 2.

Keywords: Point separation; approximation algorithm; LP-rounding; integrality gap.

1. Introdution

Let P be a set of n points in the plane, no two of whih have the same x- or y-

oordinate. We onsider the problem of �nding a minimum set of axis-parallel lines

1
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that do not pass through any of the given points, suh that eah ell of the resulting

subdivision ontains at most one point. In other words, for eah pair of points there

is a line in our set whih separates the two points. We refer to this problem as the

separation problem Separation. Its natural extension to higher dimensions, alled

the multi-modal sensor alloation problem in

11

, asks for a minimum ardinality set

of axis-parallel hyperplanes whih separate n given points. It has appliations to

fault-tolerant multi-modal sensor fusion in the ontext of embedded sensor networks

11

. The problem appears to be losely related to other problems of separating points

or hitting objets studied in the omputational geometry literature

1

,

3

,

4

,

8

,

9

,

10

,

12

.

The point separation problem appears to have been studied for the �rst time

by Freimer, Mithell and Piatko

5

, under the name point shattering problem; they

onsidered both the general ase | when the points an be separated by arbitrary

lines, and the speial ase | when only axis-parallel lines are used. They have

shown that both variants are NP-hard, and have left the problem of obtaining good

approximation algorithms as open for further researh

5

.

Our paper is organized as follows. In Setion 2 we present two LP-based ap-

proximation algorithms with ratio 2 in the plane

a

, respetively d in R

d

: the �rst

is obtained by asting the separation problem as a speial ase of the retangle

stabbing problem

7

,

8

. The seond uses a di�erent rounding proedure. We show

that the seond algorithm also works for the retangle stabbing problem, with the

same ratio, 2.

In Setion 2.1, we show that, for any � > 0, there are examples in the plane hav-

ing integrality ratio at least 2� � for Separation, and hene also for Retangle

Stabbing

b

. Sine the integrality ratio is 2, it means one annot prove a onstant

approximation ratio less than 2 based only on the value of the linear program as a

lower bound on the optimum value.

In Setion 3, we show (under standard assumptions) that Separation is in fat

hard to approximate beyond a ertain threshold (see Theorem 3).

A natural variant of the above point separation problem is a olored version:

the points are olored, and one has to �nd a minimum set of axis-parallel lines,

suh that the set of points in eah ell of the resulting subdivision, if nonempty, is

monohromati. Clearly having eah point olored by a di�erent olor is equivalent

to the original problem. Thus when the numbers of olors is part of the input this

problem is also NP-hard. We prove that it remains so for any number k of olors,

k � 2. This version also extends to higher dimensions, as the original problem does.

Both our algorithms an be used to obtain a 2-approximate solution for the olored

version in the plane, or d-approximate solutions for the olored version in R

d

.

a

An approximation algorithm with ratio r outputs a separating set of lines of size at most r �OPT ,

where OPT is the size of an optimal separating set.

b

The integrality ratio (gap) of a minimization integer program is the supremum over instanes of

the ratio of the value of the integer program to the value of its linear program relaxation.
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2. Algorithms for Separation

In this setion we prove

Theorem 1. There exists a 2-approximation algorithm for Separation.

Without loss of generality, we an restrit the set of vertial or horizontal sepa-

rating lines to a set L of 2(n� 1) anonial lines, one for eah pair of horizontally

onseutive points, and one for eah pair of vertially onseutive points (say, at

the average oordinate value of two onseutive points).

We �rst give two lower bounds on OPT , the size of an optimal solution. Consider

the omplete geometri graph G = (V;E) whose vertex set is the set P of n points.

We say that two edges of G are independent if there is no vertial or horizontal line

that intersets both in their interior. Let I be a maximum independent set of edges

of G. Then learly OPT � jI j, sine eah edge of I requires a distint separating

line.

Write l = OPT . The maximum number of ells indued by l horizontal and

vertial lines is attained when the lines are divided evenly into vertial and hor-

izontal. Sine eah point requires a distint ell of the arrangement of l lines, we

have (bl=2+ 1)(dl=2e+ 1) � n, whih implies that for all sets of n points,

OPT � d2

p

ne � 2:

In the retangle stabbing problem

7

,

8

, we are given a set of (nondegenerate) axis-

parallel retangles in the plane, with the objetive of stabbing all the retangles with

the minimum number of axis-parallel lines (a retangle is said to be stabbed by line

` if ` intersets its interior). Gaur, Ibaraki and Krishnamurti have reently given a

2-approximation algorithm for this problem

7

.

Let us �rst see how the separation problem an be ast as a retangle stabbing

problem. For eah pair of points u; v 2 P , onsider the retangle R

uv

whose diagonal

is uv. Then separating all the points in P is equivalent to stabbing all retangles

R

uv

, with u; v 2 P . Note also that it is enough to restrit ourselves to empty

retangles, i.e., those that do not ontain other points of P : stabbing all empty

retangles R

uv

guarantees that all retangles are stabbed. However, in general this

restrition may be not signi�ant, as it is easy to onstrut examples with 
(n

2

)

empty retangles determined by the n points.

Let R be the olletion of retangles in the retangle stabbing problem. A set

L of anonial lines is seleted �rst, as in the separation problem. The natural IP

(integer program) with variables �

L

, for L 2 L, is

minimize

X

L2L

�

L

subjet to

X

L stabs R

�

L

� 1 8R 2 R (1)

�

L

2 f0; 1g 8L 2 L: (2)
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The linear programming relaxation of IP is obtained by replaing the onstraints

(2) by

�

L

� 0 8L 2 L:

Denote by LP the value of the above linear program. The algorithm of Gaur et

al. solves the linear program and lassi�es retangles as horizontal or vertial (with

ties broken arbitrarily), depending on whether

X

horizontal L: L stabs R

�

L

�

1

2

or

X

vertial L: L stabs R

�

L

�

1

2

:

It then solves optimally the problem of stabbing the horizontal retangles with

vertial lines, by solving the orresponding linear programs LP

H

and LP

V

. The

solutions of these two linear programs are integral, a property that follows from the

total unimodularity of their onstraint matries. Putting together the two sets of

lines results in a 2-approximation algorithm, using again the total unimodularity

property. Instead of solving LP

H

and LP

V

, one an solve diretly the orresponding

stabbing problems using the greedy algorithm, sine these beome interval stabbing

problems on the line.

The formulation of the integer and linear programs for the separation problem

is analogous. The IP with variables �

L

, for L 2 L, is

minimize

X

L2L

�

L

subjet to

X

L separates uv

�

L

� 1 8u; v 2 P; u 6= v; (3)

�

L

2 f0; 1g 8L 2 L: (4)

The linear programming relaxation of IP is obtained by replaing the onstraints

(4) by

�

L

� 0 8L 2 L:

The 2-approximate solution is obtained in the same way.

We now provide a new, oneptually simpler, LP-based algorithm, that only

solves the linear program above and diretly rounds the solution. Sort the horizontal

lines L

1

; L

2

; : : : ; L

n�1

in order of their y-oordinates. Pik line L

j

if and only if

the interval

�

P

j�1

i=1

�

L

i

;

P

j

i=1

�

L

i

i

ontains a multiple of 0:5. There are at most

2

P

n�1

i=1

�

L

i

multiples of 0:5 in the interval (0;

P

n�1

i=1

�

L

i

℄ and therefore the number

of horizontal lines piked does not exeed 2

P

n�1

i=1

�

L

i

. Apply a similar proedure

to the vertial lines

�

L

1

;

�

L

2

; : : : ;

�

L

n�1

sorted in order of their x-oordinates. Hene

the number of lines piked annot exeed twie the value of the LP.

Now we show that we obtain a valid integral solution. Let P and Q be two points

and let i

P

(i

Q

, respetively) be the index in the sorted order of the �rst horizontal

line after P (Q, respetively) with the onvention that if P has the highest y-

oordinate, then i

P

= n. Similarly, we de�ne j

P

and j

Q

in referene to vertial lines.
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Assume i

P

< i

Q

and j

P

< j

Q

|the other three ases are symmetri. Constraint (3)

gives

P

i

Q

�1

k=i

P

�

L

k

+

P

j

Q

�1

k=j

P

�

�

L

k

� 1, and therefore

P

i

Q

�1

k=i

P

�

L

k

�

1

2

or

P

j

Q

�1

k=j

P

�

�

L

k

�

1

2

. Assume the �rst inequality holds, the other ase being symmetri. Then there is

a multiple of 0:5 in the interval

�

P

i

P

�1

k=1

�

L

k

;

P

i

Q

�1

k=1

�

L

k

i

and therefore one of the

lines L

i

P

; L

i

P

+1

; : : : ; L

i

Q

�1

is seleted by the algorithm and separates P and Q.

Sine LP � OPT , the approximation ratio is at most 2. It is easy to see that

this algorithm works for the retangle stabbing problem as well, with the same ratio

of 2.

We �nally remark that both algorithms an be used to solve the olored version

of the separation problem in the plane with the same ratio of 2: write onstraints

only for the set of bihromati edges, i.e., those whose endpoints have di�erent

olors.

2.1. Integrality Ratio

The main result of this setion is that the integrality ratio is exatly 2. As a warm-

up we show (Lemma 1) an in�nite sequene of simple examples in the plane having

integrality ratio 3=2, for both the retangle stabbing and the separation problem.

It is enough to do this for Separation (as a speial ase of the retangle stabbing

problem).

Lemma 1. The integrality ratio of the linear program is 3=2 on a set of examples

with arbitrarily large optimal values of the integer program.

Proof. Consider the �ve-point on�guration in Fig. 1 (left), that we all an X .

a b c

2

3

1

Fig. 1. A lass of examples with integrality ratio 3=2.

The points an be frationally separated with weights 1=2 on eah of the four

anonial lines shown in the �gure. Thus LP � 4=2 = 2. Using the trivial lower
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bound (1) (or by inspetion) gives OPT � d2

p

5e�2 = 3, and it is easy to see that

this is tight.

By repeating the X diagonally k times, suh that two adjaent X 's share one

point, we obtain a on�guration with 4k + 1 points, as in Fig. 1 (right), for k = 3.

One an think of the points as being plaed on an (in�nite) hessboard. Observe

that in eah row or olumn of the board the points have inreasing x- and y-

oordinates. Again, the points an be frationally separated with weights 1=2 on

eah of the anonial lines shown in the �gure. Thus LP � 4k=2 = 2k. To separate

the points of eah X requires three lines, and sine the points have inreasing x-

and y-oordinates in eah row or olumn, no line used to separate one X is of any

help in separating other X 's; thus OPT � 3k. It is easy to see that 3k lines are

also enough, and the lemma follows.

We now state and prove the main result of this setion. Let Z

�

LP

be the optimal

value of the LP relaxation and Z

�

IP

be the optimal value of the IP. Note that the

proof of Theorem 1 gives Z

�

IP

� 2Z

�

LP

. We have

Theorem 2. For every � > 0 there is an instane of Separation suh that Z

�

IP

�

(2� �)Z

�

LP

, where both Z

�

LP

and Z

�

IP

an be arbitrarily large.

Proof. Let � > 0. Using a probabilisti argument we show that there are instanes

suh that

Z

�

LP

� (2 +

1

2

�)q (5)

Z

�

IP

� (4�

1

2

�)q (6)

for all suÆiently large integers q. As 4�

1

2

� > (2��)(2+

1

2

�), and sine Z

�

IP

� 2Z

�

LP

,

the two inequalities above imply the theorem.

We �x a parameter k > 200=�. Let q � k be suÆiently large. Our instanes

have points in [0; q+1)�[0; q+1). There are n = dq

5=4

e pairs of points P

i

and Q

i

(so

the number of points is 2n, not n) obtained as follows: independently and uniformly

at random pik x

P

i

and y

P

i

to be multiples of 1=k in [0; q). Add 1=(2k) + 1=(3ki)

to both x

P

i

and y

P

i

. Also, for every i, independently hoose l

i

uniformly at random

from the set f1=k; 2=k; : : : ; (k�1)=kg and set x

Q

i

= x

P

i

+l

i

and y

Q

i

= y

P

i

+(1�l

i

).

It is easy to see that no two points have the same x-oordinate and no two points

have the same y-oordinate.

Now we onstrut the LP solution. Sort the 2n points by x-oordinate; they

de�ne exatly 2n�1 anonial vertial lines. If two onseutive points in the sorted

order above have x-oordinates x

0

< x

00

, the variable in the LP assoiated with

vertial line L has value �

L

= x

00

� x

0

. Similarly, using y-oordinates, we de�ne a

fration �

L

for every anonial horizontal line L.

In addition, we sometimes inrease the frations to give a valid LP solution as

desribed below. Notie that the initial values of �

L

ensure that the separating
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onstraints (3) are satis�ed for u; v if there is an i 2 f1; 2; :::; ng suh that u =

P

i

; v = Q

i

. However, for points from di�erent pairs some onstraints might be

violated. Call a pair (i; j) of indexes, 1 � i < j � n, bad if any of jjP

i

�P

j

jj

1

; jjP

i

�

Q

j

jj

1

; jjQ

i

� P

j

jj

1

; jjQ

i

� Q

j

jj

1

is less than 1. For every bad pair of indexes (i; j),

we inrease �

L

to 1 for three vertial lines. These three vertial lines are hosen

from L suh that any two horizontally onseutive points from fP

i

; Q

i

; P

j

; Q

j

g are

separated by one of the three lines, and we obtain a valid LP solution.

Thus the value of the LP solution is at most 2(q+1)+3b, where b is the number

of bad pairs of indexes. The probability of a pair being bad is at most (5 � 5)=q

2

,

as the pair an be bad only if jbx

P

i

 � bx

P

j

j � 2 and jby

P

i

 � by

P

j

j � 2, and

the random variables bx

P

i

, by

P

i

, bx

P

j

, and by

P

j

 are independent and uniformly

distributed in the set f0; 1; : : : ; q� 1g. Thus the expeted value of b satis�es E[b℄ �

n

2

25=q

2

� 50q

1=2

. By Markov's inequality, with probability at least 1=2 we have

b � 100q

1=2

and in this ase we have Z

�

LP

� 2q+2+ 3(100q

1=2

) = 2q+2+ 300

p

q.

For suÆiently large q we have 2 + 300

p

q � (�=2)q, and then Equation (5) holds

with probability at least 1=2.

Consider now the potential integral solutions (a potential integral solution is a

set of horizontal and vertial lines) of value (i.e., size) less than (4�

1

2

�)q. In fat,

we onsider only integral solutions required to separate only P

i

from Q

i

for every

i = 1; 2; : : : ; q, and show that there is a on�guration of points from our probability

spae suh that all suh potential integral solutions fail to separate at least one

suh pair (P

i

; Q

i

).

We an assume without loss of generality that the lines used by suh integral

solutions have oordinates j � (1=k), j being a positive integer, sine any line with

oordinate in the interval ((j � 1) � (1=k); j � (1=k)) an be replaed by one with

oordinate j �(1=k) and all the previously separated pairs (P

i

; Q

i

) are still separated.

Moreover we assume j � kq, as utting at a oordinate larger than q is not needed,

sine the largest possible x

P

i

or y

P

i

is (qk � 1)=k+1=(2k) + 1=(3k) < q. There are

in total at most 2kq suh lines (both vertial and horizontal), and thus the total

number of potential integer solutions of value at most 4q � 1 is at most

4q�1

X

i=0

�

2kq

i

�

� 4q(2kq)

4q�1

� (4kq)

4q

= e

4q ln(4kq)

: (7)

Let us �x now a potential integral solution of size r � (4 �

1

2

�)q. If r < q, we

add more lines (at oordinates j � (1=k) for some j's) to the solution until r � q. Let

r

1

be the number of vertial lines and r

2

be the number of horizontal lines used;

r = r

1

+ r

2

. Together with the four lines, horizontal and vertial, at oordinates 0

and q, the lines of the solution divide the [0; q℄� [0; q℄ square into retangles. Let t

be the number of retangles and note that

t � (r

1

+ 1)(r

2

+ 1) �

1

4

(r + 2)

2

; (8)

where the seond inequality follows from (r

1

+ 1) + (r

2

+ 1) = r + 2.
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Label the retangles R

1

; R

2

; :::; R

t

in some order. For i = 1; 2; : : : ; t, let �w

i

be

the (horizontal) width of R

i

and

�

h

i

be its (vertial) height. The sum of the �w

i

's

and

�

h

i

's is at least q(r�2), as every line used (exept those at oordinate q) by the

integral solution has length q and ontributes to either the �w

i

's of the retangles

above it, if the line is horizontal, or to the

�

h

i

's of the retangles to its right, if the

line is vertial.

Let w

i

= k �w

i

2 N and h

i

= k

�

h

i

2 N. Thus

t

X

i=1

(h

i

+ w

i

) = k

t

X

i=1

(

�

h

i

+ �w

i

) � k[q(r � 2)℄: (9)

We will need later the following inequality:

kq(r � 2)� (k + 1)

1

4

(r + 2)

2

� qr; (10)

whih we now prove for suÆiently large q based on the fats that k > 200=� and

q � r � (4�

1

2

�)q. Indeed, (10) is equivalent to

q(kr � 2k � r) � (k + 1)

1

4

(r + 2)

2

: (11)

As k > 4 and r � q an be assumed to be large, and using r � (4 �

1

2

�)q, it is

enough to show that

r(kr � 2k � r) � (1� �=8)(k + 1)(r + 2)

2

: (12)

On the left-hand side of (12) the oeÆient of r

2

is k � 1 > k + 1� k�=8� �=8 =

(k + 1)(1� �=8) (using k > 200=�), whih is the oeÆient of r

2

on the right-hand

side. Thus for suÆiently large r, (12) holds, implying (10).

Claim 2.1. The total number of possible plaements for the pair (P

j

; Q

j

) in whih

both P

j

and Q

j

are in the same retangle R

i

for some i 2 f1; 2; : : : ; tg is at least

P

t

i=1

(w

i

+ h

i

� k � 1).

Proof. It is enough to onsider only retangles satisfying w

i

+h

i

> k+1, and from

now one we disuss only suh retangles. Every i suh that w

i

+ h

i

> k + 1 an be

lassi�ed into exatly one of these four sets:

A: Those with 1 < w

i

� k and 1 < h

i

� k.

B: Those with w

i

> k and h

i

� k.

C: Those with w

i

� k and h

i

> k.

D: Those with w

i

> k and h

i

> k.

Note that retangles R

i

with w

i

= 1 and w

i

+ h

i

> k + 1 are in C and retangles

with h

i

= 1 and w

i

+ h

i

> k + 1 are in B.

First �x a retangle R

i

from A. Reall that w

i

+ h

i

> k + 1, 1 < w

i

� k,

and 1 < h

i

� k, i.e., the width �w

i

and height

�

h

i

of R

i

are at most 1. (Informally,

this is the \general" ase.) We laim that at least w

i

+ h

i

� k � 1 of the potential
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plaements of (P

j

; Q

j

) result in both P

j

's and Q

j

's being in R

i

. Indeed, plae P

j

in

the 1=k � 1=k square sharing the lower left orner with the lower left orner of R

i

(suh a plaement exists for every j sine 1=(2k) + 1=(3kj) < 1=k). Then Q

j

with

x

Q

j

= x

P

j

+ (w

i

� 1)=k and y

Q

j

= y

P

j

+ (k � (w

i

� 1))=k (indeed (x

Q

j

� x

P

j

) +

(y

Q

j

� y

P

j

) = 1) is also in R

i

, as h

i

� 1 � k � (w

i

� 1). Furthermore, P

j

and Q

j

are in the retangle as well if they are both translated upward by a=k, where a is

any integer in the set f1; 2; : : : ; w

i

+ h

i

� k � 2g, as a+ [k � (w

i

� 1)℄ � h

i

� 1. In

total, we have found w

i

+ h

i

� k � 1 plaements.

Consider two onseutive vertial lines of the potential integral solution at hor-

izontal distane greater than 1, and let G be the set of i 2 A[B [C [D suh that

R

i

borders both these lines. All suh retangles R

i

have the same w

i

> k, whih

we denote by w. All suh retangles are in B [D. Let Z

G

be the set of potential

plaements of (P

j

; Q

j

) with P

j

and Q

j

both inside some retangle R

i

with i 2 G

and having x

Q

j

� x

P

j

= (k � 1)=k.

We now prove that there are at least

P

i2G

(h

i

� 1)(w

i

� k+1) suh plaements

of (P

j

; Q

j

). Indeed, if the lower left orner of R

i

has oordinates (x

i

; y

i

), then for

all integers a; b satisfying 0 � a < w

i

� k + 1 and 0 � b < h

i

� 1, plaing P

j

in the

1=k � 1=k square with lower left orner at (x

i

+ a=k; y

i

+ b=k) results in P

j

's and

Q

j

's being in the retangle R

i

, as the reader an verify by adding and omparing

numbers. It follows that jZ

G

j �

P

i2G

(h

i

� 1)(w � k + 1).

Using

P

i2G

h

i

= kq, we have jZ

G

j � (w � k + 1)(kq � jGj). As this potential

solution has r � (4 �

1

2

�)q � 4q � 1 horizontal lines, jGj � 4q, and therefore

jZ

G

j � (w�k+1)q(k�4) = (w�k�1)q(k�4)+2q(k�4). Sine k > 8, we obtain

jZ

G

j � 4q(w � k � 1) + kq � (w � k � 1)jGj+

X

i2G

h

i

=

X

i2G

(w

i

+ h

i

� k � 1): (13)

Notie that eah retangle of B [D appears for some two onseutive vertial

lines at horizontal distane exeeding 1.

Consider now two onseutive horizontal lines of the potential integral solution

at vertial distane greater than 1, and let G be the set of i 2 A [B [ C [D suh

that R

i

borders both these lines. All suh retangles R

i

have the same h

i

> k, whih

we denote by h. All suh retangles are in C [D. Let Z

G

be the the set of potential

plaements of (P

j

; Q

j

) with P

j

and Q

j

both inside some retangle R

i

with i 2 G

and having y

Q

j

� y

P

j

= (k � 1)=k. Analogously to the above argument, we have

jZ

G

j �

X

i2G

(w

i

+ h

i

� k � 1): (14)

Notie that eah retangle of C[D appears for some two onseutive horizontal

lines at vertial distane exeeding 1.

For retangles in D, the two sets of plaements given above are disjoint: in the

�rst set, x

Q

j

� x

P

j

= (k � 1)=k, and in the seond, x

Q

j

� x

P

j

= 1=k.

Sine eah retangle of B appears exatly one for some onseutive vertial pair

of lines, eah retangle of C appears exatly one for some onseutive horizontal
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pair of lines, and eah retangle ofD appears exatly one in both, the total number

of plaements we have found is at least

X

i2A

(w

i

+ h

i

� k � 1) +

"

X

i2B

(w

i

+ h

i

� k � 1) +

X

i2C

(w

i

+ h

i

� k � 1) + 2

X

i2D

(w

i

+ h

i

� k � 1)

#

;

thus ompleting the proof of Claim 2.1 (sine

P

i2D

(w

i

+ h

i

� k � 1) � 0).

We ontinue with the proof of Theorem 2. From the previous laim, the total

number of plaements for the pair (P

j

; Q

j

), where both P

j

and Q

j

are in the same

retangle of the potential integral solution, is at least

t

X

i=1

(w

i

+ h

i

� k � 1) � kq(r � 2)� (k + 1)t

� kq(r � 2)� (k + 1)

�

1

4

(r + 2)

2

�

� qr � q

2

;

where the �rst inequality follows from Equation (9), the seond inequality follows

from Equation (8), the third inequality from Equation (10), and the last inequality

from our assumption that r � q.

As there are in total (kq)(kq)(k � 1) < k

3

q

2

ways to selet the oordinates of

the pair (P

j

; Q

j

), we obtain that the probability that P

j

; Q

j

are separated by the

given olletion of lines, i.e., do not fall together in the same retangle given by the

potential integral solution, is at most 1� q

2

=(k

3

q

2

) � e

�1=k

3

. Given that there are

n = dq

5=4

e pairs, we obtain that the probability that this �xed integral solution is

valid for a set of points, i.e., P

j

is separated from Q

j

for all j, is at most

(e

�1=k

3

)

n

= e

�dq

5=4

e=k

3

: (15)

Given that the total number of potential integral solutions is bounded by

e

4q ln(4kq)

(Equation (7)), for q so large that q

5=4

=k

3

> 4q ln(4kq) + 1, the prob-

ability that some pair is not separated by any potential integral solution of ost at

most (4�

1

2

�)q is stritly bigger than 1� 1=e. Hene, the probability that (6) holds

exeeds 1 � 1=e. We showed earlier that (5) holds with probability at least 1=2.

Beause (1�1=e)+1=2 > 1, it follows that there is a plaement of points satisfying

both (5) and (6).

3. Hardness Results

In this setion we prove:

Theorem 3. Separation is APX-hard, that is: assuming P 6= NP, there is an

absolute onstant �

S

> 0 suh that no polynomial-time algorithm has approximation

ratio at most 1 + �

S

.
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The deision version of Separation has been shown to be NP-omplete

5

. Our

APX-hardness redution is similar to that in

5

and is inspired by the redution

from Proposition 6.2 of

8

, whih uses the satis�ability problem 3-Sat.

The maximum 3-satis�ability problem Max-3Sat is that of �nding, in a 3CNF

Boolean formula (in whih eah lause has exatly three literals), a truth value

assignment whih satis�es the maximum number of lauses. For eah �xed k, de�ne

Max-3Sat(k) to be the restrition ofMax-3Sat to Boolean formulae in whih eah

variable ours at most k times. Theorem 4 below is immediate from Theorems 29.7,

29.11, and Corollary 29.8 in

13

.

Theorem 4.

13

Assuming P 6= NP, there is an absolute onstant �

M

> 0 suh that

no polynomial time algorithm for Max-3Sat(5) satis�es at least (1��

M

)m lauses

for every formula � with m lauses whih is satis�able.

To prove the approximation hardness stated in Theorem 3, we use the following

redution from Max-3Sat(k) to Separation. The input to 3-Sat is a Boolean

formula � in 3CNF form. Let � have n variables and m lauses. The redution

onstruts a set P

�

of 7n + 11m + 2 points in the plane, no two of whih have

the same x- or y-oordinate. The onstrution is illustrated in Figure 2 for � =

(t + y + z)(x + y + z)(x + y + z). Here n = 4 and m = 3; the three lauses are

denoted C

1

, C

2

, C

3

.

There are three types of points: variable points, lause points and ontrol points.

The ontrol points ome in pairs, have inreasing y-oordinates when sanned from

left to right, and are denoted q

1

; : : : ; q

4n+2m+2

. For 1 � i � n+1, the pair q

2i�1

; q

2i

\fores" a horizontal line (whih is more useful than the vertial line separating the

pair), and for n + 2 � i � 2n +m + 1, the pair q

2i�1

; q

2i

\fores" a vertial line.

We all these lines grid lines, and we denote by h the lowest horizontal grid line.

There are three variable points for eah variable, and nine lause points for eah

lause. The nine points of eah lause C are made up of six points that appear in

the rows of the variables that appear in C (above the horizontal line h), and three

points below h. We have a pair of points in the grid ell given by eah variable-

lause pair (x;C), where the variable x appears in C; thus six points per lause

above line h. The three points of eah variable require two separating lines. Every

optimal solution an be assumed to use exatly one vertial line, as one vertial

line also separates two ontrol points and a seond one is not needed. The hoie

of the higher (resp., lower) horizontal line orresponds to setting the variable to

true (resp., false). If x appears unnegated in C, the pair of points is separated by

the higher horizontal line, whereas if x appears negated in C, the pair of points is

separated by the lower horizontal line.

The �rst 4n + 4 ontrol points form spine 1, and the 3m lause points below

h form spine 2. The segments q

2i+1

q

2i+2

, for i = 0; : : : ; 2n +m, are alled ontrol

edges. The segments q

2i

q

2i+1

, for i = 1; : : : ; n, and i = n+ 2; : : : ; 2n+ 1, are alled

variable edges. The segments q

2i

q

2i+1

, for i = 2n+ 2; : : : ; 2n+m, are alled lause

edges. We denote by a; b; ; d the four anonial vertial lines whih ould be used
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x

t

z

y

C1 C2 C3

h

20

24
q

q

q1

db  ca

Fig. 2. The point set P

�

orresponding to � = (t + y + z)(x + y + z)(x + y + z). The solution

(i.e., set of separating lines) orresponding to the truth assignment t = 1; x = 1; y = 0; z = 1

is shown; the grid lines are solid, while the other separating lines are dashed. (The olors of the

points only have meaning when disussing the olored version of the separation problem at the

end of Setion 3.)

to separate the three pairs and the triplet of a lause. They are shown in the �gure

for the lause C

2

.

Clearly, onstruting P

�

an be aomplished in polynomial time. We �rst de-

termine the number of lines used when the input Boolean formula is satis�able.

Claim 3.1. If � is satis�able then P

�

an be separated using 4n+ 3m+ 2 lines.

Proof. Let � be an assignment whih satis�es �. Use the (n+1)+(n+1)+(m�1) =

2n+m+1 grid lines to separate the pairs of ontrol points q

2i�1

; q

2i

; add a vertial

line to separate q

2n+2

q

2n+3

. We have thus used 2n+m+2 lines so far. If a variable is

set true by � , use the higher of the two horizontal lines for that variable; otherwise

use the lower horizontal line. For eah variable, add a vertial line whih separates

the remaining pair of points. These lines also ut all variable edges. Thus, using 2n

more lines, all variable points are separated; this yields 4n+m+ 2 lines so far.

Note now that for eah lause, at least one of the three pairs of points above
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h must be already separated, otherwise by onstrution, all literals in that lause

would be set to false and the lause would not be satis�ed, a ontradition. One an

now hek that the remaining two pairs of points above h and the three points below

h an be separated using exatly two vertial lines per lause (at least two suh

lines are neessary to separate the three points below h). Overall, 4n+m+2+2m=

4n+ 3m+ 2 lines have been used.

Note that separating the points of spine 1 requires at least 4n+3 lines. Similarly,

at least 3m�1 lines are neessary to separate the points of spine 2. Moreover, none

of these lines an be shared, so at least 4n+3m+2 lines are neessary to separate

P

�

. Denote by p = 4n+ 3m + 2 the exat number of lines needed to separate P

�

,

when � is satis�able.

Assume that there exists a polynomial-time approximation algorithm for Sepa-

ration with performane ratio at most 1+� for some � > 0. The assumed algorithm

gives a solution (set of lines) S having at most (1 + �)p lines. We �rst transform S

to S

0

without any inrease in ost, where S

0

is a solution that ful�lls the following

two onditions: (i) S

0

ontains the grid lines, and (ii) S

0

uses exatly two vertial

lines per lause (i.e., for separating its nine lause points).

To ahieve (i), swith any of the vertial lines utting the �rst n+1 ontrol edges

to horizontal ones, and any of the horizontal lines utting the other n+m ontrol

edges to vertial ones; note that the result is still a solution (i.e., separates the

points). Similarly, swith any of the vertial lines utting the �rst n variable edges

to horizontal ones, and any of the horizontal lines utting the remaining variable

edges to vertial ones; note that the result is still a solution in whih the triplet of

eah variable is separated by at least one horizontal and at least one vertial line.

We further transform the solution so as to satisfy (ii). We observe that at most

�p lauses are separated vertially by three vertial lines (while eah other uses

exatly two vertial lines, the minimum required), otherwise one ould separate P

�

with fewer than p lines, a ontradition. For eah suh lause, swith one of the

three vertial lines to horizontal, so that the resulting three lines still separate the

nine points of the lause. There are four ases, two of whih are symmetri. If the

three lines are a; b; , swith b; if the three lines are a; b; d, swith b, et.

We all S

0

the resulting solution. Note that at most �p variables are ut twie

horizontally, as p lines are needed just to separate the points of the two spines, and

a seond horizontal line utting a variable does not help with separating the points

of the spines. We now onstrut a truth value assignment � : for eah variable, if it is

ut horizontally by the higher line, set it to true, if it is ut horizontally by the lower

line, set it to false, and if it is ut horizontally by two lines set it arbitrarily (say, to

true). The at-most-�p variables that are ut twie horizontally appear in at most 5�p

lauses (f. the de�nition of Max-3Sat(5)). Let C be any of the remaining lauses.

We laim that � makes C true. One of the three pairs of points of C above h must

be separated by a horizontal line (otherwise only two vertial lines would separate

the three pairs above h, a ontradition). By onstrution, the literal orresponding
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to the pair of points that is ut horizontally is true, hene C is true.

Therefore, the number of satis�ed lauses is at leastm�5�p. Sine we an assume

that m � n=3 + 1, we have m � 5�p � m � 5�(12m+ 3m) = (1 � 75�)m. Setting

�

M

= 75�, the result follows from Theorem 4. That is, we an take �

S

= �

M

=75,

and the proof of Theorem 3 is omplete.

We an use the same redution to show that the separation problem with olored

points is APX-hard. The points are olored as in Figure 2. The 2-oloring used has

the property that all the edges spei�ed in the above proof are bihromati. We

thus have

Corollary 1. The separation problem in the plane with olored points is APX-hard.

4. Remarks

4.1. A Dual Problem

Our overing LP for the separation problem suggests the following dual edge paking

problem. Given a (non-neessarily planar) graph G = (V;E) with a straight-line

embedding in the plane, �nd a maximum set of independent edges of G, where two

edges are said to be independent if they annot be stabbed by a ommon vertial

or horizontal line. A 4-approximation algorithm of Bar-Yehuda et al.

2

for �nding a

maximum independent set of retangles in the plane|where two retangles are said

to be independent if they annot be stabbed by a ommon vertial or horizontal

line|gives a 4-approximation for this problem, by onsidering the set of retangles

fR

uv

j uv 2 Eg. They use rounding of the dual of the LP, and thus their result

ombined with

7

shows that the optimal retangle paking and the optimal retangle

stabbing are within a onstant fator of eah other.

Even the simple ase when E(G) is the edge set of a onvex polygon P does

not seem trivial. A 1=2-approximation algorithm is the following: divide P into its

upper and lower hains, U and L, respetively. Find an optimal solution for both

U and L, and hoose the one with the larger number of edges. Finding an optimal

solution for U (or L) amounts to �nding a maximal independent set of intervals on

a line, and it is thus solvable in polynomial time. It is easy to see that the result is

at least half of the optimal.

4.2. Higher Dimensions

Following

7

, it is now straightforward to observe that both our algorithms yield

a d-approximation for the separation problem in R

d

. This holds for the olored

version as well. One has to replae 1=2 with 1=d in the orresponding plaes. In

the �rst phase, after solving the linear program, edges are lassi�ed into d types,

depending on the oordinate for whih the sum of frational weights is at least 1=d.

In the seond phase, the �rst algorithm solves d linear programs (as in

7

), or solves d

interval stabbing problems on the line (as in Setion 2). The seond algorithm yles

through all oordinates and, for eah oordinate, goes through the hyperplanes in
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order, and hooses a hyperplane if and only if the running sum interval for that

hyperplane inludes a multiple of 1=d.

4.3. Conluding Remarks

Several interesting questions regarding the separation problem in the plane remain,

suh as: Is it possible to improve the approximation ratio? Do speial ases, e.g.,

points in onvex position, admit better approximation ratios, or even exat solu-

tions? One an potentially strengthen the LP by adding onstraints. For example, a

\stronger" LP ould also require that eah triplet of points is frationally separated

by at least 2. However, our probabilisti onstrution from Theorem 2 has also a ra-

tio of at least 2�� for the stronger LP. In the proof, one must de�ne the \bad" pairs

of indexes to be those with any of jjP

i

� P

j

jj

1

; jjP

i

�Q

j

jj

1

; jjQ

i

� P

j

jj

1

; jjQ

i

�Q

j

jj

1

less than 2. This will inrease only by a onstant fator the expeted number of

bad pairs, and the proof with the adjusted onstants an be used.
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