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ABSTRACT 

The Knowledge Collective (TKC) is a multi-layer, multi-agent framework for 

information reuse in an intelligent knowledge base that supports a collection of agents 

called MicroDroids, which provide information management capabilities through a 

variety of interfaces for experts, human users, and software components.  This 

information is stored in a variety of internal structures (e.g., Java objects, rules, database 

structures).  The main concept is that information is stored in a format that is natural to 

the type of information being maintained as data, metadata, ontologies, concept maps, 

lexicons, rules.  The Knowledge Collective will make ontology-based information 

accessible to many end users, maintainable by domain experts and reusable by many 

users across many applications without their needing to know how or where the 

information is stored.  The Knowledge Collective’s first use is in version 4 of CIRCSIM-

Tutor, an Intelligent Tutoring System developed by Martha Evens and her group at the 

Illinois Institute of Technology in Chicago, IL. 

What is unique about TKC is in the combination of technologies for problem 

solving and the use of a multi-agent system where each MicroDroid manages its own 

information and works with other MicroDroids to solve specific problems.  Each 

MicroDroid manages its information using an Ontology Inference Engine (ONTIE) that 

is capable of combining all of its internal information structures for the purpose of access, 

maintenance and problem solving especially involving Qualitative Reasoning.    
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CHAPTER 1 

INTRODUCTION 

This dissertation investigates the feasibility of a new kind of knowledge base for 

CIRCSIM-Tutor and other Intelligent Tutoring Systems, capable of supporting 

Qualitative Reasoning and tutoring dialogue for a whole family of tutorials involving the 

same subject area.  Currently CIRCSIM, CIRCSIM-Tutor, and the Concept Map tutorials 

all have separate handcrafted knowledge bases containing the same basic knowledge 

about the cardiovascular system.  They all required a large-scale effort by the domain 

expert, Joel Michael, and a lot of programming.  The new knowledge base, The 

Knowledge Collective (TKC), is a framework that supports a collection of agents called 

MicroDroids, which provide information management capabilities through a variety of 

interfaces for experts, human users, and software components.  This information is stored 

in a variety of internal structures (e.g., Java objects, rules, database structures).  The main 

idea is that information is stored in a format that is natural to the type of information 

being maintained (e.g., data, metadata, ontologies, concept maps, lexicons, rules). 

The uniqueness of TKC is in the combination of technologies for problem solving 

and the use of a multi-agent system where each MicroDroid manages its own information 

and works with other MicroDroids to solve specific problems.  Each MicroDroid 

manages its information using an Ontology Inference Engine (ONTIE) that is capable of 

combining all of its internal information structures for the purpose of access, maintenance 

and problem solving especially involving Qualitative Reasoning.    

In the past, we separated data from programming logic in the form of relational 

databases for ease of maintenance and reuse.  Today we are separating business logic 
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from programming logic in the form of business rules for the same purpose.  Now it is 

time to separate information semantics from programming logic in the form of ontologies 

so that it can be easily maintained and reused.  This is the main purpose of TKC.  

One of the major concepts of TKC is that each MicroDroid is capable of solving 

problems in a small area of expertise like Baroreceptor Reflex physiology or curriculum 

planning.  Together the whole community of MicroDroids in TKC can emulate the 

human intelligence needed to handle a complex situation like tutoring first year medical 

students as they solve problems about the Baroreceptor Reflex. 

 

1.1 Motivational Background 

An important consideration in developing an Intelligent Knowledge Base is to 

make the information usable in an industry application.  All major corporations collect 

large amounts of data.  Often the same data or at least data about the same topic areas is 

collected in many different systems.  Let us start with one Information Technology 

system.  When the system was initially built, the developers and the business people 

knew why the system was built and what data was needed to improve the business 

process.  However, time goes on and people move.  New applications need to use that 

data.  The data is still there, but unless it was unusually well documented, no one really 

understands what the data means.  The system can still produce the reports that people 

developed the system to produce, but times and markets change, while our data collection 

methods stay the same. This all comes down to Knowledge Management. 

   This is one of the major reasons why corporations build data warehouses.  They 

are trying to recapture the information that the data represents.  In addition, there is 
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probably a lot of hidden information in the data that could be used today if it were 

known.  Over time, a lot of history is captured including important user trends.  If the 

data warehouse is to be the arbiter of truth and the confidence of the end user is to be 

gained, then we have to provide an understanding of the data to give the end user that 

confidence.  In this case, the term “data warehouse” is used generically.  It does not 

matter whether or not we are talking about an operational data store, a historical data 

warehouse, or a data mart. 

   One of the major concepts of a data warehouse is to take data, process it into 

information and deliver it to the point of decision-making.  By making this information 

usable for the end user, the information is then analyzed and turned into knowledge that 

then becomes Usable Corporate Knowledge (UCK) and a corporate asset.  However, is it 

still a data warehouse or has it become a knowledge base?  My definition of the 

difference between the two is intelligence.  Intelligence is needed in a knowledge base 

because different types of data need different data structures (e.g., rules, cases, models, 

frames, logic, etc.).  Standard relational technology cannot handle the complexity of a 

knowledge base.  SQL by itself is not rich enough or flexible enough to deal with 

anything but the standard relational structure (Mundy, 2002).  We need a way to access 

information without normal SQL, a common interface or API.  The concept of 

MicroDroids in The Knowledge Collective makes this possible. 

   Up to this point, we have been talking about corporate data for applications.  

How about when we get beyond business information and reach the other end of the 

spectrum in areas like medical information processing?  If we want to do intelligent 

decision support, diagnosis or medical tutoring, we need to go beyond the standard 
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relational data structures of a data warehouse. We are now into the realm of knowledge 

bases, but the knowledge base still has to contain intelligence so that it can function as an 

asset. It takes intelligence to have usable knowledge. This intelligence comes from the 

use of complex data structures, metadata and semantic understanding of the information. 

   The same problems can afflict academic projects over time.   For example, the 

medical knowledge base underlying the CIRCSIM-Tutor project at the Illinois Institute of 

Illinois has changed slowly over time and now Martha Evens and her group want to use it 

to support rule-based inference instead of frame-based inference.  We want to abstract 

that data, to define our own metadata, so that we can write new tutors in other areas of 

physiology.  This project deals with tutoring first year medical students in the area of the 

Baroreceptor Reflex, which is the part of the cardiovascular system that keeps the blood 

pressure fairly constant (Cho, 2000; Freedman, 1996; Khuwaja, 1994; Mills, 2001).  

Currently Martha Evens and her group are starting to work on a new project called 

GASP-Tutor to help students understand the two interlocking negative feedback systems 

that control breathing in the human body.  By using TKC methodology, knowledge from 

the CIRCSIM-Tutor project can be re-used in this project. 

We need to take this a step further.  When you have complex data structures (e.g., 

class models, concept maps, process flows, flow paths, lexicons, etc.) metadata is only 

the beginning.  Understanding the many different kinds of metadata and information 

structures in a single knowledge base takes a great deal of diverse intelligence.  An end 

user of the knowledge may spend more time figuring it out than using it.  By adding 

intelligent agents to the knowledge base, you can lift the burden of understanding the 

information about the data internals from the end users giving them the freedom to use 
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the knowledge for solving their problems. 

Each MicroDroid needs to understand a very small specific area of domain 

information.  The MicroDroids understand the metadata and internal information 

structures, so that they can insert new information, retrieve information and use that 

information for reasoning and making inferences.  The use of multiple agents as part of 

the knowledge base framework gives it the intelligence that it needs to help the end user 

do their needed tasks. 

What this all boils down to is making computers more useful.  Can we really 

make them understand human users and carry out a conversation in applications like 

Intelligent Tutoring Systems (ITS)? Can they teach students about concepts in a complex 

domain like medicine?  Human tutors can teach another person about a specific domain 

because they understand the domain that they are teaching.  A professor of physiology 

can teach a first year medical student about the Baroreceptor Reflex because the 

professor is an expert on the topic.  That same professor would probably have a hard time 

tutoring students about finance or electrical engineering.  It would take different 

professors, experts in these domains, to tutor a student about these topics.   

So how do we expect a dumb computer to tutor medical students about different 

medical domains? In fact, how can a computer even understand how to be a tutor in the 

first place? The computer has to understand the domain it wants to tutor the student in 

and it has to understand how to be a tutor in general. 

The computer can only understand a domain in terms of the model it is given 

(Yusko, 1994; Bredeweg and Forbus, 2003; Falkenhainer and Forbus, 1988).  That model 

is an ontology.  In fact, there are many models or ontologies involved in being a tutor 
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(Khuwaja and Patel, 1996).  However, it is not that simple. Just as a university needs 

many professors to tutor students in different domains, this computer system will need 

many domain experts using many different kinds of models.   

How can we build a system that meets the requirements to tutor a student in one 

domain area like the Baroreceptor Reflex? One large ontology will not meet the needs.  It 

might work, but it would be very difficult to maintain because we are talking about many 

areas of expertise combined into one.  This process is much more feasible with many 

smaller ontologies that cover the areas of expertise that are needed.  This advantage has 

its own built-in cost: how do we make these ontologies work together and, more 

important, how do we maintain them in a consistent fashion? 

What is needed is a university inside the computer system.  All the members of 

this group of expert agents need to have their own ontologies and work together as a team 

to tutor students.  The Knowledge Collective (TKC) is the realization of this vision.  It is 

a multi-layered, multi-agent framework for developing and maintaining intelligent 

knowledge bases that can be used in areas like Intelligent Tutoring Systems (ITS) such as 

CIRCSIM-Tutor (Michael et al., 2003; Evens and Michael, in press).  It is made up of 

many intelligent agents called MicroDroids that are capable of working together as a 

team to solve problems in an ITS. This is the team or virtual university that I am 

developing at the Illinois Institute of Technology to be used by the next generation of 

CIRCSIM-Tutor and by other medical tutoring systems in the future.  TKC is the 

framework, or foundation, that will allow many smaller maintainable ontologies to be 

used together to solve problems in areas like Qualitative Reasoning across many domains 

in an ITS.  In fact, TKC is developed around the concept of ontologies and is controlled 
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by ontologies and their inference engines.   

Why pursue this line of research to develop TKC? What motivated it and what 

will be gained?  The major idea is to develop a framework for developing intelligent 

knowledge bases with the following capabilities: 

1. Deal with complex informational structures in a natural way 

2. Reuse data, information, and knowledge across many applications 

3. Allow domain experts to  maintain their specific structural information in a way 

that makes sense to them 

 

1.1.1 Deal with Complex Informational Structures.  Intelligent knowledge bases need 

to support many information structures.   The four major types are: 

• Data 

• Metadata 

• Ontologies 

• Reasoning Logic (i.e., Rules) 

All of these structures need to be stored in a way that is natural and that enables 

them to be accessed by applications and users.  All types of information need to be 

brought to bear to solve specific problems.  Complex information should not be forced 

into a specific structure for ease of storage and retrieval.  The way it is structured is part 

of the information itself.  When you restructure information, you may actually lose some 
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of that information.  Data and metadata should be stored in a normal relational database 

for ease of manipulation, maintenance, and access.  Ontologies should be stored as 

objects with relationships like any model.  Reasoning should be stored as rules in the 

system.  All of these still have to work together and be maintained together.  

No matter how information is stored, users, developers, domain experts and 

applications should not have to understand how or where the information is stored.  There 

should not be a need for an Application Programming Interface (API).  A mechanism 

such as an agent knows how the information is stored.  This is what makes a knowledge 

base intelligent.  This problem is a major reason for doing TKC research. 

 

1.1.2 Reuse of Data, Information, and Knowledge.  Data is the basic informational 

building block, containing the underlying facts.  It is processed into usable information.  

This information is then analyzed into knowledge that can be used by the end user for 

decision-making. Throughout this paper, the word “information” will be used as a generic 

term denoting any of these three levels. 

Information needs to be reusable by many applications and users.  An example is 

the tutoring system CIRCSIM-Tutor developed at the Illinois Institute of Technology 

(IIT).  Its knowledge base has been rebuilt 7 times in the past 15 years (Evens and 

Michael, in press, Chapter 15).  Now Martha Evens and her group are developing a new 

tutoring system called GASP-Tutor that will use a good percentage of the same 

information from CIRCSIM-Tutor.  Under the current circumstances, a new knowledge 

base will have to be built.  This need for information reuse was the major reason for 

starting TKC research now. 
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To reuse information, many people are talking about how to develop new API 

standards, special protocols and structural standards so that applications and users can 

make use of information from many sources especially in the area of ontologies.  Noy, et 

al. (2004, p. 78) describe the problem in biomedicine as follows: 

It is becoming impossible to contemplate successful biomedical research without 
canonical data structures.  The biomedical computation community finds itself 
grappling with hundreds of different knowledge bases, metadata formats, and 
database schemas. 

 
Even though this is only one discipline, the same problem is happening in many 

other domains.  Noy et al. also talk about the solution being a “virtual ontology 

repository” with the following features (Noy et al., 2004, p. 78): 

A researcher faced with a task that requires a knowledge resource should be able 
to access a virtual repository, evaluate its content, understand if any of the 
resources are relevant to the task, and align the resources to his or her own 
resources and data. 

 
This major problem needs to be solved if we are going to achieve reuse of 

information capabilities.  I do not think that the solution is to develop yet another set of 

standards.  I am looking at TKC to help solve this problem. 

 

1.1.3 Give Domain Experts the Ability to Maintain Their Information.  

Maintainability is a major factor in any knowledge base.  It is very difficult for a domain 

expert to maintain large ontologies or information in a combination of information 
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storage structures.  The capabilities must exist for the domain experts to maintain their 

domain specific information without having to understand how the information is 

structured.  The need to provide this type of maintainability is one of the major features 

of TKC. 

 

1.2 Significance 

The problem is devising a methodology for reuse of information among different 

systems that is maintainable and scalable.  What makes this project unique is the 

combination of many technologies that are brought to bear on the problem.  Each 

technology in and of itself is not unique, but the combination is unique.  It is also unique 

to have many small ontologies working together instead of a single large ontology in a 

multi-agent system.  Each MicroDroid is unique because of the types of information that 

they can bring to bear to solve a problem in a specific domain: data, metadata, ontologies 

and an Ontology Inference Engine.  It is also unique that the ontologies are stored as Java 

objects with a production rule based inference engine used to reason about them.   

The Knowledge Collective approach allows information, mainly ontological 

information, from many areas of expertise to be used together to solve problems without 

standardized ontology languages and APIs.  The use of the multi-agent capability with 

the Ontology Inference Engine makes this possible. 
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1.3 Research Questions  

This is a list of the specific research questions that have been answered in this 

research: 

• Can TKC solve the information reuse problem?  

• Should the Task Layer in TKC be used or eliminated, i.e., would this additional 

indirection make the system too slow and therefore not usable? If this layer stays, 

then is each MicroDroid truly independent and autonomous?  

• Can a database actually be imbedded into a MicroDroid? 

• What are MicroDroids really? Are they specialized agents or are they a 

community of nested agents? Do they get instantiated as needed and then go away 

after they are finished? 

• What are the proper communication needs of the MicroDroids?  

• What metadata will be needed and how will the MicroDroids use it? 

• How will the individual MicroDroids and the communications between them use 

the individual ontologies? What are the types of ontologies that will be needed 

(e.g., artifact or object, process flows, flow diagrams, concept maps, etc.)? How 

will they work together? Will each MicroDroid have one or many ontologies?   

• How will the ontologies work?  Will an Ontology Inference Engine solve the 

Qualitative Reasoning (QR) problem? 
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• Can the needed parsing for the natural language interface be accomplished with a 

commercial generic parsing engine?  

• Can TKC be implemented using existing tools, commercial or open source? 

 

1.4 Domain 

The ability of many users to reuse information across many applications is 

important for the success of an intelligent knowledge base.  A good example is the work 

that is being done with Intelligent Tutoring Systems (ITS) developed by Martha Evens 

and her group at the Illinois Institute of Technology (IIT) in Chicago, IL.  The knowledge 

base described in this paper is the seventh in a series of knowledge bases that have been 

built from scratch to support the CIRCSIM-Tutor system (Evens and Michael, in press).  

Each time Martha Evens and her group have interviewed their experts they have spent 

much time reprogramming the information in a form that the experts cannot read.  They 

are now starting to build two new tutorials that cover much of the same material – one is 

a concept map tutorial for the Baroreceptor Reflex; the other is an intelligent tutoring 

system called GASP-Tutor.  It is clearly time to stop tearing up knowledge bases and 

building new ones. Instead, it is time to plan in advance to make the knowledge reusable.  

Instead of starting the knowledge engineering process all over again, they want to design 

a knowledge base to serve all of these different systems and to create a tool that allows 

the expert to define and read what is in the knowledge base.  I repeat this history of the 

dead knowledge bases developed in the past, in the hope of avoiding reliving it. 

CIRCSIM-Tutor is an intelligent tutoring system that carries on a natural 

language dialogue with the goal of helping first-year medical students learn how to solve 
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problems involving the Baroreceptor Reflex, the negative reflex system that acts to 

maintain blood pressure in the human body.  The CIRCSIM-Tutor project grew out of an 

earlier computer-aided instruction system called CIRCSIM.  It presents students with a 

perturbation to the blood pressure, asks them for predictions about how this situation will 

affect seven important physiological parameters, analyzes the patterns of errors in those 

predictions, and reels out one of 243 paragraphs of canned remedial text stored in the 

system (Rovick and Michael, 1986).  CIRCSIM was and is a big success, but its builders, 

who are Professors of Physiology at Rush Medical College, thought that their students 

could learn even more from a system that could ask the students to provide explanations, 

understand their answers, and comment on them.   Martha Evens and her group set out to 

build a system capable of carrying on a natural dialogue with the users.   

The first version calculated the predictions for the four problem situations 

correctly, but it did not solve those problems in the logical order that Michael and Rovick 

wanted their students to use. The second version changed some of the rules to produce 

the answers in a logical order, but as Yuemei Zhang (Zhang, 1991; Zhang et al., 1987, 

1990), who was writing the Discourse Generation portion of the system, immediately 

pointed out, the knowledge base still contained nothing that the system could use to guide 

the students to solve the problem.  The third version contained a solution tree for each of 

the four problems then implemented, which provided a trace of the ideal solution for that 

problem.  Zhang agreed that this was a big improvement and she started to produce code 

to explicate the trace, but she argued that this version was still not enough, because it did 

not provide support for discussing the steps in the problem-solving algorithm with the 

student or for generating explanations.   
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Nakhoon Kim (Kim, 1989) built the fourth version of the CIRCSIM-Tutor 

problem solver using a knowledge base that consisted of a hierarchical set of Prolog rules 

that described the problem-solving algorithms and used them to solve problems.    At this 

point, he declared victory and integrated the pieces of the prototype system so that it 

could request predictions, analyze the predictions entered by the student, build an overlay 

model of the student’s knowledge of the Baroreceptor Reflex, determine a set of topics to 

be taught, and plan how to teach them.  Kim’s Prolog Prototype (Kim et al., 1989) did not 

attempt to carry out a natural language dialogue with the student, but it performed all the 

other steps in the tutoring process and a great deal was learned from building 

it, especially about knowledge representation (Kim, 1989). 

In 1990-1991 Chong Woo (Woo, 1991; Woo et al., 1991) constructed a complete 

version of CIRCSIM-Tutor in Lisp and Zhang seized the chance to build the knowledge 

base of her dreams.  The fifth version of the knowledge base is a collection of frames, 

which, with some additional problems added to the system, has powered the system for 

the last ten years.   After being tested with large classes of students at Rush, it is now in 

routine use.  Woo and Zhang built a frame for every phase, every parameter, every causal 

relationship, as well as for other concepts that the students need to learn in order to 

understand negative feedback systems like “neural variable” and “regulated parameter.”  

At Zhang’s insistence, some anatomy frames were added as well.  The experts did not 

think that anatomical concepts belonged in a physiology knowledge base, but Zhang 

pointed out many places where anatomy was mentioned in the human tutoring transcripts. 

The experts agreed that it could include anatomical references so long as their use was 

limited to understanding them in student inputs and responding to those inputs. The code 
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for the problem-solving algorithms was added to the frames as well, so that the Discourse 

Generator could discuss the algorithms with the student.  Fortunately, Lisp code can also 

serve as Lisp data. 

Ramzan Ali Khuwaja (Khuwaja, 1994; Khuwaja et al., 1992, 1994), to support his 

multi-level model of the domain knowledge base, built the sixth version of the knowledge 

base in CLOS (the Common Lisp Object System).  He carried out a detailed analysis of 

the domain knowledge in the transcripts and discovered that the experts organized it in 

three levels.  The top level corresponds to the concept map that they hoped the students 

would internalize and utilize in problem solving.  The middle level contains additional 

concepts that they used in devising hints and giving explanations.  The bottom level 

contains many other concepts that were sometimes mentioned by students but not used by 

the expert tutors unless a student alluded to them first. Perhaps because CLOS was new 

and Khuwaja was a new CLOS user, his module suffered from performance problems.  

Woo and Zhang’s frame knowledge base continues to be used but the other two levels 

have had frames added. 

The current ideas about the knowledge base owes a great deal to the work of Reva 

Freedman (Freedman, 1996; Freedman and Evens, 1997; Freedman et al., 1998), who 

argued that much of the knowledge could and should be written in rule form. The result, 

she claimed, would be much easier for the experts to read and update. The experts never 

liked the frames.  She demonstrated the feasibility of her approach by actually producing 

a large number of these rules in her dissertation. 

Two new tutoring systems are now in the planning stage, another dialogue-based 

Intelligent Tutoring System called GASP-Tutor and a concept map tutorial.  The focus of 
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GASP-Tutor centers around two interacting negative reflex systems that controls 

ventilation in the human body.  Analysis of human tutoring transcripts shows a large 

overlap in language and reasoning between GASP-Tutor and CIRCSIM-Tutor.  The 

concept map tutorial covers the same domain.  If all three systems could use the new 

CIRCSIM-Tutor knowledge base, it would save a tremendous amount of time and effort 

both for the developers and for the experts. 

Systems like the ones discussed above require models of the domain, models of 

tutoring, student models, and language models.  These multiple models require the 

system to organize and store many kinds of knowledge.  All these models need to be 

stored as individual ontologies so that: 

• Many users and domain experts can access the information in the ontologies 

• Domain (including Pedagogy) experts can maintain their specific ontologies 

• The ontologies can be reused by many end users and across many applications 

• The information from multiple ontologies can be used together to solve problems 

(e.g., using Qualitative Reasoning) 

 

1.5 Overview 

I have developed the chapters as building blocks.  Chapter 2, Background, 

explains the existing literature that was researched.  The basis of the information and its 

semantics are explained in Chapter 3, Ontologies.  The core idea that makes the whole 

TKC concept work is discussed in Chapter 4, Ontology Inference Engine.   How all the 

information is controlled by agents is explained in Chapter 5, MicroDroids.  How the 
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MicroDroids work together as a team is described in Chapter 6, The Knowledge 

Collective.   The research is summarized in Chapter 7, Conclusion. 
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CHAPTER 2 

BACKGROUND 

The Knowledge Collective (TKC) is a framework for an intelligent knowledge 

base that uses many different technologies.  It is not any one technology that makes this 

project unique, but the combination of these technologies for the purpose of reuse that 

makes it unique.  The current relevant technologies are divided into the following three 

areas of research: Multi-Agent Systems (MAS), ontologies and reasoning, which are 

explained in the following three sections.  The focus of this thesis is on how these varied 

approaches to the knowledge and reasoning support the use and management of 

information.  This research is not about how to develop a better Multi-Agent System, 

TKC just uses specialized agents called MicroDroids to manage information.  A 

MicroDroid is just an intelligent container to manage specific domain information.  

Ontologies are a way of storing the information and Ontology Inference Engines are for 

reasoning about the information.  These three technologies working together in 

combination make this work unique. 

 

2.1 Multi-Agent Systems 

As in any agent-based system, ontologies are very important to TKC.  Agents 

must have an understanding of the environment in which they are working.  If an agent is 

to be the keeper of specific knowledge, then the agent needs to know how the semantics 

of the knowledge is structured.  The semantics of the knowledge is the ontology of the 

knowledge. This is the model that is given to the computer to understand the knowledge 

(Yusko, 1994). This model is not just for the agents to communicate with each other. In 
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addition, the model’s information is used for reasoning about a specific problem in a 

specific domain. 

The Foundation for Intelligent Agents (FIPA) has a specification for an ontology 

service (FIPA, 2002b).  This specification assumes that the system has an ontology 

server.  It talks about using ontology agents to make the ontology available to all agents 

in the system (FIPA, 2002b, pp. 1-8). 

The concept of an ontology server with ontology agents does not properly fit The 

Knowledge Collective framework.  Each time a user connects to TKC, a session is set up.  

This session will last until the end user has completed the desired tasks.  An important 

feature of The Knowledge Collective is that each user session will dynamically build its 

own ontology.  Each user session can have a different ontology depending on what the 

user is trying to accomplish. 

Wooldridge (2002, p. 180) argues that ontologies are important because agents 

use ontologies to specify terms about a domain so that the agents can communicate with 

each other.  The TKC approach differs in the fact that a MicroDroid manages information 

for a human end user, and does Qualitative Reasoning about the ontologies by using an 

Ontology Inference Engine. The MicroDroids allow the management of the information 

by a domain expert and the use of it by an end user. 

For Ferber (1999, p. 31) the goal of using Multi-Agent Systems is problem 

solving.  He defines problem solving as the ability to accomplish tasks that are useful to 

human beings.  This is the main purpose of MicroDroids.  However, the major theme of 

Ferber’s book is how agents in a Multi-Agent System interact with each other.  He does 

not consider my area of research, which involves information systems using ontologies 
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and Ontology Inference Engines.  I am just using agents as managers of information. 

There seems to be a lot of work in the area of software agents, both for internal 

programming use and for the internet.  Two good texts on software agents are (Bradshaw, 

1997) and (Murch and Johnson, 1999).   

 

2.2 Ontologies   

Many ontologies are stored physically in frames (FIPA, 2002b p.16).  The thought 

was originally to store TKC ontologies in frames (Yusko, 1984).  However, reasoning 

about frame-based ontologies in agent systems is usually done using predicate logic 

expressed in Prolog type rules. TKC will use production rules of various kinds as an 

Ontology Inference Engine to accomplish Qualitative Reasoning about specific domains.  

For this reason, ontologies will be maintained as UML (Unified Modeling Language) 

models, which are converted to Java classes.  I consider these issues in more detail in the 

discussion of the Ontology Inference Engine in Chapter 4.  

Table 2.1 compares some of the other major system ontology architectures and 

Ontology Inference Engines to the architecture of TKC.  Two good references that have a 

good overview of ontologies are (Fensel, 2004) and (Gomez-Perez et al., 2004).  This is a 

very small sample.  There are many ontology languages and Ontology Inference Engines, 

which makes it very hard to mix and match ontology-based information from multiple 

sources.  TKC helps solve this problem with its MicroDroid concept. 
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Table 2.1. Ontology System Comparison 
 
 

System Ontology 
Architecture 

Ontology Inference 
Engine 

Reference 

TKC Object Oriented 
(Java Classes) 

Production Rule 
Engine (ILOG 
JRules) 

 

OIL Frame-Based Description Logic (Fensel et al., 2005) 
Ontolingua Frame-Based First-Order Logic Farquhar et al., 

1997) 
Protégé Frame-Based Algernon (Logic-

Based) 
(Knublauch, 2005) 
(Hewett, 2005) 

 

2.3 Reasoning 

There are two main areas that were researched in the area of reasoning: 

Qualitative Reasoning and Truth Maintenance System (TMS).  Qualitative Reasoning is 

the main area of reasoning for the MicroDroids.  The Ontology Inference Engine does 

Qualitative Reasoning about the ontologies.  The TMS is for dealing with goals, beliefs 

and learning of the MicroDroids.  

 

2.3.1 Qualitative Reasoning.  Qualitative Reasoning about physical objects such as the 

Circulatory System and the Baroreceptor Reflex is really one of the central themes of the 

CIRCSIM-Tutor domain that I am using for this research.  Bobrow (1984, p. 1) talks 

about compositionality in dealing with Qualitative Reasoning: 

… the description of a system’s behavior must be derivable from the structure of 
the system.  The term ‘structure’ refers to the components of the analysis, 
component behaviors, and the connections between components.  The term 
‘behavior’ refers to the time course of observable changes of state of the 
components and the system as a whole. 
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Here, Bobrow really pinpoints the idea of using a group of ontologies and an Ontology 

Inference Engine.  Another area that is important in Qualitative Reasoning is reasoning 

about function to understand the behavior of the system (Bobrow, 1984, p. 2).  He defines 

function as “the relationship between a goal of a human user and the behavior of a 

system.”  This fits into the idea that in CIRCSIM-Tutor, students are doing problem 

solving in the area of the Baroreceptor Reflex. They reason about how it functionally 

keeps the blood pressure normal. 

Forbus (1984, 1985) defines ontologies in terms of processes.  His qualitative 

process theory allows for reasoning about process ontologies, “when they will occur, 

their effects, and when they will stop” (Forbus, 1984, p. 85).  Process Ontologies are one 

of the four types of ontologies that MicroDroids deal with.  The different types of 

ontologies are discussed in Chapter 3. 

 

2.3.2 Truth Maintenance System.  Truth Maintenance Systems are not used very widely 

today in industrial applications.  The need is there, but the understanding seems to be lost.  

Even though ILOG® JRulesTM, which is a Business Rule Management System (BRMS), 

has truth maintenance capabilities included in the system, I was not able to find anyone in 

industry using ILOG’s TMS capabilities.  This is a shame because it is a very powerful 

system.  Giorgio Ingargiola from Temple University (2005) has a good overview of a 

TMS.  Forbus and deKleer (1993) discuss the TMS in depth. 

A TMS is tied to an inference engine such as the inference engine in a BRMS or 

an expert system.  It can also be tied to a Case Based Reasoning System such as in Yusko 

(1985).  It decides whether facts are correct or not over time.  Every time a fact is 
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justified, it becomes more believable.  When another fact disproves a fact, that fact 

becomes less believable.  There are upper and lower thresholds.  When the score of a fact 

goes below the lower threshold, it is no longer considered true.   Tracking many facts can 

become expensive, so if a fact goes above a certain threshold, the system can consider it 

true and will no longer track it.   Yusko (1985) discusses a good example of dealing with 

a TMS in the area of generalizations and overgeneralizations.  In this case, examples of 

known cases of shortness of breath were developed into a discrimination net.  This 

formed generalizations about the facts in each of the medical cases.  If an 

overgeneralization was found, it had to be retracted and the correct generalizations added.   

A simple example of this involves the process of defining the concept of a bird.  If 

you tell the system that a robin and an eagle can fly, the system will start to believe that 

all birds can fly.  However, if you then give the system the facts about a penguin and an 

ostrich, which cannot fly, the system has to understand that there is a possibility that it 

has formed an overgeneralization.  For the system to fix its information, it needs two 

categories of bird, birds that can fly and birds that cannot fly.   
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CHAPTER 3 

ONTOLOGIES 

Ontologies are the core concept that tie information about specific domains 

together and make them usable.  Ontologies give the MicroDroids the semantics to 

communicate with each other.  The MicroDroids give the ontologies the ability to be 

shared by multiple users and applications.  An Ontology Inference Engine (ONTIE) 

controls the reasoning about the ontological information.  For this discussion, it is 

important to understand what ontologies are in general terms and how they are used in 

TKC. 

Don Hutcheson (2003, p. 45) defines an ontology as “a list with relationships to 

other lists.”  The Foundation for Intelligent Physical Agents (FIPA) defines an ontology 

in the following way (FIPA, 2002a, p. 34):  

An ontology provides a vocabulary for representing and communicating 
knowledge about some topic and a set of relationships and properties that hold for 
the entities denoted by that vocabulary. 

An ontology is a model of a specific domain that can be used for Qualitative 

Reasoning (Yusko and Evens, 2004) about either structural objects and their relationships 

or processes using the Qualitative Process Theory of Kenneth Forbus (1985).  The 

ontologies enable agents to communicate with each other and with an end user in an 

intelligent manner.   

This chapter discusses the types of ontologies defined in TKC in Section 3.1.  

Section 3.2 describes how the ontologies in TKC are maintained, accessed and reused. 
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3.1 Ontology Categories 

      Many ontologies are hierarchies of information typically based on the ISA 

relationship.  If we use the FIPA definition stated above, then we can envision many 

types of ontologies with an unlimited number of relationships.  We have to keep in mind 

that the purpose of using ontologies in TKC or any intelligent knowledge base is to store 

information and semantics about that information.  I have classified some of the major 

types of ontologies used in TKC as follows: Artifact Based, Process Based, Concept Map 

Based, and Flow Based. Each of the categories defines specific parts of a domain.  To do 

Qualitative Reasoning it takes a combination of ontologies to define a specific domain. 

 

3.1.1 Artifact Based Ontologies.  Artifact based ontologies are objects and their 

relationships.  A UML Class Model can represent them.  The class model for a 

MicroDroid in Figure 3.1 is a good example of this category of ontologies.  In this case, it 

is really a part/whole model of a MicroDroid.  Figure 3.2 shows another good example of 

an artifact ontology.  It is the hierarchy model for MicroDroid classification.  Its basic 

relationship is the ISA relationship. 

 

3.1.2 Process Based Ontologies.  Process based ontologies deal with process flows, 

which can be represented by UML Activity Models.   An activity model represents how 

the flow of control works in a process.  A good example can be seen in Figure 3.3: the 

process flow for CIRCSIM-Tutor (Evens and Michael, in press).  The CIRCSIM-TUTOR  
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Figure 3.1. MicroDroid Part/Whole Ontology 

 

 

Figure 3.2. MicroDroid Hierarchy Ontology 
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Figure 3.3. CIRCSIM-Tutor Process Ontology 

 

MicroDroid in TKC manages this ontology.  Since it is an Application MicroDroid, (see 

Chapter 5), it contains the model that describes the CIRCSIM-Tutor process and controls 

the process flow in CIRCSIM-Tutor.  This process flow makes CIRCSIM-Tutor work. 

 

3.1.3 Concept Map Based Ontologies.  Concept map based ontologies are concepts and 

their relationships.  They represent how one concept affects another concept.  Figure 3.4 

shows a good example of the concept map for CIRCSIM-Tutor (Khuwaja, 1994, p. 73).  

This model is used to define the different concepts in CIRCSIM-Tutor and how they 

affect each other.  This is vital to defining cause and effect relationships that are used in 

Qualitative Reasoning.  The causal relationship between two concepts indicates how one 

concept affects another.  The “+” on the arrow from SV to CO indicates a direct 
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relationship between the two.  In other words, if SV increases, then CO increases.  If SV 

decreases, then CO decreases.  The “-“ on the arrow from CO to CBV indicates an 

inverse relationship.  In other words, if CO increases, then CBV decreases.  If CO 

decreases, then CBV increases.   

 

 

Figure 3.4. Baroreceptor Reflex Concept Map Ontology 

 

3.1.4 Flow Based Ontologies.  Flow based ontologies are very similar to process based 

ontologies.  They model the flow of something physical instead of process control.  

Figure 3.5 shows a good example of the blood flow in the cardiovascular system (Zhang, 

1991, p.68).   (CIRCSIM-Tutor deliberately ignores the pulmonary circulation and the 

arterioles and capillaries.)   In the case of this ontology, the flow of blood through the 

circulatory system is modeled.  This allows Qualitative Reasoning about the blood flow. 
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Figure 3.5. Circulatory Flow Ontology 

 

3.2 Maintainability, Accessibility, and Reusability Approach 

Many applications have ontologies buried in the actual code, like frames in LISP 

code.  This is how it has been done in the past versions of CIRCSIM-Tutor.  This makes 

it hard for domain experts to maintain the ontologies.  Over the years, data has been 

pulled out of the applications and moved to relational databases for the purpose of 

maintainability.  Business logic has been removed from applications and moved to rule 

repositories so the business logic can be maintained separate from the programming 

logic.  Developers have also started to move ontologies out of the applications to 

ontology repositories so they can be maintained separately from the programming logic.  

Each of these separations allows domain experts to maintain information about their 

specific domains and end users to access and reuse it whether it is data, business logic, or 

ontologies.  This is a good approach, unless the domain expert has to maintain all three 

information types at the same time.  

 

In TKC, this tendency is taken a step further by allowing a single MicroDroid to 

manage and understand all three types of information specific domains so that the domain 
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expert only has to understand the domain, not how or where the information is stored.  

Chapter 6 defines the framework for The Knowledge Collective. 

The Knowledge Collective has taken a different approach to managing ontologies.  

TKC is geared towards accessibility, maintainability by the domain expert and reusability 

by many end users and across many applications.  All ontologies are maintained in small 

domain specific units and managed by a specific class of MicroDroids.  The ontology 

itself is developed and maintained in a UML model using EclipseUML from Omondo® 

(Omondo, 2005), which is a plug-in to the Java environment called Eclipse (Gallardo, 

Burnett, and McGovern, 2003).  This model is converted in the Eclipse environment to 

Java classes, which are in turn imported into the ILOG® JRulesTM development 

environment as a Execution Object Model (XOM), which is really a set of Java classes.  

This is explained in Chapter 4. 
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CHAPTER 4 

ONTOLOGY INFERENCE ENGINE 

As stated earlier, most ontologies are frame based and use Prolog based logic 

rules to reason about the ontology.  A good example of this is Protégé (Knublauch, 2005), 

which is a frame based ontology management system that uses an ontology repository.  

Algernon (Hewett, 2005) is a Prolog based logic rule inference engine that works with 

Protégé and is a Prolog based logic rule system. Many more examples can be found in 

(Gomez-Perez et al., 2004) and (Fensel, 2004).  

The Knowledge Collective has taken a different approach to managing ontologies.  

TKC is geared towards accessibility, maintainability by the domain expert and reusability 

by many end users and across many applications.   Each ontology is maintained as a 

small domains specific unit and managed by a specific class of MicroDroid.  Production 

rules are used to do Qualitative Reasoning about the ontologies instead of logic-based 

rules.  This will make it easier for the domain experts to maintain domain information. 

It is important when looking at the understandability of a logic-based rule versus a 

production rule, that the production rule is easier to understand.   A good example of this 

is by Bratko et al. (1989).  They have the following logic-based rule (p.31): 

 
[heart(art_focus: permanent(Rhythm, Rate))]    
[permanent(atr_focus: form(Origin, Rhythm, Rate))]  & 
Atr_focus(Origin, Rhythm, Rate). 
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They explain the logic-rule using a production rule (p. 29): 

 

IF 
the atrial focus discharges permanent impulses 
at some rhythm Rhythm and rate Rate 
 

THEN 
there will be impulses at theatrical focus 
characterized by Origin, Rhythm and Rate 
 

WHERE 
Origin, Rhythm and Rate must satisfy the  
atr_focus relation 
 

 

The TKC Ontology Inference Engine (ONTIE) is not only based on production 

rules like an Expert System, it is based on a Business Rule Management System (BRMS).  

BRMS differs from the basic Expert System technology.  Both a BRMS and an Expert 

System can use production rules, be forward chaining, and use the Rete algorithm 

(Friedman-Hill, 2003, pp. 136-189) for conflict resolution.  The real difference is the 

integration with an object model.  An Expert System is not integrated with an object 

model.  This integration with an object model is what makes a BRMS more useful as an 

Ontology Inference Engine than an Expert System.  (Ross, 2003; Morgan, 2002; von 

Halle, 2002) are good references about Business Rule Management Systems. 

Section 4.1 describes the ONTIE architecture.  ONTIE rule examples are show in 

Section 4.2. 
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4.1 Architecture 

The ONTIE architecture is show in Figure 4.1.  The ontology itself is developed 

and maintained in a UML model using EclipseUML from Omondo (Omondo, 2004), 

which is a plug-in to the Java environment called Eclipse (Gallardo, Burnett and 

McGovern, 2003).  This model is converted in the Eclipse environment to Java classes, 

using the Eclipse Modeling Framework (Budinsky et al., 2004). The Java classes are then 

imported into the ILOG® JRulesTM development environment as an Execution Object 

Model (XOM).  The XOM is then imported into JRules Rule Builder.  The Java classes 

are also deployed to the MicroDroid.  ILOG defines the XOM as (ILOG, 2005, p. 20): 

 The Execution Object Model (XOM) is a model that references the various 
objects of your implementation, such as Java classes, XML Schemas, or Web 
services.  In the XOM, XML Schemas or Web services become dynamic classes, 
and Java classes remain as native classes. All types of classes contained in the 
XOM are called execution classes. When you test the execution of a ruleset in the 
Rule Builder, the business rules that act on the business classes in the BOM are 
translated into execution rules that act on the execution classes in the XOM. 
Instances of these execution classes are sent to the rule engine. 

JRules automatically builds a Business Object Model (BOM) from the XOM.  

The rules are then written against the BOM.  ILOG defines the BOM as (ILOG, 2005, p. 

22).   

The BOM defines the mapping between the classes it contains and the executable 
classes of the eXecution Object Model (XOM) used by the rule engine. 

JRules is a Business Rule Management System (BRMS) that uses production 

rules that understand and are integrated with the BOM and are controlled by a rule 
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engine, which is a Java class.  The rules are then deployed to the JRules rule engine in the 

MicroDroid.  These rules are used to do Qualitative Reasoning about the ontology that 

the MicroDroid is maintaining. 

 

 

Figure 4.1. Ontology Inference Engine Architecture 

 

The JRules Engine has three parts: a ruleset, working memory and an agenda.  

ILOG defines them as follows (ILOG, 2005, p. 38):  

A ruleset is a group of rules that is sent to the rule engine to be executed.  The 
ruleset contains execution rules, namely business rules that have been translated 
into the ILOG Rule Language (IRL). 

The working memory is the place where the rule engine stores the objects with 
which it is currently working. 



35 

 

The agenda is the place where the rule engine stores the rules that are eligible to 
be fired.  Rules are eligible to be fired when their conditions match the objects in 
the working memory. 

4.2 Rules 

As stated in Section 4.1, ONTIE uses production rules instead of logic-based 

rules.  Production rules, including Business Rules, are forward-chaining, have a working 

memory and follow the following format: 

IF condition THEN action 

For a more in depth discussion of production rule systems, go to (Neches et al., 1987) and 

(Brachman and Levesque, 2004, pp. 117-134).  

One important point is that the rules in ONTIE are designed to do Qualitative 

Reasoning and make inferences about the ontologies.  Inferencing is the ability to 

produce new facts from existing facts.  The ontology contains the existing facts.  The 

Qualitative Reasoning capability produces new facts.   

The rules can be used for either shallow reasoning or deep reasoning while doing 

Qualitative Reasoning.    Shallow reasoning deals with how something functions.  It is 

heuristic or “rule-of-thumb” reasoning.  It can also be called surface or empirical 

reasoning.  The actual information is stored as rules.  There is always a need for this type 

of reasoning when dealing with relationship constraints and exceptions to an ontology.  

This type of rule is not really reasoning about the ontology.  Since  the rules are very 

specific, every change would mean writing a new rule or modifying an existing rule.  

Every time you have a new concept or relationship, you would have to add a new rule.  
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The rules are probably easy for the domain expert to understand, but the maintenance is 

very costly and difficult. 

If you want to reason about an ontology, you need to use a deep reasoning 

approach.  This can be called reasoning from first principles or model-based reasoning.  

The rules are more abstract or general since the actual information is not stored in the 

rules.  The information is actually stored in the ontology.  In this case, you are reasoning 

about objects and their relationships to other objects in the model.  If you add a new 

concept to the ontology (i.e., a new object with relationships to existing objects), you do 

not need to add any additional rules to the ruleset. In some cases it might be a little more 

difficult for the domain expert to understand, but the cost of maintenance is greatly 

reduced.  Figure 4.2 shows an example of shallow rules versus deep rules for a small 

Concept Map ontology. 

This ontology has three nodes and two relationships.  To represent it in a shallow 

reasoning ruleset would take four rules and you would not really need the ontology.  To 

represent it with a deep reasoning set of rules, you would still have four rules, but they 

would actually reason about the ontology itself.  Each rule reasons about the effects of the 

relationships of the objects.  The big difference comes when you add more nodes and 

their relationships.  As long as you are using one of the two existing relationships, you do 

not need to add any additional rules.  With shallow reasoning, you would have to add two 

more rules for each new node.  This does not seem like a lot until you add an additional 

100 nodes with their relationships to the model. 
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Shallow Reasoning 
Rules

IF PIT increases
THEN RV increases

IF PIT decreases
THEN RV decreases

IF RV increases
THEN CBV decreases

IF RV decreases
THEN CVB increases

Deep Reasoning 
Rules

IF CONCEPT1 increases and
RELATIONSHIP with CONCEPT2 is +

THEN CONCEPT2 increases

IF CONCEPT1 decreases and
RELATIONSHIP with CONCEPT2 is +

THEN CONCEPT2 decreases

IF CONCEPT1 increases and
RELATIONSHIP with CONCEPT2 is -

THEN CONCEPT2 decreases

IF CONCEPT1 decreases and
RELATIONSHIP with CONCEPT2 is -

THEN CONCEPT2 increases

PIT CBVRV
+ -

Concept Map Ontology

 

 

Figure 4.2. Shallow versus Deep Reasoning 

 

The deep reasoning rules could be made even more abstract so that you would 

only have two rules.  However, in my opinion based on my industrial experience, the 

more abstract that you make the rules, the harder it is for the domain expert to understand 

them.  You need to find a happy medium between abstraction and understanding. 

ONTIE uses a mixture of both shallow and deep reasoning rules for doing 

Qualitative Reasoning about ontologies.  The shallow rules are used strictly to deal with 

constraints and exceptions.  Since the deep reasoning rules are based on objects and their 
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relationship to other objects and ontology categories are based on objects and their 

relationships, there will be different rule category for each ontology type: 

• Artifact Based Ontology Rules 

• Process  Based Ontology Rules 

• Concept Map Based Ontology Rules 

• Flow Based Ontology Rules 

Within each rule category, there are rules for each type of relationship between the 

objects in that ontology category.  As seen in Figure 4.2, there are deep reasoning rules 

for the “+” and “-“ relationships.  The same holds true for the relationships in each of the 

other ontology categories. 
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CHAPTER 5 

MICRODROIDS 

MicroDroids are a class of agents.  Each MicroDroid is a pattern composed of 

objects that do a specific function or task.  Each MicroDroid understands how it fits into 

the environment and knows what it can process and how to ask other MicroDroids for 

help.  They are the navigators that translate the metadata into metaknowledge and help 

determine the truth about the knowledge.  Each MicroDroid is an agent and a virtual 

object that controls its own smaller knowledge base, which is just a subset of the whole 

intelligent knowledge base.  The MicroDroids are goal oriented and cooperate with the 

overall goal of a session.  In simplest terms, a MicroDroid is: 

 

Agent + Ontology + Ontology Inference Engine = MicroDroid 

 

5.1 Hierarchy 

If you look at Figure 5.1, the MicroDroids form a subclass of Task-Specific 

Agents using the terminology of Franklin and Graesser’s Agent Taxonomy (1996, p. 23).  

Each box inside of TKC in Figure 6.1 represents a class of MicroDroids that do a very 

specific task. 

What really makes a MicroDroid different from the Task-Specific Agents is the 

fact that MicroDroids do not depend on an ontology server or an ontology agent.  Every 

MicroDroid has its own ontology and an Ontology Inference Engine built into it.  This is 

vital since the ontology used during an end user session is built dynamically from the 

ontologies of each MicroDroid participating in the session.  This also allows each 
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MicroDroid to do Qualitative Reasoning about its specific domain using an Ontology 

Inference Engine. 

 

 

Figure 5.1. Franklin and Graesser’s Agent Taxonomy  

 

MicroDroids belong to a class hierarchy (see Figure 5.2).  The root is MicroDroid.  

There are two main subclasses: Layer MicroDroid and Special Purpose MicroDroid.  

There are two Layer MicroDroid classes: Application MicroDroid and Solution 

MicroDroid.  These classes have many subclasses.  Each subclass can have many 

instances.  There are two Special Purpose MicroDroid classes: Coordinator MicroDroid 

and User Profile MicroDroid.  Each of these classes has no subclasses, but can have 

many instances. 

Even though MicroDroids seem like objects in a hierarchy, they are not.  Each 

MicroDroid is a pattern made up of many objects.  This is discussed in Section 5.2, 

Architecture, and illustrated in Figure 5.3. 
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Figure 5.2. MicroDroid Hierarchy 

 

5.2 Architecture 

The MicroDroid architecture is really the ontology of the MicroDroid.  This 

should not be confused with the domain information that it manages.  There are five 

major systems and the core owner in the MicroDroid architecture, as diagrammed in 

Figure 5.3 with details in Figure 5.4: 

1. Core MicroDroid 

2. Maintenance  System (MAINTEX) 

3. Ontology System 

4. Truth Maintenance System 

5. Data System 

6. Communication System 
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Figure 5.3. MicroDroid Architecture 

 

5.2.1 Core MicroDroid.  The Core MicroDroid owns and controls all the other systems.  

It understand how to instantiate a new MicroDroid and retire one.  There can be many 

instantiated for each class at any given time.  When they have finished serving as part of 

a session, they go away.  There is always one instance of a MicroDroid waiting to answer 

a call.  The Core MicroDroid only has one object, the CORE MicroDroid object. 

 

5.2.2 Maintenance System.  This system is the Maintenance Expert (MAINTEX) that 

knows how to maintain all the information that a MicroDroid manages.  There are three 

main objects in this system.  The first object is the MicroDroid ONTOLOGY, which 

interfaces to the ontology that defines the MicroDroid. The second object is the 

Maintenance Ontology Inference Engine along with the Maintenance Rules, which are 

used to reason about the MicroDroid’s own ontology.  It can reason about any part of the 

MicroDroid.  The last part of the MicroDroid is the Maintenance Interface object.  This 
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object connects to the COORDINATOR MicroDroid and forms a portal from the 

Graphical User Interface Layer to MAINTEX.  

 

5.2.3 Ontology System.  This system contains the objects needed for dealing with 

domain specific ontologies that the MicroDroid has to manage.  It has an Ontology 

Inference Engine (ONTIE) for doing Qualitative Reasoning about the ontology and other 

information that it manages.  It also has a meta-ontology interface that deals with 

information about the ontology structure and how the ontology relates to other domain 

specific information within the MicroDroid. 

 

5.2.4 Truth Maintenance System.  The Truth Maintenance System (TMS) is for dealing 

with goals, beliefs and learning.  MicroDroids have the ability to deal with Truth 

Maintenance.  This Truth Maintenance System functionality comes with ILOG® 

JRulesTM (ILOG, 2004, p. 115). 

The MicroDroid learning system is part of this system.  When a MicroDroid is 

instantiated, it has all the knowledge of the MicroDroid instances that came before it in 

this class.  When the MicroDroid is finished with a session, it is destroyed, but all 

acquired knowledge is retained for use by future MicroDroids.  This same type of 

learning can be used with student models since the student information is managed by a 

MicroDroid. 
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Figure 5.4. MicroDroid Ontology 

 

5.2.5 Data System.  The Data System stores all non-active ontology information such as 

facts, lexicons, metadata, ontology persistence information and rules.  The information is 

stored in a database as standard relational tables and the Java objects are persisted to the 

database using a set of Java libraries called Hibernate (Iverson, 2005).  In TKC, the 

Database System being used is Cloudscape® (Saunders and Anderson, 2004) an open 

source database system from IBM.  Cloudscape® is being used because it was developed 

to be embedded in a Java application without the use of an independent database 
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management system.  For a good article about embedded databases, see (Binstock, 2005). 

The Data System has objects for dealing with different types of data: database, 

lexicon and metadata. 

 

5.2.6 Communication System.  The Communication System allows MicroDroids to 

communicate with each other in either a broadcast mode or peer-to-peer.   This system 

takes care of both the end user and expert maintenance mode.  Section 5.3 explains the 

communications between the MicroDroids in TKC. 

 

5.3 Metadata  

The standard definition of metadata is data about data.  However, metadata also 

gives the data contextual understanding.  Metadata is not useful without accompanying 

functionality capable of delivering it to the point of decision-making.  There are really 

two types of metadata: static metadata that deals with structural information and dynamic 

metadata that deals with operational information (Giovinazzo, 2000, p. 307).  We are 

talking about the static metadata here. This is the contextual understanding of the data 

structures themselves, not where it came from, but rather how it was transformed or how 

much of it was loaded into a database.  We are also not dealing with the data dictionary 

information such as data types and sizes. 

 There are two categories of metadata exchange.  Interchange is the concept where 

different processes share metadata and integration is the concept where a standard for 

both the structure and the content of the metadata is established (Giovinazzo, 2000, p. 

308).  This research is deals with the integration of metadata within a single system. 
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Metaknowledge is really metadata with functionality.  This is what turns data into 

Usable Corporate Knowledge (UCK) and therefore turns the Data Warehouse into a 

Knowledge Base. MicroDroids are agents (Murch and Johnson, 1999) that give the 

Metaknowledge its functionality and change it from passive to active metadata.  This 

group of MicroDroids along with their metadata is known as the Knowledge Collective. 

A Knowledge Collective is really a metadata repository (Marco, 2000) with functionality.  

This, in essence, turns passive metadata into active metadata. 

MicroDroids are the metadata guardians, users and keepers.  They understand the 

metadata so that the end user does not have to understand it.  If you want to know 

something about the data, ask the MicroDroids.  You do not even have to know which 

MicroDroid to ask for the specific information.  The Knowledge Collective has a team of 

MicroDroids and a leader or coordinator that knows all the MicroDroids in the system.  

Ask it anything, it will find the answer. 

Each MicroDroid has its own metadata that includes functionality on how to use 

its metadata.  All of its functionality is designed to control system metadata, thereby 

controlling actual data.  Even though a MicroDroid sounds very complex, it only has one 

major task to perform.  If it needs additional information or has additional tasks to 

accomplish, it calls on other MicroDroids for help. 

 

5.4 Communications 

The multi-agent capabilities in TKC do not use any specific agent protocols as 

other multi-agent systems (FIPA, 2002a).  The communications between the MicroDroids 

are handled using the Java Message Service (JMS) (Mahmoud, 2004).  This is a loosely 
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coupled peer-to-peer communication system.  The messages are asynchronous and the 

sender has no knowledge about the receiver.  The MicroDroids are just clients and the 

controlling server for JMS is JBoss (Taylor et al., 2004).   

Messages are sent out by the sending MicroDroid in a publish/subscribe 

methodology.  This is a broadcast message.  Once another MicroDroid answers, a 

pipeline is set up between the two MicroDroids using a point-to-point messaging 

methodology.  IBM® WebSphere QualityStage handles the parsing, standardization, 

translation, and matching of the attributes and terms in the message. 

Figure 5.5 is an example of what is happening during communications.  Each box 

is an instance of the MicroDroid class that is represented by the label.   The thick lines 

are active and the thin lines are waiting for use.  The End User has asked the 

COORDINATOR MicroDroid for information.  The COORDINATOR MicroDroid 

sends out a broadcast message.  The CARDIOVASCULAR INFORMATION SYSTEM 

MicroDroid answers and a peer-to-peer connection is set up between them.  The 

CARDIOVASCULAR INFORMATION SYSTEM MicroDroid then sends out a 

broadcast message.  The CARDIOVASCULAR PHYSIOLOGY MicroDroid has not 

answered yet.  When the CARDIOVASCULAR PHYSIOLOGY MicroDroid answers, a 

peer-to-peer with the CARDIOVASCULAR INFORMATION SYSTEM MicroDroid 

will be set up.  The CIRCSIM-TUTOR MicroDroid is just waiting for a broadcast 

message that it is interested in answering. 
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Figure 5.5. MicroDroid Architecture 
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CHAPTER 6 

THE KNOWLEDGE COLLECTIVE 

The Knowledge Collective (TKC) is the proposed solution for solving the 

knowledge base infrastructure problem.  It is a multi-layer, multi-agent framework for 

dealing with reuse of information in an intelligent knowledge base.  The data architecture 

for TKC was developed along with the supporting MicroDroids.   

The idea is to show that this type of architecture will allow for information and 

data to be stored in a usable format (i.e., relational database tables, Java objects, rules, 

etc.) in a standard relational database.  The end users will be able to store and retrieve the 

proper information by using a multi-layer, multi-agent infrastructure.  This will also 

allow for the reusability of information across multiple applications (e.g., CIRCSIM-

Tutor and GASP-Tutor) and allow disparate information from multiple applications to be 

stored in the same knowledge base.  

TKC originally started out with a six-layer architecture as described in Section 6.1 

and shown in Figure 6.1.   This architecture would give great flexibility with the 

following drawbacks: 

• Too much indirection would greatly slow down the process 

• The MicroDroids would not be totally autonomous and self-contained 

For these reasons, the architecture of TKC was changed to the four-layer architecture that 

is discussed in Section 6.2 and shown in Figure 6.3.  
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6.1 Original Architecture/Framework 

The Knowledge Collective is a multi-agent system (Ferber, 1999; Weiss, 2000) 

composed originally of six layers as seen in Figure 6.1: 

1. Graphical User Interface 

2. Coordination 

3. Application  

4. Solution  

5. Task  

6. Database 

These six layers make up the overall high-level ontology for TKC.  This is an 

artifact ontology used for doing Qualitative Reasoning about The Knowledge Collective 

in general.  The actual ontology model was discussed in the Chapter 3. 

Each layer is composed of classes of MicroDroids.  Therefore, there can be many 

instances of each MicroDroid class in Figure 6.3.  The MicroDroids are described in 

Chapter 5. 
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Figure 6.1. The New Knowledge Collective Architecture 

 

6.1.1 Graphical User Interface Layer.  The Graphical User Interface Layer is the portal 

into TKC and therefore, into the actual application information.  It can be composed of 

many screens for the end user, the developer, and the expert to input and retrieve 

information, data and metadata from or to TKC.  This is an application interface for the 

user.  It gives the end user access to application information.  It gives the developer the 

ability to add, delete, maintain or monitor the MicroDroids in each layer.  It also allows 

the subject matter experts to view, add and update their subject areas.  It is really the view 

into the COORDINATOR MicroDroid. 

 

6.1.2 Coordinator Layer.  The Coordinator Layer controls TKC.  This layer always 

contains two specific purpose MicroDroids: COORDINATOR MicroDroid and USER 

PROFILE MicroDroid.  The COORDINATOR MicroDroid works with the User 
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Interface to deal with all tasks from the Graphical User Interface Layer whether they 

come from the end user or a developer. The COORDINATOR MicroDroid also sets up a 

common goal that starts a session.  The rest of the MicroDroids in TKC cooperate to 

satisfy this goal.  The COORDINATOR MicroDroid can find out about all of the 

MicroDroids in TKC by asking them for information.  If MicroDroids are added or 

deleted, or their functionality is changed, the COORDINATOR MicroDroid will know 

about these changes by inquiring about information by broadcasting a message.  The 

information is never stored, it is always asked for by the COORDINATOR MicroDroid.  

It sends out orders along with the goals to find one or more MicroDroids in the 

Application Layer to solve end user problems.  However, the COORDINATOR 

MicroDroid can also interface with any MicroDroid in TKC to solve various 

development and maintenance problems. 

The COORDINATOR MicroDroid is the keeper of the information about TKC.  

It contains the TKC ontology (see Figure 6.2). It also controls the ONTIE ruleset for the 

ontology and any other needed information about TKC.  If you have questions about 

TKC, the COORDINATOR MicroDroid is capable of answering those questions.   

Another important role that the COORDINATOR MicroDroid plays is to help an 

expert (e.g., Joel Michael, Professor of Physiology at Rush Medical Center in Chicago, 

IL) maintain his Cardiovascular Physiology information.  The COORDINATOR 

MicroDroid will send out a broadcast message looking for the MicroDroid that knows 

about the Cardiovascular Physiology System.  When the CARDIOVASCULAR 

PHYSIOLOGY MicroDroid (see Figure 6.1) answers, a direct pipe between the 

COORDINATOR MicroDroid and the CARDIOVASCULAR PHYSIOLOGY 
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MicroDroid is set up along with the proper user interface for maintenance.  

A USER PROFILE MicroDroid can represent an end user, a domain expert, or a 

developer.  It maintains any known information about a specific user. 

 

 

Figure 6.2. The Knowledge Collective Ontology 

 

6.1.3 Application Layer.  The Application Layer contains a MicroDroid for each 

application in TKC. These MicroDroids get their orders from the COORDINATOR 

MicroDroid.  They work individually to solve application problems. They use from one 

to many MicroDroids in the Solution Layer to access needed information to solve the 

problem. This is the only layer that is application specific. The Knowledge Collective 

example in Figure 6.1 is designed to support three medical tutoring systems (CIRCSIM-

Tutor, GASP-Tutor and the Concept Map Tutor for the Baroreceptor Reflex) and a 
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Cardiovascular Information System. 

CIRCSIM-Tutor (Michael et al., 2003) deals with the Baroreceptor Reflex, the 

part of the Circulatory System that controls the blood pressure.  GASP-Tutor is a new 

tutoring system (still being developed) that deals with the pulmonary system with a focus 

on the two interacting negative feedback systems that control breathing and gas exchange 

in the lungs.  The Concept Map Tutor (Kim et al., 1989) helps the user manage concepts 

and their relationships in the Baroreceptor Reflex domain.  The Cardiovascular 

Information System (development just started) answers questions about cardiovascular 

physiology. 

 

6.1.4 Solution Layer.  There are many classes of MicroDroids in the Solution Layer.  

Each one knows how to deal with a specific domain as seen in Figure 6.1.  They get their 

marching orders from an Application MicroDroid.  They can work individually or in 

teams to solve an application problem.  They use from one to many MicroDroids in the 

Task Layer to access, delete, update, or insert application data in the Database Layer.  

These MicroDroids are very information specific.  If you add a new Application 

MicroDroid that will use the same solution information, the same Solution MicroDroid 

will respond. If changes are made to the application data structure, these MicroDroids 

will not have to be modified.  There are specific MicroDroids that can deal with domain 

specific information and others that deal with application specific information.  For 

instance, CIRCSIM-Tutor uses all the MicroDroids in this layer except the Chemistry and 

Respiratory Physiology MicroDroids, which are specific to GASP-Tutor. GASP-Tutor 

will use all the MicroDroids in the layer except the Baroreceptor Reflex Equations and 
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Baroreceptor Reflex Anatomy MicroDroids, as can be seen in Figure 6.1.  This 

configuration really supports the knowledge and ontology reuse capabilities of TKC.  

6.1.5 Task Layer.  There are many MicroDroids in the Task Layer.  Each one knows 

how to solve specific tasks.  They get their marching orders from the Solution Layer.  

They work individually or in teams to deal with application data in the Database Layer in 

response to calls from the Solution Layer. 

The MicroDroids in this layer are not application specific.  They are data 

architecture specific.  The only time you need to add a new one or modify an existing one 

is if there is a change to the actual data structure.  An example would be the Frame 

MicroDroid. It uses the Frame Building Language (Yusko, 1984), which understands 

how to deal with frames and relationships like semantic networks.  Even though the 

application data is stored in relational format in a relational database in the Database 

Layer, this MicroDroid knows how to interpret frames properly.  However, there is one 

specific MicroDroid, DATABASE, which knows where to find all the information about 

the Database Layer.   

 

6.1.6 Database Layer.  The Database Layer can contain from one to many databases.  

There is a DATABASE MicroDroid in the Task Layer that knows about all the databases 

in this layer and how to access them.  It knows about all the databases and what they 

contain.  There can be connectivity to many databases, but there is only one centralized 

location to maintain the information about the databases.  This layer is where the 

information used by the MicroDroids is stored. The database management system is an 

industry standard relational database. 
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6.2 Architectural Changes 

The Knowledge Collective’s new architecture is composed of four layers as seen 

in Figure 6.3, instead of six as seen in Figure 6.1: 

1. Graphical User Interface 

2. Coordination 

3. Application  

4. Solution  

Layer 5 (Task Layer) and Layer 6 (Database Layer) have been eliminated (see Figure 

6.3).  This change speeds up processing, but more importantly, it makes the MicroDroids 

autonomous and self-contained.  Each MicroDroid now must know how to access its own 

information and where that information lives.  This also opens the door for distributing 

the MicroDroids across multiple platforms.  This change has a major affect on the 

Solution Layer, since the MicroDroids in the Solution Layer control all the domain 

specific information.  

 

6.2.1 Graphical User Interface Layer.  The Graphical User Interface Layer has not 

changed from the original design.  It is the portal into TKC and therefore, into the actual 

application information.  It can be composed of many screens for the end user, the 

developer, and the expert to input and retrieve information, data and metadata from or to 

TKC.  It gives the end user access to application information.  It gives the developer the 

ability to add, delete, maintain or monitor the MicroDroids in each layer.  It also allows 

the subject matter experts to view, add and update their subject areas. 
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Figure 6.3. The New Knowledge Collective Architecture 

 

6.2.2 Coordinator Layer.  The Coordinator Layer controls TKC.  It has not changed 

from the original design.  This layer always contains two specific purpose MicroDroids: 

COORDINATOR MicroDroid and USER PROFILE MicroDroid.  The COORDINATOR 

MicroDroid works with the Graphical User Interface Layer to communicate with end 

users, developers, and domain experts. The COORDINATOR MicroDroid also sets up a 

common goal that starts a session.  The rest of the MicroDroids in TKC cooperate to 

satisfy this goal.  The COORDINATOR MicroDroid can find out about all of the 

MicroDroids in TKC by querying for information.  If MicroDroids are added or deleted, 

or their functionality is changed, the COORDINATOR MicroDroid will inquire about 

these changes by broadcasting a message.  It sends out orders along with the goals to find 

one or more MicroDroids in the Application Layer to solve end user problems.  However, 

the COORDINATOR MicroDroid can also interface with any MicroDroid in TKC to 

solve various development and maintenance problems. 
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The COORDINATOR MicroDroid is the keeper of the information about TKC.  

It has the TKC ontology (see Figure 6.2); it has the ONTIE ruleset for the ontology and 

any other needed information about TKC.  If you want to ask questions about TKC, the 

COORDINATOR MicroDroid is capable of answering those questions.   

Another important role that the COORDINATOR MicroDroid plays is to help an 

expert (e.g., Joel Michael, Professor of Physiology at Rush Medical Center in Chicago, 

IL) maintain his Cardiovascular Physiology information.  The COORDINATOR 

MicroDroid will send out a broadcast message looking for the MicroDroid that knows 

about the Cardiovascular Physiology System.  When the CARDIOVASCULAR 

PHYSIOLOGY MicroDroid (see Figure 6.3) answers, a direct pipe between the 

COORDINATOR MicroDroid and the CARDIOVASCULAR PHYSIOLOGY 

MicroDroid is set up along with the proper user interface for maintenance.  

A USER PROFILE MicroDroid can represent an end user, a domain expert, or a 

developer.  It controls the information about a specific user. 

 

6.2.3 Application Layer.  The Application Layer has not changed from the original 

design.  It contains a MicroDroid for each application in TKC. These MicroDroids get 

their orders from the COORDINATOR MicroDroid.  They work individually to solve 

application problems. They use from one to many MicroDroids in the Solution Layer to 

access, delete or insert application data in the Database Layer. This is the only layer that 

is application specific. The Knowledge Collective example in Figure 6.1 is designed to 

support three medical tutoring systems (CIRCSIM-Tutor, GASP-Tutor and Concept Map 

Tutor for the Baroreceptor Reflex) and a Cardiovascular Information System. 
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CIRCSIM-Tutor (Michael et al., 2003) deals with the Baroreceptor Reflex, the 

negative feedback component of the Circulatory System that controls the blood pressure.  

GASP-Tutor is a new tutoring system (still being implemented) that deals with the 

pulmonary system with a focus on the two interacting negative feedback systems that 

control breathing and gas exchange in the lungs.  The Concept Map Tutor (Kim et al., 

1989) helps the user manage concepts and their relationships in the Baroreceptor Reflex 

domain.  The Cardiovascular Information System (development just started) answers 

questions about cardiovascular physiology. 

 

6.2.4 Solution Layer.  Since the Task Layer and Database Layer have been removed, the   

major changes to the architecture are in this layer.  This layer controls most of the 

information in the knowledge base.  There are many classes of MicroDroids in the 

Solution Layer.  Each one knows how to deal with a specific domain as seen in Figure 

6.3.  They get their marching orders from an Application MicroDroid.  They can work 

individually or in teams to solve an application problem.   

These MicroDroids are very information specific.  If you add a new Application 

MicroDroid that will use the same solution information, the same Solution MicroDroid 

will respond. If changes are made to the application data structure, these MicroDroids 

will not have to be modified.  There are specific MicroDroids that can deal with domain 

specific information and others that deal with application specific information.  For 

instance, CIRCSIM-Tutor uses all the MicroDroids in this layer except the Chemistry and 

Respiratory Physiology MicroDroids, which are specific to GASP-Tutor. GASP-Tutor 

will use all the MicroDroids in the layer except the Baroreceptor Reflex Equations and 
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Baroreceptor Reflex Anatomy MicroDroids, as can be seen in Figure 6.3.  This 

configuration really supports the knowledge and ontology reuse capabilities of TKC.  

 

6.3 TKC Ontology 

All MicroDroids are experts in a specific domain.  The COORDINATOR 

MicroDroid is the expert for TKC.  Therefore, it contains the information about TKC, 

such as the TKC ontology in Figure 6.2 and the Ontology Inference Engine that controls 

TKC.  This ontology is an Artifact Ontology (see Section 3.1.1) that contains all the parts 

and relationships of The Knowledge Collective.  This also gives the user the ability to ask 

questions about TKC in general. 

 

6.4 TKC Process Example 

A good way of looking at TKC is that each MicroDroid has a story to tell.  If an 

expert is a person that remembers the right story at the right time (Schank, 1990), then the 

right MicroDroid has to respond at the right time as an expert. 

When dealing with a student, TKC is trying to tell a story based on the input from 

the student.  A story is based on many parts.  The COORDINATOR MicroDroid sets up 

the storyline.  Based on the storyline and the ontology, different MicroDroids fill in 

different parts of the overall story with their stories.  Each one is an expert and tells the 

right story at the right time.  Therefore, like a human expert, TKC remembers the right 

story at the right time by combining the stories of all the MicroDroids that answer. 

The system only understands the environment of the session with a user by the 

model of the environment that it is given.  This model is an ontology.  TKC is a 
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collection of ontologies.  Each session with a user has its own ontology.  When a user 

logs into TKC, the user is working through the User Interface Layer.  This is the portal 

into the COORDINATOR MicroDroid and to a USER PROFILE MicroDroid.  These 

two MicroDroids are a part of all sessions and supply the initial ontology for the session.  

Then, the session ontology grows as new MicroDroids are added to the session. 

The COORDINATOR MicroDroid sets up a subject area ontology.  The purpose 

of the COORDINATOR MicroDroid is to ascertain what the user wants to do.  The 

USER PROFILE MicroDroid sets up the user ontology so that the system can understand 

the user.  The COORDINATOR MicroDroid then ascertains what the user wants to do 

and sets up the subject.  If the user wants to diagnose a circulation problem, the 

COORDINATOR MicroDroid broadcasts the request to the Application Layer.  A 

CARDIOVASCULAR INFORMATION SYSTEM MicroDroid would answer and a 

session pipeline would be set up with the COORDINATOR MicroDroid for the user.  

The COORDINATOR MicroDroid communicates with the user via the User Interface 

Layer.  If the user wants to learn about the Baroreceptor Reflex, the CIRCSIM-TUTOR 

MicroDroid would answer and a pipeline would be set up.  If the user wants to 

understand circulatory chemistry issues, then the COORDINATOR MicroDroid 

broadcasts the request to the Application Layer.  The GASP-TUTOR MicroDroid 

answers and a session pipeline is set up with the COORDINATOR MicroDroid for the 

user.  The COORDINATOR MicroDroid communicates with the user via the User 

Interface Layer.  If no MicroDroid answers, a list of possible applications is given to the 

user.  

If the CIRCSIM-TUTOR MicroDroid answers, a session ontology is set up.  In 
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this case, the CIRCSIM-TUTOR MicroDroid has a process ontology as shown in Figure 

3.1 (Evens and Michael, in press).  Every time a new MicroDroid answers, a new piece of 

the session ontology is produced.  Each MicroDroid understands the environment it 

works in and adds a piece of the ontology to the session ontology.  Therefore, the 

ontology for the session is developed dynamically as new MicroDroids become part of it.  

In other words, the ontology of the session grows as the session develops.  A network of 

MicroDroids is developed with each bringing its own piece of the session ontology.  As 

the session grows, the number of MicroDroids needed will increase. When a session is 

complete, the MicroDroids involved drop out and take their ontologies with them.   

When a session is complete, the instantiated MicroDroids save what they have 

learned for future MicroDroids to use.  Then they eliminate themselves from the system.  

At any given time, there is always a MicroDroid from each class waiting to serve the end 

user. 
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CHAPTER 7 

CONCLUSION 

The Knowledge Collective is like a whole team of very specialized experts that 

know how to retrieve, store and analyze data.  This is what turns metadata into meta-

knowledge and thereby turns data into information and allows it to be delivered to the 

point of decision-making.  At that point, the information in The Knowledge Collective 

becomes UCK (Usable Corporate Knowledge) and a corporate asset.  This will also give 

the novice end user the knowledge needed to make decisions like an expert.  This also 

allows the best subject expert to make decisions faster and more consistently.  The 

subject expert can then spend more time improving the decision support process. 

If the intension is to share knowledge and the ontologies for that knowledge, the 

maintenance can become overwhelming when using general agents with an ontology 

server or ontology agent concept.  If the goal is to share knowledge between systems, the 

agents need to be more fine-tuned and task-specific.   The ontologies for these task-

specific agents need to be part of the agent with their own Ontology Inference Engine 

that performs Qualitative Reasoning.  This is the concept behind MicroDroids.  With this 

concept, as the end user session grows, the number of MicroDroids used also grows.  The 

session ontology then grows dynamically as the number of MicroDroids that are needed 

increases.  This means that the Qualitative Reasoning capabilities must also be expanded 

as new MicroDroids are added to solve specific problems. 

The concept of embedding models (ontologies) into tutoring systems is not new 

(Bredeweg and Forbus, 2003; Glass, 1999; Khuwaja, 1994).  Better standards are needed 

and using UML models that can generate Java objects is a good start.  
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TKC is not only a collection of knowledge managed by the MicroDroids; it is also 

a collection of ontologies modeling the knowledge. This makes TKC an intelligent 

reusable knowledge base for doing Qualitative Reasoning. 

 

7.1 Summary 

I have designed and developed The Knowledge Collective to make information 

accessible, maintainable, and reusable by dividing information into small domain specific 

units.  A MicroDroid manages each unit.  All users, whether they are using the 

information or are experts maintaining their specific domain information, must be able to 

perform the needed tasks without any knowledge of structure or storage of the 

information.  This allows the information to be stored in the most efficient way possible 

for any particular type of information: data, metadata, ontologies, or rules.   

One of the major reasons for information is to answer questions and solve 

problems.  Applications like CIRCSIM-Tutor need both Baroreceptor Reflex information 

and tutoring information.  Therefore, the information from many different domain 

specific units need to be combined to solve the total problem. 

This thesis describes the goals and the implementation of The Knowledge 

Collective framework.  The implementation is unique because of the combination and use 

of many general commercial and open source products rather than developing vertical 

modules specific to the framework.  The main emphasis is to design and implement a 

framework that can handle multiple smaller, more manageable ontologies. In addition, 

avoid developing yet another ontology language, application programming interface, or 

struggling with how to best map or merge different existing ontologies. 
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The Knowledge Collective framework evolved because of a challenge to devise a 

methodology for reuse of information among different systems that is maintainable and 

scalable.  What makes this thesis unique is the combination of many technologies that are 

brought to bear on the problem.  Each technology in and of itself is not unique, but the 

combination is unique.  It is also unique to have many small ontologies working together 

instead of a single large ontology in a multi-agent system.  Each MicroDroid is unique 

because of the types of information that they can bring to bear to solve a problem in a 

specific domain: data, metadata, ontologies and an Ontology Inference Engine.  Another 

unique feature is that the ontologies are stored as Java objects with a production rule 

based inference engine used for Qualitative Reasoning.   

The Knowledge Collective approach allows information, mainly ontological 

information, from many areas of expertise to be used together to solve problems without 

standardized ontology languages and APIs.  The use of the multi-agent capability with 

the Ontology Inference Engine makes this possible. 

 

7.2 Tasks Implemented to Answer Research Questions 

The purpose of this thesis is to answer some very specific questions about 

intelligent knowledge bases.  The central question answered is: Does TKC provide a 

good framework for developing intelligent knowledge bases with reuse capabilities?  The 

answer is yes.  The following was learned in the process of answering the research 

questions in Section 1.3: 
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• The Task Layer and the Database Layer were eliminated from the TKC leaving 4 

layers instead of 6 layers 

• IBM® Cloudscape™ (Saunders and Anderson, 2004) has been imbedded into the 

MicroDroids to replace the Task Layer and the Database Layer 

• Each MicroDroid is self contained and autonomous 

• MicroDroids are specialized agents, not a community of nested agents that get 

instantiated as needed and then go away after they are finished 

• The four types of ontologies used in TKC were sufficient to define the domain 

information needed: Artifact Based, Process Based, Concept Map Based, and 

Flow Based. 

• Qualitative Reasoning was accomplished using an ONTIE (Ontology Inference 

Engine)  

• Multiple applications were able to reuse the same information. 

• Multiple commercial tools were used to implement TKC, which demonstrates that 

off-the-shelf tools can be combined to build a functioning knowledge base.  

 

7.3 Future Research 

The research described in this thesis is just the beginning.    It lays the foundation 

for The Knowledge Collective framework.  It sets up the core functionality of a 

MicroDroid.  The items below describe opportunities for future research and 
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development. Even though they have been mentioned in this thesis they have not yet been 

implemented: 

• The Java Message Service (JMS) worked well as a concept and has been used in 

many applications.  I plan to use it in the future to maintain communications 

between the MicroDroids. 

• The Truth Maintenance System and learning capabilities need more research; I 

hope to implement this in the future. 

• Natural language parsing with IBM® WebSphere QualityStage has been used 

many times as a parser in industrial applications and should work here.  The 

parsers for CIRCSIM-Tutor were developed specifically for the application. More 

research on using a generic commercial parser like QualityStage needs to be 

accomplished in the future. 

• JESS is a rule-based system developed in Java (Friedman-Hill, 2003) that is open 

source.  Since it is an Open Source System, it should be investigated and 

considered as a replacement to the commercial system ILOG JRules for ONTIE.  

This will allow ONTIE to have unlimited expense free use at universities.  

• The tutoring information (see Figure 6.3) needs to be completely implemented in 

the future. 
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