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CHAPTER I

INTRODUCTION

This work is about improving the input understanding component and the general

quality of the tutorial dialogue for CIRCSIM-Tutor. CIRCSIM-Tutor is an intelligent tutoring

system intended to teach medical students about a negative feedback loop that regulates

blood pressure in the human body. It has been amply described in numerous other IIT

documents so I will keep the description here rather short.

For the purpose of understanding this work, it is important to know that CIRCSIM-

Tutor is language-based. It instructs by carrying out a dialogue with the student in

English. There are no diagrams, hypertext links, multiple-choice questions, or pull-down

menus. Except for a chart the students must fill in to record their predictions, the students

spend their time typing black letters on a white screen and the tutor replies in kind. To a

large extent the designers of this intelligent tutoring system were motivated by the belief

that the use of language enhances learning.

My work is oriented around the language issues in CIRCSIM-Tutor. I have replaced

the input understanding component of the existing version 2 of CIRCSIM-Tutor, which is

now in use at Rush Medical College. This new input understander, with some

enhancements, will be incorporated in the new version 3 which is under construction. I

have also been involved with language issues throughout the project, working on surface-

level generation, the language of tutoring tactics, the lexicon, verb case frames, the internal

representation of various linguistic objects, transcript markup and analysis, and so on.
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Our primary source of data on both student and tutor behavior is the set of

keyboard-to-keyboard tutoring transcripts that the CIRCSIM-Tutor project has

accumulated. We have more than eighty of them, most one or two hours long, including

fifty with expert tutors. In this thesis I sometimes use raw transcript extracts, and

sometimes cleaned-up extracts with fixed spellings and expanded abbreviations, in order

to illustrate the behaviors we want the input understander to handle. An example

reference to a transcript extract would be ÒK51-tu-17-3Ó, meaning transcript K51, tutor

utterance, turn number 17, sentence 3. I often abbreviate this to simply ÒK51-17Ó

meaning an excerpt starting with turn 17 of transcript K51. In the fifty transcripts

numbered K1 through K51 (K29 is missing) the tutors are Joel Michael and Allen Rovick,

principal investigators on the CIRCSIM-Tutor project and professors of physiology at

Rush Medical College. In the thirty or so transcripts numbered N1 through N31 the

tutors are ÒnoviceÓ tutors, medical students who were recruited and trained to varying

degrees to teach their peers. In the text below I refer to the transcripts of expert tutors as

the K-series and transcripts of novice tutors as the N-series.

I have also obtained some examples from logs of medical students using various

editions of CIRCSIM-Tutor versionÊ2. We have not indexed and numbered these logs, so

these examples contain no references.

Version 1 of CIRCSIM-Tutor was completed in 1989 and version 2 was completed

in 1992. In April and November 1998 physiology classes of first-year medical students at

Rush used CIRCSIM-Tutor for the first time. The program that they used is an enhanced

version 2 containing, among other improvements, the replacement input understander
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described here. We informally call this version 2.5. Version 3 will be a total rewrite.

Freedman [1996] has laid the groundwork for version 3, coming up with a new model for

tutorial planning and dialogue generation.

The new input understander in version 2.5 is constructed to be robust, based on a

philosophy of extracting from the student utterance only what is necessary for answering

the tutorÕs question. Its processing model is finite state transducers which perform only

minimal parsing.

For version 3 we would like to enhance the input understander primarily in two

ways: an increased ability to recognize and handle various Ònear missÓ student answers,

and the ability to handle some student initiatives and the answers to some open-class

questions. For the latter I plan to use the relatively new technology of Latent Semantic

Analysis.

Outline of This Thesis

Here is an outline of topics to come:

· Chapter 2 will introduce the CIRCSIM-Tutor enterprise, its history and motivation, and

the physiology involved. It includes a section summarizing the basic idea going into

the building of the new version: an attempt to mimic human tutorsÕ observed patterns

of language and tactics.

· Chapter 3 contains a justification for doing language-based tutoring. It assembles some

of the evidence that shows that tutoring is worthwhile and that forcing students to

verbalize is worthwhile. CIRCSIM-Tutor is among the small number of tutor-driven

intelligent tutoring systems which require the studentÕs free-text input. The topic of
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this thesis is how to cope with that textual input. It seemed to me that justification

for this somewhat quixotic enterprise is required.

· Chapter 4 is a brief review of some other tutor-driven dialogue-based tutoring

systems.

· Chapter 5 is a description of the phenomena which occur in student utterances in

tutorial dialogue. Even the highly simplified conversational domain of CIRCSIM-Tutor

presents some unexpected challenges.

· Chapter 6 is a review of some of the technologies, old and new, which might be

applicable to the input-understanding task.

· Chapter 7 is devoted to the recent technology of Latent Semantic Analysis. I review

the technique, show how it is being used in another intelligent tutoring system, and

make a suggestion as to how we could use it in CIRCSIM-Tutor to handle some kinds of

tutorial exchanges which are currently beyond CIRCSIM-TutorÕs ability.

· Chapter 8 is a description of my new input understander for CIRCSIM-Tutor, along

with the results of using it with physiology classes at Rush Medical College.

· Chapter 9 is a review of some further language phenomena and improvements which

would make for interesting enhancements to the input understander.

Finally, of course, there are conclusions.
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CHAPTER II

DESCRIPTION, HISTORY, AND FUTURE OF CIRCSIM-TUTOR

Description of CIRCSIM-Tutor

CIRCSIM-Tutor is a dialogue-based intelligent tutoring system designed to tutor the

basics of the baroreceptor reflex, an important mechanism for blood pressure regulation.

The intended audience is first year medical students in their physiology course. Its salient

characteristics are:

· The fundamental instructional mode is the student working problems presented by

the tutor.

· Most of the communication between program and student is via written text.

· The tutor almost always has control over the dialogue, telling the student to perform

small tasks and asking questions of the student.

CIRCSIM-TutorÕs treatment of the material is like this:

· The program uses a simplified model of the baroreceptor reflex, heart, and circulatory

system designed to emphasize the negative feedback aspect of the regulation process.

· The negative feedback regulation process is modeled as three disjoint chronological

stages called direct response, reflex response, and steady state.

· The studentÕs basic task is to predict the qualitative changes (increase, decrease, no

change) in the values of seven ÒcoreÓ physiological parameters.

· The studentÕs problem-solving activity involves a series of steps: 1) read the problem

statement, 2) predict the values of all seven variables for the first stage, 3) engage in
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tutoring dialogue with the tutor until all errors are corrected, 4) repeat the

prediction/tutoring cycle for the remaining two stages.

The student is assumed to have already been taught the material, and thus be familiar with

the vocabulary and concepts as well as the simplified model and the structure of the

problems. Prior mastery of the material is not assumed, but somebody who has never

seen the material cannot reasonably expect to either learn much or perform well.

A lightning tour of the physiology and problem-solving will aid in understanding

the tutoring and language examples to come. Figure 1, the Òtop level concept map,Ó shows

the important physiological notions including the seven core variables. The arrows show

which variables affect which other variables; a plus or minus label indicates that the effect

is directly or inversely proportional, respectively.

Start navigating at the top of the concept map with Central Venous Pressure

(CVP), representing blood pressure in the great veins (or more particularly, that part of

the veins known as the central venous compartment). The central venous compartment is

like an expandable balloon, containing a reservoir of blood. At the beginning of the

heartbeat cycle, blood flows from the great veins into the right atrium of the heart. Blood

is not sucked in; rather, it is pushed in at low pressure while the heart is relatively quiet,

causing the atrium to stretch out. The higher the value of CVP, the more blood is pushed

in. Eventually the heart squeezes down, starting a beat and ejecting much of the blood

which had flowed in. The amount of blood squeezed out in one beat is Stroke Volume

(SV), so SV is directly proportional to CVP. SV is also affected by Inotropic State (IS),
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a measure of neural stimulation of the heart muscle; increasing IS increases the amount of

squeezing, thereby increasing SV.

With each beat, blood is ejected from the left ventricle of the heart. The model has

a big simplification here in that the right atrium isnÕt actually connected to the left

ventricle. Thus the model ignores several heart chambers plus the entire pulmonary

circulation, but these are not needed for illustrating the baroreceptor reflex. Stroke volume

Central
Venous

Pressure

Stroke
Volume

Cardiac
Output

Mean
Arterial

Pressure

Inotropic
State

Heart
Rate

Total
Peripheral
Resistance

+

+

+

---

+ +

+

+

-

Nervous
System

Response

Baroreceptor
Pressure

+

-

Figure 1. Top Level Concept Map
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(liters per beat) times Heart Rate (HR) (beats per minute) gives Cardiac Output (CO)

from the heart (liters per minute). HR is another neurally controlled variable.

The blood is being forced out at high pressure into the arteries. Here is the highest

pressure in the system, as the blood is pushing against resistance downstream in the

arterioles and then in the capillaries and veins. Mean Arterial Pressure (MAP) is the

root mean squared arterial pressure (which oscillates up and down with each heartbeat),

and Total Peripheral Resistance (TPR) is the sum of all the downstream resistance.

Increasing CO (the amount being pumped) and TPR (the resistance the heart is pumping

into) both increase MAP. TPR is the third parameter adjusted by neural stimulation.

In the first chronological stage, known as the Direct Response (DR), we

assume that neural stimulation is held constant. Thus when presented with an abnormal

situation affecting blood pressure, the three neural variables do not change but the other

four do. To predict qualitative changes, just trace the arrows. For example if a person

hemorrhages blood, this is assumed to decrease the amount of blood in the central venous

compartment (the reservoir), decreasing CVP, which decreases SV (since IS stays

constant), decreasing CO (since HR remains constant), decreasing MAP (since TPR

remains constant), and we are done1.

The initial change to the body is called a Òprocedure.Ó Hemorrhage is, in fact, one

of CIRCSIM-TutorÕs procedures.

                                                
1 The rules for this exercise are slightly complicated but can be summarized as 1) when
given a choice, follow the arrows toward MAP first, then pick up any variable you
missed, and 2) if the variable you are trying to predict has several determinants, and you
know the values of some but not all, just ignore the ones you do not know. Freedman
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The next stage is Reflex Response (RR), where the Baroreceptors, which are

pressure sensors monitoring MAP, try to adjust the neurally controlled variables so as to

bring MAP back toward normal. So in the case of the hemorrhage, where MAP is

decreased in DR, the reflex response is to increase IS, HR, and TPR, all of which will tend

to increase MAP. Then the other variables are predicted, using the same method as

before. Predictions for RR are relative to the end of DR, so that if CO (for example) was

down in DR then up in RR, we say Òup,Ó because during RR it increased.

The final stage is Steady State (SS), where you predict the qualitative

differences from before the problem started until the body has stabilized. These

differences are the sum of the changes in DR (the direct effect of the original problem) and

RR (what happened by way of compensation). MAP never returns all the way to its

original level. For accuracy, you should know that DR and RR do not necessarily

represent observable chronological stages: it is not the case that first all the blood is lost in

a hemorrhage, then later the reflex compensates. In reality it is all happening

simultaneously. The stages are a way of separating the behavior into components.

Two important concepts for thinking about these problems are the Òprocedure

variableÓ and the Òprimary variable.Ó The procedure variable is the first physiological

variable that students know about which is affected in DR. For the hemorrhage procedure

it will be central blood volume or a related variable. The primary variable is the first

variable in the prediction table (a core variable) which is affected in DR. In the hemorrhage

case  it is CVP. A policy of Joel Michael and Allen Rovick, which can be seen both in

                                                                                                                                                
[1996] formalized the whole set of rules.
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human tutoring as well as CSTÊv. 2 tutoring, is to make sure the student understands the

correct primary variable before predicting any others.

This ends the quick introduction to the physiology and problem-solving in

CIRCSIM-Tutor.

A schematic view of the CIRCSIM-Tutor screen is shown in Figure 2. On top is the

procedure description, which is always at least partly visible (sometimes the bottom of

the description scrolls off the window, but it can be retrieved). The other two windows

are the prediction table, where the student enters qualitative predictions a stage at a time,

and the dialogue window. The predictions are always visible; the student corrects them as

they are tutored. Tutorial dialogue for the current procedure can be scrolled back for

reference.

DR SS

Central Venous Pressure

Inotropic State

Stroke Volume

Heart Rate

Cardiac Output

Total Peripheral Resistance

Mean Arterial Pressure

RR

-

0

-

+

-

0

+

Problem:  Pacemaker malfunctions, increasing to 120 beats per minute.

T> What variable is affected by HR?

S> Cardiac Output.

T> But you predicted that HR
increases and CO decreases.

S>

Figure 2. Schematic View of the CIRCSIM-Tutor Screen
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The major components of CIRCSIM-Tutor v. 2 [Woo 1991] are a domain

knowledge base with two associated domain problem solvers, a student model, a tutorial

planner, a discourse planner, an input understander, and a text generator. One domain

problem solver produces the answers for the full procedure; the other produces

incremental answers to questions which arise during tutoring (for example, what is the

dominant determinant in the case of a particular variable under discussion). The student

model is responsible for judging the studentÕs initial predictions as well as the answers to

the tutorÕs questions. The result of the student model is not simply a list of wrong

predictions. The student model is capable of noticing that important relationships

between parameters were violated which might require tutoring. Recently, we have added

the capability of distinguishing a number of instances of Ònear missÓ answers which are

not strictly right or wrong.

The tutorial planner in CSTÊv. 2 runs after each stage is predicted, producing a

plan with a few steps for correcting each error. The discourse planner attempts to execute

the plan one step at a time. Each step is realized as possibly several actions, for instance a

statement then a question. After a question the discourse planner interprets the studentÕs

answer before proceeding to the next step. The discourse planner calls upon the text

generator, the input understander, and the student modeler. Since in CSTÊv. 2 the tutorial

planner runs once after all the predictions are made but the discourse planner runs after

every student input, it is the discourse planner which handles the problem of changing the

tutoring to fit the studentÕs responses.
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History of the CIRCSIM-Tutor Project

The immediate predecessor to CIRCSIM-Tutor is CIRCSIM [Rovick and Michael

1986, 1992], a program which introduced the same problems and physiological model as

adopted by CIRCSIM-Tutor. It prompts the students for all the qualitative predictions at

once (not one stage at a time), and has approximately 230 stored paragraphs which it uses

for tutoring the mistakes. CIRCSIM is able to detect multi-variable patterns of errors, and

thus able to address common underlying student misconceptions. One feature is that the

first procedure is guided by the tutor, solved in detail a step at a time. CIRCSIMÕS

capabilities for dialogue are much more limited than CIRCSIM-TutorÕs. CIRCSIM is still in

use by the physiology classes at Rush Medical College as a regular part of the curriculum.

Before CIRCSIM there were several teaching aids that incorporated a quantitative

mathematical model, first MACMAN [Dickinson et al. 1973], then HEARTSIM [Rovick

and Brenner, 1983]. MACMAN is a quantitative model. Students were expected to make

predictions, then use the model to verify their results. However students often didnÕt

know enough to successfully design their own experiments, and they depended on skilled

instructors to interpret the results. HEARTSIM is the same model with some didactic

software added. It has a predefined set of procedures for the students to run. Student

predictions are made and scored qualitatively, and the software walks the students

through a sequence of pedagogical steps such as finding and correcting logical errors in the

predictions before running the model.

 What prompted the CIRCSIM-Tutor project was the observation that too often

students who successfully completed CIRCSIM still retained serious misconceptions.
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Michael and Rovick felt that having a conversation with the student might provide the

opportunity to detect and remedy these misconceptions. Additionally, they were

convinced that more active student involvement will lead to better learning.

CIRCSIM-Tutor Version 3

There have been several proposals [Khuwaja 1994, Freedman 1996] for the

planning architecture of the next version of CIRCSIM-Tutor, version 3. FreedmanÕs is the

one we are using.

It is FreedmanÕs observation that the planner which runs an intelligent tutoring

system can be thought of as primarily generating a dialogue. Thus CIRCSIM-Tutor

versionÊ3 is not, at its heart, a model-tracing tutor [Anderson 1993, pp.Ê235Ð255] which

causes the student to follow a trace of the problem solution. It is true that the overall

dialogue follows, in outline, a trace of parts of the solution procedure (those parts of it

that the student got wrong in the initial predictions), but on a more local level we are

trying to generate tutorial dialogue which is informed less by the needs of the problem

trace and more by the actual dialogue patterns that people use for tutoring.

The actions of the new CIRCSIM-Tutor will be based on tutoring patterns we have

observed in the transcripts. It has a catalog of conversational gambits (tutoring tactics and

methods) coded as planning schemas. In order to satisfy a planning goal (such as, ensure

the student is aware of the right answer to some issue) it tries the available gambits until

the student demonstrates the correct knowledge.

The observation which underlies this new model is that to a large extent tutoring

methods are a language phenomenon. If a student doesnÕt understand some point, a good
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tutor often has several different ways to ask or explain the same issue. If a method

involves a multi-part explanation, the tutor will pick and choose which parts to say

outright and which to elicit from the student conversationally. We cannot imagine deriving

from detailed principles the bag of conversational tactics which a good tutor has available.

Here is an example of a tutoring method we loosely call Òmove forward.Ó There are

several versions of move forward. In this one the tutor stipulates some variables which

have changed (possibly as the result of the preceding discussion), then asks what changes

directly follow. In this excerpt that tutoring method is applied twice in a row:

T: If HR goes down, what effect would that have?
S: It would cause a decrease in CO.
T: Yes. And if CO goes down and TPR goes down, what effect do they have?
S: They cause decreased MAP. [K43-120]

Contrast that with Òtutoring by determinants,Ó in which the pattern is to first make sure

the student knows the determinants of a target variable which needs to be tutored, then

make sure the student knows how those determinants have changed, then find out the

change in the target variable. Here is an example:

T: Now, what two parameters in the predictions table together determine the
value of the SV?

* S: CO and HR
*  T: No.... What I was asking is what determines how much blood is ejected from

the heart each time it beats (the SV)?
S: RAP and CC
T: Good. Well, you made predictions about how RAP and CC would change as a

result of the pacemaker malfunction. What do you think will happen to SV?
S: ... [K14-47]

The starred turns in this example illustrate another reason why we like to think of

tutoring as a linguistic process. The student gave an incorrect answer to the first question.

The tutorÕs response was to re-ask the same question, rephrased. In this case the tutor

simply inserted a definition of stroke volume, viz.: Òhow much blood is ejected from the
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heart each time it beats.Ó It seems clear that the rephrasing of a question is a linguistic

process. Simply knowing that rephrasing the question is a productive gambit in this case

is a kind of pedagogical or linguistic knowledge, certainly not physiological knowledge.

This example of rephrasing also illustrates a linguistic tutoring tactic I call

Òevocative language.Ó I claim that the student almost certainly knew the definition of

stroke volume. My hypothesis is that in rephrasing the question the tutor chose words

which evoked useful images in the studentÕs mind. We have similar examples in the

transcripts where the tutor used the word ÒafterloadÓ as a synonym for Òmean arterial

pressureÓ to represent the pressure the left ventricle is pumping against.

Deriving tutoring behavior from the transcripts is quite a serious effort. A central

activity is to analyze the goal structure of the tutoring sessions in great detail and mark up

the transcripts. Using FreedmanÕs initial plan, Kim, Freedman, and occasionally others

(including myself) have been marking up substantial parts of the K-series transcripts,

using the SGML markup language. Figure 3 shows an extract from a marked-up transcript

from Kim. Kim et al. [1998] show how the contents of marked-up transcripts are being

used to describe the sentences which will be produced by the CIRCSIM-Tutor v.Ê3 text

generator. Freedman et al. [1998a, b] show how machine learning can be applied to

various aspects of the marked-up transcript to derive rules for tutoring behavior.

History of CIRCSIM-Tutor Input Understanding

Two of my predecessors have written input understanders for earlier versions of

CIRCSIM-Tutor, Yoon-Hee Lee [1990] and Jai Hyun Seu [Seu 1992, Seu and Evens 1991].

LeeÕs code was written originally in Lisp to run in isolation on a Xerox artificial
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<T-corrects-variable var=SV>
<T-tutors-variable>
<T-moves-forward>
<T-tutors-consequence-value>
<T-informs from-var=CO from-value=decrease to-var=SV>

K44-tu-152-2: So, you predicted CO D
</T-informs>
<T-informs from-var=CVP from-value=increase to-var=SV
DM=Óand,nowÓ>

and now say that RAP must I.
</T-informs>
<T-elicits>

K44-tu-152-3: What then happens to SV?
<S-ans catg=correct>

K44-st-153-1: Increase because of inc. filling.
</S-ans>
<T-ack type=positive>

K44-tu-154-1: Exactly.
</T-ack>

</T-elicits>
</T-tutors-consequence-value>

</T-moves-forward>

<T-explores-anomaly>
<T-presents-anomaly>
<T-informs info=det-value DM=ÓsoÓ narrative-
mode=reference>

K44-tu-154-2: So, you have now predicted that CO will fall
and that HR is down but SV is up.

</T-informs>
</T-presents-anomaly>

<T-tutors-anomaly>
<T-elicits>

K44-tu-154-3: How is this possible?
<S-ans catg=correct>

K44-st-155-1: If the HR decreases more than the SV
increases.

</S-ans>
<T-ack type=positive>

K44-tu-158-1: Exactly!
</T-ack>

...etc...
</T-corrects-variable>

Figure 3. Extract from Marked-up Transcript
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intelligence workstation. It was later integrated into CIRCSIM-Tutor on the Macintosh by

Seu. This is the code that I replaced.

One of LeeÕs lasting contributions is his spelling correction algorithm. It lives on

(as significantly updated by Mohammed Elmi [Elmi 1994, Elmi and Evens 1998]) in the

new CIRCSIM-Tutor input understander. Chapter 8 contains a discussion of the spelling

correction algorithm.

Lee and SeuÕs input understander was based on a Lexical-Functional Grammar

parser (for a definition of LFG see Bresnan and Kaplan [1982]). This parser started with

the studentÕs utterance and produced a functional representation (called an Òf-structureÓ

in LFG parlance). The functional representation was converted by a piece of ad hoc-ery

to the logical forms needed by the tutorial parts of CIRCSIM-Tutor.

Early in my work on this project, I also thought that LFG was the way to

approach student input. I produced an LFG grammar of short student answers. The

human-readable version of LeeÕs LFG grammar is lost, but comparing the bits in his thesis

and code to my own LFG grammar reveals a significant difference, to wit: Lee regards a

studentÕs short answer as, syntactically, a kind of reduced sentence. I do not. However in

a system such as LeeÕs this distinction would have made little practical difference2. The

descriptions of reduced sentences he was producing were, perforce, fairly short; there is

only so much you can say about a one or two word utterance.

                                                
2 One practical difference showed up when I was modifiying LeeÕs parser to handle the
parameter Inotropic State, abbreviated ÒIS.Ó Since fragments were taken as reduced
sentences, the program mechanically inserted the copula ÒisÓ in the course of parsing,
causing conflicts with the new parameter name.
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SeuÕs input understander is built upon LeeÕs. Seu took the spelling corrector

basically intact, and upgraded both the parsing procedure and the procedure for producing

the final logical form. The grammar was still LFG, producing f-structures. One of SeuÕs

contributionÕs was basic handling of ellipsis and the pronoun Òit.Ó If the question asked of

the student was Òwhat is the value of cardiac output?Ó the student could answer:

a) CO increases
b) It increases
c) Increases

Answer a) is a complete sentence, b) contains a pronoun reference to ÒCO,Ó and c) is an

elliptical utterance where ÒCOÓ is assumed. Seu updated the input understander to handle

some limited forms of student initiative, namely ÒI donÕt knowÓ and requests for a

definition, such as ÒWhat is CO?Ó and ÒI am confused about CO.Ó I have included the ÒI

donÕt knowÓ facility in the new input understander, but not the requests for definition.

Let me note parenthetically that Seu also counted various characteristics of the

transcripts which had been collected up until that time [Seu et al. 1991]. He has good

statistics about things like sentence length and certain types of word usage. He also

attempted to count questions, but since questions are not always marked (e.g. with a

question mark or an obvious inversion of an auxiliary verb), and since a question mark

sometimes signals a hedge and not a question, one would need to evaluate his procedure

before using his answers. For the most part this analysis does not affect the design of the

new input understander, but it could well be valuable for other purposes.

There are a number of factors which militated against preserving the input

understander code from CSTÊv. 2:
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· I implemented other, more robust technology.

· The basic CST paradigm and data structures are being replaced for CST v. 3, making it

hard to match the old input understander to the new task.

· New types of input, such as near misses, would have been difficult to recognize in the

existing structure.

· The old input understander was a mess to read and maintain, having been written,

translated and modified by a number of different people, some of whom were

uncomfortable with English.
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CHAPTER III

THE IMPORTANCE OF STUDENT LANGUAGE IN TUTORING

CIRCSIM-Tutor is lonely. Very few tutor-directed intelligent tutoring systems have

been able to accept free-text input from students. I make a distinction here between

systems where the student has the initiative and systems where the tutor has the

initiative. CIRCSIM-Tutor is not a question-answering system where the student asks

questions and the software provides answers, rather it is actively controlling the

conversation with a tutorial agenda. At the 1996 Intelligent Tutoring Systems conference,

the premier conference in the field, there were no papers on the problems of free-text

student input in tutor-driven Intelligent Tutoring Systems [Frasson et al.Ê1996].

Given this state of affairs, it seemed to me that the CIRCSIM-Tutor enterprise

needs some justification. The goal of this chapter is to explore the reasons for having the

students type free-text answers, as opposed (for instance) to having them pick an answer

from a menu. This issue cannot be comprehensively addressed in a single chapter, but I

assemble evidence from a variety of sources.

· There are studies that show that vocalizing and giving explanations aids learning.

· There is evidence in the education literature that human tutoring is highly effective

compared to other forms of instruction.

· As evidence that talking is beneficial, we have data that expert tutors are more likely

than novice tutors to force the student to enunciate an answer, as opposed to having

the tutor enunciate it.
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· For various reasons which might also be relevant to CIRCSIM-Tutor, a number of other

important intelligent tutoring system projects have recently chosen to handle free-text

input.

Though it does not constitute a definitive justification for writing a free-text input

Socratic tutoring program, this assemblage makes the CIRCSIM-Tutor project seem more

worthwhile.

Education Studies on the Importance of Language and Tutoring

There is reason to believe that merely making students talk (or write) has value.

Independent of whether you understand what they say, making them say it can be

beneficial.

Chi and her collaborators have been conducting a series of experiments on what

they call the Òself-explanation effect.Ó In one experiment, Chi et al. [1994] showed that

prompting students to explain their understanding of the material they just studied is

pedagogically useful. In that experiment eighth-grade students read aloud a 101-sentence

passage about blood circulation. After every sentence the student was prompted to

explain it to an experimenter. Most of the prompting questions were deliberately vague,

asking the student to simply explain what was just read, although there were more

specific prompts salted among the general ones. The control group read the text several

times without explaining it out loud. (They had to read it several times so as to spend

approximately the same amount of time with the text as the prompted students spent.)

The explain-out-loud group showed considerably more improvement in understanding, as

measured by pre- and post-tests. The experimenters went further in their analysis,
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ranking the students on a scale of Òhigh explainerÓ to Òlow explainerÓ and categorizing

their utterances. Then they correlated the self-explanation behavior of individual students

with the misconceptions evinced by the same students on the post-test. The results were

unambiguous: prompting people to explain themselves increases their learning

considerably.

A more recent experiment by Coleman et al. [1997] compared the learning

performance of 84 undergraduates reading texts on several theories of evolution. Here the

students were divided into three groups: students who merely heard the text read to them,

students who read the text for themselves but were then asked to explain (or summarize)

it, and students who read the text knowing that they would have to explain (or

summarize) it to others. Again, explanation proved to be a powerful tool for learning.

Graesser [1993] conducted a study which dissected in detail 66 one-hour human

tutoring sessions, in two different sets. One set consisted of 44 sessions of

undergraduates being tutored for their psychology research methods course, using tutors

who were students who had done well in the graduate course. For this group there were

pre-tests and post-tests to determine how well students were learning. Another set

consisted of 22 sessions of seventh-graders being tutored in seventh-grade algebra, using

tutors who were high-school students with experience tutoring the subject. Among the

primary results are that tutoring is, in fact, very effective. Furthermore this happens

despite the fact that his tutors rarely used sophisticated strategies, such as Socratic

dialogue. Furthermore the tutors spent little time diagnosing and addressing student

misconceptions. (They did ask a good many diagnostic questions; I will address that issue
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later in Chapter 7.) Graesser also showed that often his tutors were simply following

scripts.

So what accounts for the success of GraesserÕs tutors? He discovered that even

though the tutors had control over the conversation the students were asking

approximately eight Òdeep reasoningÓ questions per hour of tutoring, where deep

reasoning questions were defined as one of the following (excerpted from [Graesser 1993,

p.Ê8]):

· Antecedent questions. What caused or justified an event or proposition?

· Consequence questions. What are the consequences of an event or proposition?

· Goal orientation. ÒWhyÓ questions.

· Enablement. What state or event allows some other state or event to occur?

· Instrumental/procedural. What allows some agent to accomplish some goal?

· Expectational. ÒWhy notÓ questions?

The tutors were asking these deep reasoning questions at a higher rate than the students.

Altogether, tutoring sessions generated deep reasoning questions at a much higher rate

than in normal classroom teaching. It was GraesserÕs opinion that these questions, not

specific tutoring tactics or diagnostics, that accounted for much of the learning.

Cohen et al. [1982] conducted a metastudy of 65 controlled evaluations of school

tutoring programs, concluding that tutored students outperform control subjects to a high

degree of statistical significance. They culled the studies from a pool of 500 reported

controlled studies in the literature, selecting only those that were conducted in actual
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elementary and secondary school classes, were free from methodological flaws which

might invalidate comparisons between the test group and the control group, and included

quantitative measurement of outcomes. Sometimes the outcomes measured did not include

academic achievement, leaving 52 studies with measures of achievement. In these 52

studies the median tutored student performed at the 66th percentile of the untutored

students. Another way of stating the result is that tutoring raised performance by about

two-fifths of one standard deviation, in whatever units were being measured. While these

gains may not be large, they come from such a large data set that they are probably

robust.

Bloom [1984] reported startlingly good results comparing classes of elementary

school students taught in a normal classroom, in a normal classroom using Òmastery

learning,Ó and tutored individually or in groups of up to three together. There were

approximately 30 students in each category, and the experiment was limited to certain

subjects (as opposed to the whole school day) over three week blocks of time. The same

experiment was carried out a number of times by several different experimenters in

different places. Bloom termed his results Òthe two sigma problem,Ó because the average

tutored student performed two standard deviations above the average normal classroom

student. The result, that tutoring works, is quite dramatic.

A Difference in Style Between Novice and Expert Tutors

In this study I show that in some measurable way, our expert tutors engage in a

more active-learning tutoring style than a set of novice tutors did. In particular, they force
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the student to actively articulate answers more often, using language, as opposed to

passively hearing answers.

The CIRCSIM-Tutor project has done several tutoring experiments using novice

tutors who had not tutored this topic before, though they may have had tutoring

experience. The novice tutors were trained in various ways (trained in tutoring or trained

in the problem domain). One of our hopes is that by examining transcripts from these

sessions, and by comparing them to the expert-tutor transcripts, we can learn something

new about tutoring. Another goal is to answer the question whether expert tutors actually

achieve better results. (They do, a result which will be reported elsewhere by others.)

In this session I address the question of who ultimately articulates the fix of a

student error: the tutor or the student. This should be a measure of where the tutoring fits

on the scale of active to passive.

The bulk of a tutoring session consists of the tutor correcting the studentÕs

erroneous predictions one variable at a time. The tutor follows a logical order for those

variables, and sometimes other tutorial material is included, but it is always possible to

identify conversation segments where the tutor introduces an erroneously predicted

variable and the tutor and student discuss the matter until the tutor is satisfied that the

student knows (or, to be more precise, the tutor drops the topic). There are three ways

the tutor can be satisfied:

· The student says the correct answer, possibly in response to a direct question.

· The tutor says the correct answer.
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· The answer has become evident from the discussion.

It is possible that the tutor could drop the topic without one of the three conditions

obtaining, but except for a few special instances like running out of time at the end of a

tutoring session this case is not often observed. Here is an example of a tutor saying the

correct answer (CVP decreases) without forcing the student to say it:

T: CO also has an effect on another cv variable. Do you know which one this is?
S: SV
T: No. SV is one of the determinants of CO, along with HR, but CO does not

DIRECTLY affect SV. ... If an increase in CO causes the central venous volume
to decrease then the CVP will decrease as well. Does this make sense to you?

[N19-36]

And here is an example of another tutor teaching the very same topic, but forcing the

student to produce the answer:

T: ... The heart is taking blood out of the veins faster (CO is up) than the venous
return is filling the veins (it takes one minute to catch up) so the volume
remaining is decreasing. What happens to the pressure in the central veins
then?

S: The pressure is decreasing.
T: So, if CO is made to change (say it increases as happened here), what

happens to CVP?
S: It decreases. [K48-74]

The question is: what are the differences between novice and expert tutoring

behavior in this regard.

I examined the transcripts of 28 pacemaker tutoring sessions considering only the

DR phase of tutoring. I picked the DR phase because hardly any tutoring sessions run

into time trouble before this phase of tutoring is complete, and also because there are no

ambiguous predictions. Half the transcripts were taught by the experts and half by the

novices.
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The novice transcripts were all from the April 1996 experiments. This was

because of the perception that the novice tutors in April Õ96 were better prepared than

their predecessors.

For the 14 expert transcripts I took all seven  pacemaker transcripts since the

advent of our current tutoring protocol (which is what the novice tutors used), and seven

from the more recent ones before that. I excluded the transcripts from an experiment

where the students were being tutored for the second time around, making them less

comparable to the students used in the other  sessions.

There were four novice tutors, three of them contributing four sessions each and

one contributing two sessions. Among the expert sessions, four were taught by Dr.

Rovick and ten by Dr. Michael.

I recorded every prediction table parameter the student made an error on, with the

exception of the error of not picking Heart Rate as the primary variable. This error was

sometimes ignored by the tutors, I surmise on the grounds that fixing it was an artifact of

the tutoring protocol and not necessary for understanding the material.

Most errors were incorrect predictions in the original prediction table. A few were

correctly predicted initially, but during the dialogue it developed that the student made a

mistake or exhibited a misconception about a variable which occasioned remediation.

I tabulated who first articulated the corrected prediction.

There are four possibilities that I recorded: the student introduced the corrected

value, the tutor did so, it is ambiguous or hard to determine, and the error was never fixed.

The ambiguous case arises when dialogue proceeds to the next variable after some
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discussion, after it seems that the value should be obvious, but the value is not explicitly

stated.

I also recorded whether the original error was in the initial set of predictions or

developed during the conversation.

It is interesting to note that in fourteen DR sections, using the same pacemaker

procedure, there were 39 erroneous predictions in the novice tutor transcripts and 41 in

the expert tutor transcripts. This indicates that the students probably were comparable

(on average) in their ability to solve the problem.

The net result of all this counting is quite clear: Expert tutors were more likely

than novice tutors to have the student introduce the correction: 85% of the time vs. 56%.

Conversely, novice tutors are much more likely than experts to introduce the correction:

38% of the time vs. 7%, as shown in Table 1.

Computing c2 = 11.255 for this table, with three degrees of freedom, allows us to

conclude that the experts and novices are different at a significance level of 0.02. If we

discard the five ambiguous and uncorrected cases, we have  c2 = 10.954 with one degree

of freedom, allowing us to say experts and novices are different at a significance level of

0.001.

The implication for CIRCSIM-Tutor is unambiguous. We prefer that when the

computer tutor is engaging in dialogue to fix incorrect predictions, it should not inform the

student of the correct answer if it can elicit  the corrected prediction from the student

instead.
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Recent Developments in Similar Intelligent Tutoring Systems

The proceedings of the most recent ITS conference [Goettl et al. 1998] includes a

number of recent developments which show that free-text student input is being worked

on in various ways. The PACT Algebra I tutor [Mark et al. 1998] and Algebra II tutor

[Corbett et al. 1998] take free-text equation input, as does the Andes physics tutor

[Gertner 1998]. The 1998 ITS conference also contains a description of what seems to be

the only large modern tutor-directed intelligent tutoring system which accepts free-text

input almost exclusively: AutoTutor [Wiemer-Hastings et al. 1998], which will be

described in Chapter 7.

Gertner [1998] mentions student frustration with the Andes tutor marking

equations as incorrect when the students thought they should be correct. (Sometimes the

equations were actually incorrect, but Andes did not explain that very well.) Generally

Andes parses equations from student input and compares them to the desired answers.

When Andes rejects an equation, GertnerÕs modifications to Andes come into play. She

has a corpus of more than 500 different student-written equations from Andes log files,

Table 1. Who Ultimately Corrects the Error

 Novice
 Instances

 Novice
 Percent

 Expert
 Instances

 Expert
 Percent

Student
corrected

22 56% 35 85%

Tutor
Corrected

15 38%  3 7%

Ambiguous   1 3%  2 5%
Not
corrected

  1 3%  1 2%

Total cases 39 41
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enabling her to categorize the phenomena which were causing difficulties. She describes

her equation matching algorithm which enables Andes to compare the errant equation to

various samples of equations with known difficulties. Different difficulties are believed to

be diagnostic of different types of misunderstanding, which enables Andes to select the

appropriate hint or instruction.

 What is striking to me is the similarity of AndesÕs equation issues to CIRCSIM-

TutorÕs issues with free-text input. By having students produce their own equations, you

are forcing them to use their recall memory instead of their recognition memory. This

causes problems because the students can (and do) type a wider variety of inputs for the

tutor to decipher. As in CIRCSIM-Tutor, Gertner has turned some of those unexpected

incorrect student inputs into teachable moments, thereby mining even more advantage

from the use of free-text student input.

Also reported at the 1998 Intelligent Tutoring Systems conference, Aleven et al.

[1998] are moving the PACT Geometry tutor in the direction of accepting free-text

explanations for proof steps. What motivates this change is an observation that students

seem to be learning how to work the geometry problems in what the authors call a

ÒshallowÓ manner, e.g. by analogy to previous problems. According to the ACT theory

which informs all the PACT tutors [Anderson 1993; Anderson et al. 1995], the

knowledge the tutor is trying to teach is divided into declarative knowledge and

procedural production rules, as follows:

An example of a declarative structure in the domain of geometry might be the
side-angle-side theorem: ÒIf two sides and the included angles of two triangles
are congruent, then the triangles are congruent.Ó Procedural knowledge might
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involve skills of placing triangles into correspondence, determining what an
included angle is, setting subgoals, and making inferences. It might also include
some frequently encountered uses of this rule such as recognizing triangles as
congruent which meet this condition. [Anderson et al. 1995]

The reported difficulty is that instead of learning procedural steps such as Òcompare

these angles because we want to establish a certain prerequisite of the side-angle-side

theoremÓ the students are instead sometimes learning heuristics such as  Òcompare these

angles because thatÕs what we did in the other problem which resembles this oneÓ and Òif

two angles look the same in a diagram then they have the same measure.Ó

One solution being adopted by the Geometry Tutor team is to force the students

to give justifications for the procedural steps in their proofs. They hypothesize that the

verbal encoding of the rules will cause the students to focus on and learn the logical

features of the proof, not heuristics based on visual similarity. Right now the student

picks a reason from a list of possible reasons, and the authors of the tutor are working on

providing free-text input in the future.

Aside from the observation that forcing students to explain themselves probably

improves learning, the implications for CIRCSIM-Tutor are not clear. The explanations of

steps in the geometry proofs are short, but the examples of these explanations produced

by students on paper-and-pencil tests show that machine understanding of studentsÕ

explanations will be a messy task. There would seem to be a similarity between proving a

theorem, such as occurs in the geometry domain, and causal reasoning, such as occurs in

CIRCSIM-TutorÕs domain. But we donÕt observe proof-like verbal behavior in the CIRCSIM-
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Tutor project transcripts, where students are required to justify their predictions as a

sequence of logical causal steps.
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CHAPTER IV

OTHER DIALOGUE-BASED INTELLIGENT TUTORING SYSTEMS

SCHOLAR: Early Intelligent Tutor with Mixed Dialogue

SCHOLAR [Carbonell 1970], an early tutoring system, used language-based

tutoring where the tutor often had control. SCHOLAR is often taken to be the first use of

artificial intelligence in a tutoring system. It was fundamentally a question-answering

system. It contained a semantic network concerned with the geography of South America,

of which the student could make inquiries. The semantic network and associated

reasoning capability were the basis of CarbonellÕs claim to have created an intelligent

system. It was quite good at locating and printing relevant bits of knowledge. Carbonell

also included a feature where the program could ask questions of the student, so that the

program and the student would be asking questions of each other in the conversation.

SCHOLAR had no dialogue plan and only limited tutorial plans. It had a list of topics to

cover, each of which could be randomly realized as a yes/no, multiple-choice, or short-

answer question. If the student interrupted a question by asking a question, SCHOLAR

could later return back to the interrupted topic. It reacted in different ways to certain

variations in the studentÕs answer, such as commenting on spelling errors. But there was

no possibility for Socratic tutoring because it had no multi-turn dialogue acts.

Creanimate: Combining Socratic Tutoring with Case-Based Techniques

An interesting relatively recent model for student interaction with an intelligent

tutoring system is the Òcase-based teaching architectureÓ developed at the Institute of the

Learning Sciences, one example of which is the Creanimate system [Edelson 1996]. This
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tutor is for teaching animal adaptation: the relation between the morphology of an animal,

what it can do, and how it survives. The basic tutorial activity is that students propose

modifications to animals. The tutor maintains control of the conversation, asking

questions, instructing as needed, and illustrating with cases, often video clips. For

example, a student wanted to create a monkey with wings. After offering to show an

example of a mammal with wings (a fox bat), Creanimate continues:

T: If your monkey is going to have wings, that should help it do something. Why
would you like your monkey to have wings?
So it can ...

S: fly away from its enemies.

It then offers to show some examples of flying. If the student had given a reason which

was incompatible with wings, the system would try to teach something about that or

offer another suggestion.

The point to notice here is that even though the tutor has control it is offering the

students the opportunity to make written suggestions, the results of which alter the

teaching agenda. This type of dialogue is fill-in-the-blank, as shown above where the

system emitted ÒSo it can ...,Ó leaving the student to contribute Òfly away from its

enemies.Ó Often the student is presented with a choice of several sentences to complete in

this manner.

However the system recognizes only some limited number of different ideas

which would fill the blank in Òso it can ....Ó The system extracts what it can use and

ignores the rest. One of EdelsonÕs goals is to keep the student engaged, and he evaluates

his system partly on that basis. He notes that the conversation is rather inflexible and

somewhat repetitive. Also he writes:
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Although the question-and answer dialogues that the Creanimate dialogue
manager is capable of conducting provide for rich learning opportunities and a
great deal of student control, they fall short of the truly engaging active learning
that is the goal of the case-based teaching architecture. Although they give a
learner room to propose hypotheses and give direction to an interaction, they
place the student in a reactive, overly passive position. [Edelson 1996]

What is interesting is that Creanimate takes free text at all. It is a screen-oriented

application, with most of the student input options expressed as buttons and other screen

widgets. When the system doesnÕt recognize an answer, it displays a list of items it will

accept. No diagnostic information is derived from deviant student answers. Clearly

Creanimate would have been easier to build without free-text input. Considered this way,

it becomes apparent that Edelson incorporated free-text input as a mechanism to keep his

students engaged and to promote active learning. (Active learning is a topic he discusses at

some length.) Although his suggestions for improvement involve such devices as hands-on

construction of animated animals, the fact that his system can keep fourth-gradersÕ

attention spans for quite some time (he mentions up to two hours) is a tribute to its

capabilities.

Dialogue-Enhanced Explanation Systems

Two systems which in some ways have informed the CIRCSIM-Tutor enterprise

are the Program Enhancement Advisor (PEA) from Moore [1995] and the EDGE system

from Cawsey [1992]. What these systems have in common is that they approach the act

of generating explanations as dialogue. It is not enough for the computer to merely

generate a sentence or a paragraph describing something it knows. When human explainers
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(including human tutors) give explanations, their students often ask questions and

influence the explanation being generated.

The PEA system [Moore 1995] advises its users on how to improve their Lisp

code. PEA asks the user what aspect of the Lisp function needs improving, then makes

recommendations. The user can accept or reject the recommendation, or can ask for

explanations. During the explanation, the user can ask follow-up questions.

The maintenance of dialogue is a primary goal of PEA. In order to maintain more

natural-sounding dialogue, and especially to be more responsive, Moore maintains both a

user model and a dialogue history. She gives examples where the user asks Òwhy?Ó (there

are a finite number of questions the user can ask) and PEA figures out which possible

ÒwhyÓ to address and how to address it. This achievement depends on both the user

model, which holds PEAÕs belief about what the user already knows, and the dialogue

history, which knows what topics are under discussion and which have already been

addressed. A result is that if the user asks Òwhy?Ó several times in a row different

utterances come out, because with each explanation the user model and dialogue history

are changing.

The EDGE system [Cawsey 1992] generates interactive explanations of how

certain electrical circuits work. In CawseyÕs computer model of explanation behavior

generating dialogue is primary, and organizing the content is secondary. The system has

as its high level goal the issuance of four kinds of dialogue turns: Òinitial,Ó Òexplanation,Ó

Òfollow-up questionsÓ (to the user), and ÒresponseÓ (to questions from the user). In a
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manner similar to a good many dialogue systems (including CIRCSIM-Tutor) EDGE divides

is intelligence up into content-planning and dialogue-planning sectors.

Cawsey started with transcripts of human dialogues of experts describing these

circuits to novices. The questions were not all from the novices eliciting better

explanations; some of the questions involved the experts quizzing the novices. This is

why EDGE includes both follow-up questions from the machine to the user as well as

questions from the user to the machine.

It is this observation, that generating explanations requires two-way dialogue, that

persuades me there are significant similarities between good explanation systems and

intelligent tutoring systems. In CIRCSIM-Tutor the machine has firm control over the

agenda, in the explanation systems it is the user who has control. Even given that

difference, however, there are resemblanceÕs as follows: 1) the primary planning goal is to

maintain a dialogue, 2) at least some of the machine turns during that dialogue are

explanations, 3) what to explain and how to explain it are derived, in a large part, from

state information (user model, dialogue history) which results from back-and-forth

dialogue.
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CHAPTER V

PHENOMENA ENCOUNTERED BY THE INPUT UNDERSTANDER

In this chapter I consider some of the varieties of student input which the

CIRCSIM-Tutor input understander encounters and might be expected to encounter in the

future. The examples of student language come from (or were inspired by) both logs of

CIRCSIM-TutorÊv.Ê2 and the transcripts of human tutoring sessions.

An issue here is that CIRCSIM-Tutor is a rather limited conversationalist. We

compensate for its less-than-human capability by having the computer keep control of

the conversation, ending everything it says with a question or an instruction for the

student. The student responds to the questions, and doesnÕt have an opportunity to get

many words in edgewise. The student can type anything, but in practice the students

tend to stick to answering the questions fairly concisely, because that is all the machine

tutor can respond to.

So in order to find examples of the kind of student input which the machine tutor

might encounter in the future, as its capabilities expand, they are taken from the human

tutoring transcripts.

Along with the various categories of student language, I frequently discuss how

they might be useful to the machine tutor, and how they might be processed by the input

understander program.

Note that human tutors frequently ask questions which admit of a broader range

of answers than the questions described here. Hume [1995] has documented our tutors

asking diagnostic questions designed to elicit explanations from the student. Later in
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Chapter 7 I will give examples of such questions and describe how I think CIRCSIM-Tutor

might be able to incorporate them. It is also possible in most conversations with human

tutors for the students to take, even if briefly, the conversational initiative. I will touch

upon this behavior later in this chapter. The remainder of this chapter is devoted to the

phenomena encountered in the answers to more ordinary questions. Much of this material

was originally documented in [Glass and Evens 1996, Glass 1997].

Even within the domain of fairly simple questions, there is need for the input

understander to handle a number of phenomena beyond correct one-word or one-phrase

answers illustrated below. The increased demand on the input understander comes from

both the variety of student behaviors which we are interested in handling and the

increased capabilities of the tutorial and language planners. Note that increases in the

input understanderÕs capability must often be matched by increases in the tutorial

plannerÕs capability; recognizing and responding intelligently to the new phenomena go

hand-in-hand.

Qualitative Changes

Perhaps the simplest question asked by CSTÊv.Ê2 is ÒWhat is the correct value of

<var>?Ó The question is asking for a qualitative change: up, down, or no change.

Usually the student gives a short, fragmentary answer. There is often little

syntactic resemblance between the question and the answer. Table 2 contains some

responses to the question ÒWhat is the correct value of <var>?Ó What is interesting about

this table is first, its sheer variety, and second, the extent to which the answers donÕt

syntactically match the question.
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Yanofsky [1978], in her study of bare noun phrase utterances, had a similar

observation, to wit: there is no reason to believe that many short utterances have a

syntactically compatible linguistic controller somewhere. This contradicts earlier theories

that utterances smaller than a full proposition are derived by deletion from a bigger

proposition. The deletion can be controlled either syntactically from a preceding sentence

(ÒWhere are you going?Ó / ÒHome.Ó) or pragmatically (during a chess game: ÒYour

move.Ó). In these instances the short utterance can be seen to fit as a constituent of a

larger, but unexpressed, proposition, to wit: ÒHomeÓ is an adverbial modifier or a location

object in the sentence ÒI am going homeÓ and ÒYour moveÓ is the object of ÒIt is your

move.Ó

Table 2. Short Answers to ÒWhat is the Value of ....Ó

Word Comment
up (adverb)
increase (verb)
increases
increased (predicate adjective or past participle)
i (drastic but common abbreviation)
unchanged
no change
goes up (phrasal verb)
went up
it goes up (a whole sentence)
negative (adjective)
+ (symbol)
zero
o (letter ÒoÓ substituting for digit zero)
remains same (curious grammar)
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If this kind of argument is unfamiliar to you, let us consider possible answers to

ÒWhere are you goingÓ to see how it works in Table 3. Unacceptable answers are marked

with an asterisk.

You can see that to a first approximation, a short answer must syntactically fit the

question, in this case it must replace the constituent X in Òyou are going X.Ó YanofskyÕs

catalog of NP utterances proved that this is not always true. She gives the following as

but one of many examples. Suppose that Bob and Carol are walking down a busy street

and Carol suddenly blanches:

Bob:    What happened?
Carol:  My ex-husband.

Clearly there is no linguistic controller for Òmy ex-husband,Ó as it is generally not correct

to say Òmy ex-husband happened.Ó

Frederking [1988] has a nice computational model of ellipsis and pronoun

resolution called Psli3. In a sequence of utterances in a dialogue he constrains the

antecedents of ellipses partly by their discourse functions, as opposed to by their syntax.

Here are two examples of bare noun phrases which his program can resolve [Frederking

1988, pp.Ê32Ð33]:

Table 3. Responses to ÒWhere are you going?Ó

Answer Meaning
Home ÒI am going home.Ó

* To home * ÒI am going to home.Ó
To my home ÒI am going to my home.Ó
Away ÒI am going away.Ó

* From the enemy * ÒI am going from the enemy.Ó
Away from the enemy ÒI am going away from the enemy.Ó
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Hand me a hammer. A wood-handled one.

Show me your hands. The other side.

FrederkingÕs program depends heavily on case frames for resolving semantic and

pragmatic constraints and finding antecedents. Once an utterance has been parsed it can be

matched against the instantiated case frames produced by previous utterances, regardless

of whether or not there is a syntactic match.

And that is indeed our experience as shown in Table 2. Answers such as

ÒincreaseÓ and Òno changeÓ do not fit neatly as a constituent of any plausible syntactic

explanation of ÒWhat is the correct value of <var>?Ó, but they make perfect semantic

sense.

Occasionally a student will state an answer as a complete proposition, for

instance Òcardiac output increasesÓ when just ÒincreasesÓ would be adequate. We have to

produce a logical form for such a sentence and then match it to the question. Consider the

hypothetical exchange:

T: What happens to stroke volume?
S: Cardiac output increases

Clearly the input understander canÕt simply notice the word ÒincreasesÓ and ignore the

rest. Another question is how to handle the following hypothetical case:

T: What happens to stroke volume?
S: It, like entropy, increases with time.

I claim that in this case the best response is for the input understander to notice

ÒincreasesÓ if it cannot recognize the rest of the sentence.

There is no profit in parsing many of these answers with a grammar of complete

sentences. Indeed, following both Yanofsky and Frederking, there is no basis for
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considering them as reduced sentences at all. Instead, in the CST input understander

lexical entries for observed short-answer words and phrases contain pointers to the

relevant logical concept. The above examples cover only three concepts: up, down, and

nochange. It is the job of the input understander to try to match these concepts, taken

from the lexical entries, to the question being answered, which is available from the

planner in logical form.

In our keyboard-to-keyboard transcripts as well as logs from the machine tutor we

have fairly extensive examples of these kinds of answers. Despite the wide syntactic

variety, there really are only a limited number of them, so we can catalog them all.

There is a fourth concept which is needed for these questions, change, meaning

up or down without specification. It is not attested as a student response in any CIRCSIM-

Tutor log that I have seen, but can occur as a result of incomplete understanding of a

studentÕs answer such as Òit doesnÕt change.Ó This might happen, e.g., because of a

typing error. More often, the change concept occurs in the tutorÕs utterance, for

example when the tutor gives a negative acknowledgment as in the following hypothetical

exchange:

T: What is the value of Mean Arterial Pressure?
S: Unchanged
T: Wrong, the value of Mean Arterial Pressure must be changed from its initial

value.

Phrasal Answers

Less fixed, because students exhibit linguistic creativity, are certain phrasal

answers. In response to the same question Òby what mechanism is <var> controlled?Ó

students have been observed uttering Òneural,Ó Ònervous system,Ó Òparasympathetic
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nervous system,Ó Òsympathetics,Ó Òsympathetic stimulation,Ó Òsympathetic toneÓ and

ÒreflexÓ among other answers. Given such data, we would not be surprised to see Òneural

stimulationÓ or Òreflex system.Ó

 Just as in the short answers, the lexicon yields up a concept associated with

many of the words and phrases. In this case, the relevant concept is nervous system

and that concept is in the lexical entries for the adjective Òsympathetic,Ó the noun

Òreflex,Ó the adverb Òneurally,Ó and so on.

Note that the eventual interpretation of a noun phrase does not necessarily come

from the head noun. For example, ÒsystemÓ as the head noun in Òneural systemÓ

contributes nothing; it is ÒneuralÓ that carries the meaning. This observation is one factor

which made Lexical Functional Grammar awkward. Generally in LFG interpretations the

head word provides the basic meaning in the functional representation of a constituent

and the meanings of modifiers are included in other ways. The formalism makes this

structure very convenient, but it is not always what you want.

Flagging all neural words as Ònervous systemÓ in the lexicon is too simple-minded.

Consider the difference in the following two extracts from the human tutoring transcripts.

The significant parts in the second extract are marked:

T: Can you tell me how TPR is controlled?
S: Autonomic nervous system.
T: Yes. And the predictions that you are making are for the period before any

neural changes take place. [K10-29]

T: How is TPR controlled?
S: Sympathetic vasoconstriction.
T: Right, TPR is primarily under neural control. WeÕre talking about what happens

before there are any neural changes. [K11-49]
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The studentÕs answer in K10, Òautonomic nervous system,Ó exactly matched the tutorÕs

intention, which was to talk about neural changes. The student in transcript K11 gave an

answer Òsympathetic vasoconstrictionÓ which, while correct, was slightly farther from

the desired answer. The tutor reflected back a corrected version: ÒTPR is primarily under

neural control.Ó The tutors do not always exhibit this behavior, often assuming that an

answer such as in K11 is close enough that it does not need the implicit correction, but it

occurs frequently enough that we should consider supporting it in the machine tutor.

There also occur instances in the transcripts where some of the semantic differences

among the various neural answers are important (for example the difference between

parasympathetic and sympathetic nervous systems) although we have not formalized

those tutoring strategies yet so they do not occur in CSTÕs conversation.

In CSTÊv. 2 all neural answers are treated alike. The tutor always responds by

reflecting ÒCorrect, TPR is controlled by the nervous system,Ó no matter which neural

answer the student typed. It is a fail-safe response, suitable for answers which were both

exactly and approximately correct. However, in order to make finer distinctions in the

future it is necessary to put these distinctions in the lexicon. One word, e.g.

Òsympathetic,Ó might sometimes be equivalent to ÒneuralÓ in response to one question or

equivalent to ÒautonomicÓ in response to a different question or even specifically

ÒsympatheticÓ in response to a third question. The solution is to have a little ontology

containing all neural terms. In this ontology ÒsympatheticÓ and ÒparasympatheticÓ are

both part of ÒautonomicÓ, which is part of Ònervous systemÓ, which is a Òmechanism.Ó

We put the specific meaning of the term in the lexicon. For purposes of answering
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particular queries the ontology tells us whether the meaning of the given word fits the

desired category.

Spelling Errors

Spelling errors of various sorts are a striking feature of the tutoring transcripts.

Chapter 8 contains a discussion of the spelling corrector and how it is integrated into the

new CSTÊv.Ê2.5 input understander.

From a computational point of view, the term Òspelling errorÓ is being stretched

here to cover words which occur in the text, do not occur in the lexicon or cause parse

failure, but could be replaced by a word or words from the lexicon to achieve the intended

effect. Several phenomena can be so described. There are some examples in Table 4.

To get a flavor of what happens in actual input, in the following sentence we can

find two spelling errors, a missing letter and a transposition:

Table 4. Some Attested Spelling Errors

Text fragment containing
unknown input word

Replacement
from lexicon

What happened?

I didn't think that radius
would chande (K51-39)

change substituted one letter

the radiuis of the arterioles
(K51-80)

radius interpolated one letter

how stretched the msucle
fibers are (K50-32)

muscle transposed two letters

Whyndid you predict that
(K49-50)

Why did space character mistyped

to prdict a change in sv
(K48-262)

predict elided one letter

doesn't sound to positive
(K47-181)

too wrong word, wonÕt parse

think of the eq CO=HR x
SV (K47-141)

equation drastic abbreviation
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EDV deterines how stretched the msucle fibers are. [K50-tu-32-2]

In addition to spelling problems, one can observe many impromptu abbreviations

in the transcripts. When conversing with human tutors, students often abbreviate with

abandon. ÒInotropic stateÓ can become Òinotropic s.Ó ÒParasympatheticÓ can become

ÒparasympÓ or Òpara.Ó There is a stock of standard abbreviations which can be used at

any time. ÒCardiac outputÓ is usually typed ÒcoÓ or sometimes Òc.o.Ó The standard

abbreviations are in the lexicon, and are thus not subject to spelling correction. But the

impromptu abbreviations are not in the lexicon, so it is the spelling corrector which

ultimately handles them.

In the course of rewriting the program which numbers transcripts I used some

rules which help with the impromptu abbreviation problem. These rules have not been

incorporated into the CST input understander, but they can be included in the future if a

better handling of impromptu abbreviations is needed.

The input to the numbering program is a raw transcript, where the turns are

separate blocks of text. A primary job of the numbering program is to separate out the

sentences in each turn and number them within turns. Usually whoever types a multi-

sentence turn puts periods at the ends of sentences (they are frequently omitted in single-

sentence and fragmentary turns), but the periods which occur in abbreviations can cause

difficulty. A simple algorithm to collect interstitial and final periods and blanks from

strings of single letters works rather well, so that if someone types Òa.n.s,Ó Òa. n. s,Ó

Òa.n.s.,Ó or Òa. n. s.Ó it will not cause extra, short, sentences. Some of the period-delimited

abbreviations are in fixed expressions, such as the Òdr.Ó in ÒDr. MichaelÓ and ÒDr.
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RovickÓ (you canÕt count on capitalization). I collected from the transcripts I was

numbering a table of known period-containing abbreviations. Any abbreviation found in

the table is presumed not to end a sentence. Note however that it is insufficient to simply

put Òdr.Ó in the table as an abbreviation, since many sentences will legitimately end with

Òdr.Ó meaning Òdirect response.Ó The table must also contain the doctorÕs name in order

to distinguish the title Òdr.Ó from the stage Òdr.Ó Note also that some students misspell

their professorsÕ names, so some care is required.

The program works better than its predecessor, and was used for numbering most

of the thirty novice tutoring transcripts. It is not perfect however; hand-editing of the

result is required. Typically about 2% of the turns need to be renumbered by hand.

Hedges

Hedged answers occur frequently when students are conversing with human

tutors. ÒHow about cardiac output?Ó is one attested answer to a question [K25-st-53-1].

We see hedged student utterances frequently in the transcripts of human tutoring

sessions, and even occasionally in the logs of the machine tutor. It might be possible to

make use of hedges in the student model and perhaps in dialogue generation. A heavily

hedged response, for example, might deserve an explicit positive acknowledgment, even

though positive acknowledgments are not always given explicitly.

CIRCSIM-Tutor v. 2.5 does not have any mechanism for handling hedges, so they

remain largely unimplemented in the new input understander. Right now, in the new input

understander only the question mark signals a hedge, and this information is not reported

to the planner.
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It is hard to discern a common principle which would allow the input

understander to recognize hedges. I have examples of hedge phrases from our transcripts

(including the popular question mark), which the input understander converts to a hedge

token in the input. It makes no practical sense to parse ÒI think cardiac output increasesÓ

into a main verb ÒthinkÓ with a complement sentence. Consider first that few real answers

to the machine tutorÕs questions are complicated enough to contain an embedded

sentence, and second that the student may also utter Òcardiac output, I think.Ó Therefore I

would include ÒI thinkÓ as a phrase in the lexicon, flagging a hedge. The word ÒprobablyÓ

receives similar treatment, along with ÒI guess,Ó Òpossibly,Ó Òwhat about,Ó and other

common hedge phrases.

One can catalog any number of hedges by looking at the transcripts. It seems

certain that students will always be able to create new ways to hedge, but absent a general

principle to recognize hedges cataloging known ones is what we will do.

Having said hedges are largely recognizable by key words and phrases, it must be

noted that sometimes there is a syntactic clue: students do sometimes hedge by simply

asking a question, perhaps with no punctuation at all. So identifying the inverted verb (if

the student entered a sentence) or finding a wh- word may be useful for identifying

answers hedged in this fashion.

Related to hedges are phatics and expressions of frustration. Phatics are the small

meaningless phrases used to establish social communion. Seu [1992, p.Ê46] claims to have

found and counted such phrases in the transcripts, expressed as words such as ÒOKÓ,

Òwell,Ó and Òoh.Ó It is not clear to me whether students will attempt to achieve social
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communion with a computer tutor, but perhaps we can be ready if they reflexively try.

We do not see expressions of frustration (which Seu classifies as a form of phatic) in the

transcripts, possibly because the tutor is usually the studentÕs professor. In the past I

have seen them in logs of library patrons using an on-line catalog [Glass 1986]. In the

most recent (November, 1998) logs of a physiology class using CIRCSIM-Tutor at Rush

Medical College there are two attested examples.

Category Errors

A certain number of student answers are of the wrong category, not what was

expected. Some of them are of the Òkitchen sinkÓ variety, such as this one (marked with

an asterisk) from the November 1998 sessions at Rush Medical College:

T: By what mechanism is Total Peripheral Resistance controlled?
* S: Metabolic factors

T: Is the mechanism of control neural or physical?
S: Neural

In this case the input understander didnÕt recognize the studentÕs input, as it is beyond

the normal semantic range used in building the lexicon. The response Òis the mechanism of

control neural or physical?Ó is an error message from the input understander. In the past

the input understander emitted the error message ÒIÕm sorry I donÕt understand you,

please rephraseÓ in response to all problems. Experience has shown us it is important for

the input understander to indicate the category of answer it expects. All the new input

understander error messages follow that pattern.

Perfectly recognizable input can still be a category error. Suppose the student in

the example above had typed Òincrease,Ó viz.:
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T: By what mechanism is Total Peripheral Resistance controlled?
S: Increase
T: Is the mechanism of control neural or physical?

 This kind of response happens with some frequency.

In CIRCSIM-Tutor v. 2 there is no good way to report such a response to the

discourse planner, and the discourse planner couldnÕt use such an answer. So it is the

responsibility of the input understander to screen the category of the given answer against

the categories of acceptable answer and issue an appropriate response to the student.

Near-Misses and Other Appropriate but Unexpected Answers

We have observed a number of categories of student answers which arenÕt what

the tutor expected, but arenÕt incorrect either [Glass 1997]. Here is an example, with the

studentÕs unexpected response marked with an asterisk:

T: What is the primary mechanism of control of TPR?
* S: Radius of arterioles.

T: Yes. And what is the primary mechanism by which arteriolar radius is
controlled?

S: Sympathetics.
T: Yes. [K12-37]

Here the tutor wants to make the point that TPR is controlled by a nervous system

reflex. The nervous system happens to do that by varying arteriolar radius. Thus

arteriolar radius is not a wrong answer; it really does control TPR. The student should not

be contradicted. The studentÕs answer doesnÕt serve the immediate tutoring goal either. If

an answer can be made to serve, by having the tutor leading the student from the

unexpected answer to the desired answer, we call it a Ònear-miss.Ó

There are many similar cases involving other concepts in our transcripts. For

instance, if the tutor asks Òwhat determines stroke volumeÓ the student might reply
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Òventricular filling.Ó Again, this answer is correct but it doesnÕt serve the immediate

tutoring goal. The tutor in that case may try to lead the student from ventricular filling

back to the desired answer, which is central venous pressure or, in older transcripts, right

atrial pressure. Here is an attested example:

T: What are the parameters that determine the value of SV?
S: Filling and contractility?
T: Right, but which parameter in the table reflects filling?
S: RAP [K44-116]

For processing these kinds of answers the input understander needs to make some

sort of preliminary relevance judgment. If the question is about the determinant of a

parameter, then any parameter is in the right category of answer. However when the

answer to the question about what determines TPR is Òarteriolar radiusÓ we discover that

the category of desired answer (ÒreflexÓ) is a neural control mechanism while the category

of the actual answer Òarteriolar radiusÓ is a measurable parameter. It would appear that

Òarteriolar radiusÓ cannot be an answer to the tutorÕs question, as it isnÕt the same type of

object that is being asked for.

In order to identify a near-miss answer it is necessary to know the current tutoring

goal. In CIRCSIM-Tutor v. 2 this information is not available to the input understander.

The discrimination among types of student answers is performed in the student modeler.

However there are only a finite number of possible near-miss cases which the student

modeler and planner can recognize, so the input understander can be aware of the various

types of acceptable near-miss answer categories.

How the tutorial planner handles the near miss is not an input understander

question. If it has the appropriate schemas, it may be able to follow up on the near miss,
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and then return to its tutorial plan in progress. The point here is that if the planner can

engage the studentÕs partly-correct idea, this is more responsive than simply treating the

near miss as an incorrect answer. It can be akin to a student initiative, in the sense that the

planner suspends its current plan, deals with a student idea, then returns to normal

tutoring.

We like near-misses because they are implementable, they are something that

students demonstrably do, and it is a step toward making a planner which adapts its

tutoring plans in a cooperative response to the studentÕs input.

Misconceptions are another type of student answer which are appropriate but

unexpected. This is an example of a common misconception described by Sanders

[1995,Êp.Ê97]:

T: In what way is cardiac contractility CC controlled?
S: It's controlled by the volume of blood in the compartment and affected by

ionotropic changes.
T: Not quite. Changing the volume changes the performance of the muscle via the

length/tension relationship, i.e. Starling's Law.... [K31-60]

In this case Òvolume of blood in the compartment,Ó a parameter, is given as a determinant

of inotropic state. Again, this appears to be a category error. What was expected was a

neural mechanism of control, what was received was a parameter. From the input

understander point of view it is the same as a near miss.

However this answer is indicative of a common misconception confusing inotropic

state with a phenomenon known as the Frank-Starling effect. From the tutorial planner

point of view it triggers a diversion which remediates the misconception.
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Notice that the misconception is not understood and diagnosed by using any deep

model. Instead the misconception was cataloged by examining the tutoring transcripts.

CST recognizes certain short answers as being diagnostic of certain misconceptions.

Misconceptions and near misses are powerful examples of why it is useful to

allow free-text student input. The above examples are comprised of very short, easily

understood answers to closed questions. Nevertheless they provide teachable moments. If

the students had no option for free text input, but instead had to pick from a menu of

answers, the right answers would always be staring them in the face.

Zhou et al. [1999] detailed CIRCSIM-TutorÕs most complete typology of

unexpected student answers to date along with examples of how the planner might

respond to each. She has implemented many of these in the CSTÊv. 2.5 planner. All

involve typical short student answers such as described in this chapter.

Student Initiatives

Student initiatives are utterances Òby which the student is apparently trying to

modify the course of the tutorial dialogue and could reasonably expect to do soÓ

[SandersÊ1995, p.Ê59].

One student initiative attested in logs of students using CSTÊv. 2 is ÒI donÕt

know,Ó sometimes taking the form ÒdunnoÓ and sometimes expressed in more

complicated ways. The input understander handles this case. CST responds simply with

the answer to the question and proceeds.

A discussion of initiatives is too big to include here, but it is useful to see a sample

initiative to become acquainted with the nature of the problem as an input understanding
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issue. Here is a student initiative involving simple language and concepts close to the

short answers we have seen so far in logs of the machine tutor:

T: ...what about the rate at which blood is being removed from the central blood
compartment?

S: The rate would increase, perhaps increasing RAP??? [K3-54]

In this example the underlined part is a student initiative. The hedged prediction about the

change in Right Atrial Pressure is extraneous; it does not respond to the question at hand,

which asked about the rate of change of Central Blood Volume. In fact the context for this

exchange was an attempt to remediate an incorrect prediction for RAP, so it seems the

student might have been trying to skip ahead to the conclusion.

Even this simple example presents a messy problem in input understanding. One

issue is that there are two clauses, of which one is responsive to the question and the

other one isnÕt. So it would be necessary to decode that there are two clauses and extract

the responsive one. Next there may be a question of causality. The studentÕs response

can be paraphrased as three independent statements: Òthe rate increases,Ó Òthe increasing

rate causes an increase in RAP,Ó and ÒRAP increases.Ó Deciphering this requires some

work. Finally there is the issue of divining the studentÕs intention. In the above case the

studentÕs intention cannot be known except by referring to the tutorial context. As a

practical matter, the studentÕs intention would have to be categorized into one of a small

number of types on the list of types the planner has plans for.

In the CIRCSIM-Tutor project student initiatives in the transcripts have been

extensively cataloged by Sanders [1995] and Shah [1997]. ShahÕs classification is too

complex to describe here, as it is composed of four somewhat independent components,
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but her list of communicative goals should suffice to illustrate the range of attested

initiative types:

· Request for information

· Request for confirmation (the student proposes a notion)

· Support (the student echoes back a notion received from the tutor)

· Challenge (the student appears to disagree with the tutor)

· Conversational repair

· Refusal to answer

· Time delay

· Other

In this thesis I do not discuss the question of handling initiatives in general. However

there are a few simple initiatives which are attested and are relatively easy to recognize

(such as the ÒdonÕt knowÓ initiative), and that are handled in the new input understander

described in Chapter 8.

Equations

There are two equations from the CIRCSIM-Tutor problem domain which

frequently occur in the transcripts: CO = HR x SV and MAP = CO x TPR. These

equations occur in various ways in student language.

In the transcripts the tutor occasionally prompts for an equation explicitly, for

example like this:

T: Can you write an equation that shows what variables determine MAP?
[K40-106]
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CIRCSIM-Tutor v. 2 currently never asks for an equation. However in the transcripts of

human tutoring we sometimes witness students providing equations as parts of their

answers, even when an equation was not requested. Can we expect this behavior from

students using the computer tutor? Indeed here is an attested example from a log of a paid

volunteer medical student using CIRCSIM-Tutor during an experiment in February, 1994:

T: What are the determinants of mean arterial pressure?
S: tpr X sv

We note that the correct answer would have been TPR and CO, not SV, but the point is

that it would be useful for the input understander to recognize equations.

There is variety in the syntax of equations expressed in student language, including

mixing of symbols and English. A fuller description of the expression and use of equations

is in Chapter 9.

Persuading Students to Use Our New Features

It is not surprising that students use much simpler language conversing with the

computer as opposed to human tutors. One imagines that students also carry

expectations that they have accumulated from previous experiences with question-asking

computers. If a computer program asks how many Cabinet officials the United States has,

for instance, few people would respond with Òabout a dozenÓ or Òwhy do you want to

know.Ó Computers do not in general reinforce giving such answers. The fact that CIRCSIM-

Tutor asks closed questions reinforces this behavior.

A nice example of what appears to be a person having confused expectations of a

computer dialogue is the following, from the November 1998 session at Rush Medical

College. The unexpected student answers are marked with an asterisk:
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T: What is the determinant of Central Venous Pressure?
(1) S: Blood Volume

T: Blood Volume determines CVP. However, no change in blood volume occurred
since DR.

(2) * S: OK
T: Please respond with prediction table parameters

(3) * S: Unchanged
T: Please respond with prediction table parameters

(4) S: Mean Arterial Pressure

In this segment student answer (1) was not expected, but it had some truth in it, so the

computer tutor responded with an acknowledgment and a hint. But in this turn the

computer did not issue a new question. Instead it silently handed control back to the

student. (This behavior was not intended by the programmers.) I cannot know what went

on in the studentÕs mind at this point, but the student responded in (2) with ÒOK,Ó which

would be a perfectly reasonable response to a human. It seems to me that in a normal

human conversation the mooted question still stands; it would be odd at this point for the

tutor to re-ask the question. That the student has lost sight of the question is shown by

answer (3). I attribute this lapse to the studentÕs expectation that the computer always

issues a question, and does not behave in the manner of normal human conversationalists.

The above non-question occurred several times in the November 1998 sessions at Rush.

On at least one other occasion it seemed to confuse a student, who typed the same wrong

answer several turns in a row.

Because people have prior expectations about how to answer computer-generated

questions, we expect that some of the phenomena we hope to capture and utilize wonÕt

often occur in nature. For example, we observe that human-tutored students often hedge

their answers, turning ÒincreaseÓ into Òincrease?Ó and Òcardiac outputÓ into Òprobably
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cardiac output.Ó If we want CIRCSIM-Tutor to respond to hedges we may need to give

students permission to hedge.

Instead of giving students explicit permission, it might be possible to include some

sample tutoring dialogue in the instructions. Finding neutral illustrative dialogue may be a

bit tricky, as we do not want to corrupt possible experiments by giving away answers to

some of the problems. But illustrating hedged answers with question marks and adverbs,

for example, may have more impact on the student than granting explicit permission.

Some of the phenomena we hope to handle, such as spelling errors, occur

naturally. We do not need to give students permission to misspell words in order for

misspellings to occur. But with human tutors students seem to misspell with abandon,

and invent impromptu abbreviations, more often than they do with the machine tutor. It

might be nice to increase the studentÕs expectation that the computer is capable of such

treatment, but if students receive positive reinforcement when typing mistakes occur,

giving permission may not be necessary.
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CHAPTER VI

TECHNOLOGICAL BACKGROUND TO THE INPUT UNDERSTANDER

Semantic Grammar in SOPHIE, an Early Free-Text Input ITS

 An early rather sophisticated free-text interface for an intelligent tutoring system

belonged to SOPHIE, a system to tutor the debugging of power supply circuits [Burton

and BrownÊ1979, Brown and BurtonÊ1975]. The examples that Burton and Brown

publish are quite impressive. Here are four sample turns of student input (tutorÕs

responses omitted):

a) What is the bse emitter voltage of the voltage limiting transitor?
b) What about the current limiting transistor?
c) What should it be?
d) What is the current through R22 when it is shorted?

[from Brown and Burton, 1975]

Some of the notable capabilities evinced by the above examples are:

· Correction of ÒbseÓ to ÒbaseÓ and ÒtransitorÓ to Òtransistor.Ó

· Fairly complex stacked nouns.

· Sentence b) has no verb.

· Identification of Òbase emitter voltageÓ as the controller of the ellipsis in b). There are

alternative possibilities, e.g. voltage to ground.

· Resolution of ÒitÓ in c) to Òbase emitter voltage of the current limiting transistor.Ó

· Resolution of ÒitÓ in d) to ÒR22,Ó a subordinate constituent embedded in a preceding

noun phrase. Contrast with Òthe current through R22 when it is normal,Ó where ÒitÓ

would refer to Òcurrent through R22.Ó
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This by no means covers all of SOPHIEÕs input understanding capabilities, but it is

enough to give you the flavor.

Brown and Burton [1975] explain why they chose to concentrate on the kinds of

features illustrated above:

To compound our problem we discovered from using early versions of SOPHIE
that when a person communicates with a logically ÒintelligentÓ system he
inevitably starts to assume that the system shares his Òworld-viewÓ or is at least
ÒintelligentÓ in the linguistic art of following a dialog. In other words, SOPHIE
had to cope with problems such as anaphoric references, context-dependent
deletions, and ellipses which occur naturally in dialogs. In fact handling these
constructs seemed more important than building a system endowed with great
syntactic paraphrase capabilities.  [Brown and Burton 1975, p.Ê324]

For SOPHIE Burton and Brown developed what they called a Òsemantic

grammar.Ó The notions behind the semantic grammar are not at all unusual today. It

resembles an ordinary context-free grammar for a small subset of English. The

non-terminals, however, correspond to the semantic concepts which SOPHIE knows

about, such as measurement, transistor and so on. Hypothetically, in order to parse a

phrase such as Òvoltage across capacitor C2Ó you could have a phrase structure

production such as:

<MEASUREMENT> := <MEASURABLE/QUANTITY> <PREP> <PART>

The derivation would then become:

<MEASUREMENT> ® <MEASURABLE/QUANTITY> <PREP> <PART>
®* voltage <PREP> <PART>
®* voltage across <PART>
®* voltage across capacitor C2

A drawback to such a scheme is the proliferation of productions as the number of

non-terminals increases. In an ordinary grammar, all noun phrases, for example, are
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derived from a single non-terminal <NP>. In the semantic grammar, there will be a number

of structurally similar rules, one for NPs which refer to measurements, one for NPs which

refer to parts, one for NPs which refer to terminals, etc. Because the domain of discourse

is restricted, as it is in an intelligent tutoring system, the problem is manageable.

Actual parsing in SOPHIE is accomplished by encoding each production as a Lisp

procedure. The result is a top-down recursive descent parser with a separate routine for

every production.

The rule routines are able to take care of quite a bit of syntactic sloppiness. The

semantic grammar gives good predictions of the types of constituents to expect next,

given what has already been parsed. The routines make various corrections to the input

text, and skip over unnecessary words, in an effort to find the next predicted constituent.

These parsing routines are also responsible for anaphora resolution and for

producing the semantic representation of the sentence.

Simple deletions are resolved by knowing the dependencies between the various

concepts. For example, the phrase Òthe voltage at the collectorÓ is analyzed as a

measurement, meaning it has a measurable quantity (ÒvoltageÓ), and a terminal

(Òthe collectorÓ). However, terminal is further subdivided into a terminal-type and a

part, where ÒcollectorÓ matches only terminal-type. In Òthe voltage at the collectorÓ the

part is missing. A look into the map of the dependencies between concepts reveals that

the word ÒcollectorÓ implies that some transistor is present. SOPHIE then looks

backwards through its discourse history to find the most recently referred-to transistor,

which fills in for the missing part.
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Ellipses are handled by enumerating their possible forms directly in the grammar.

An ellipsis is an utterance which expresses part of a proposition, with the remainder to be

picked up from context shared between the speaker and the hearer. Burton and Brown

[1979] give these examples, among others, of elliptical utterances which SOPHIE

correctly recognizes. The first sentence is complete, but the following three are ellipses,

where the omitted matter is marked with ¿:

What is the voltage at Node 5?
¿ At Node 1?
And ¿ Node 2?
What about ¿ between nodes 7 and 8?

The grammar has productions which can describe utterances such as the above, all

derived from the non-terminal symbol <ELLIPSIS>. The routine which handles these

productions knows it is resolving instances of ellipsis, and what constituents are missing,

so it can examine the discourse history to find the missing referent.

It is important to note that had the elliptical utterances been parsed as sentence

fragments or phrases according to a standard phrase structure grammar of English,

recovering the deleted constituents might have been more convoluted. The phrase Òwhat

about XÓ requires that X be a noun phrase, but in the above example it is a prepositional

phrase. The result of such a parse, if that parse is not informed by the idea that the whole

phrase is an ellipsis, is not likely to be useful. (In fact, SOPHIEÕs grammar seems to

recognize Òwhat aboutÓ as an introducer of ellipsis.)

There are big differences between SOPHIE and CIRCSIM-Tutor, of course. The

primary one is that SOPHIEÕs conversation is under student control (the student asks the

questions, the computer responds), and CIRCSIM-TutorÕs is the other way around. This
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affects the kind of language the tutoring system sees as input. The language that CIRCSIM-

Tutor sees is usually simpler. Because it is asking simple questions of the student, the

student rarely has to express a complete proposition. Deleted constituents should almost

always refer back to the immediate question. On the other hand, CIRCSIM-Tutor has goals

for the conversation. The studentÕs answer may or may not match the tutorÕs intentions,

or may match them in unusual ways. So although CIRCSIM-TutorÕs parsing task might be

strictly easier than SOPHIEÕs, its ÒunderstandingÓ task is rather different.

Message Understanding

An active area of natural language processing research known as Òmessage

understandingÓ or (more recently) Òinformation extractionÓ provides a variety of

techniques which can be useful for input understanding in an ITS. The salient

characteristics of message understanding are 1) its ability to process unedited text and 2)

its ability to extract from the text only the information which is desired.

 Message understanding is relevant to the CIRCSIM-Tutor v.Ê2 input understander

task because 1) it is robust with respect to messy text and 2) it usually suffices to extract

an answer to  the question and ignore the rest of the studentÕs utterance. I have adopted

information extraction techniques for the CIRCSIM-Tutor versionÊ2.5 input understander,

described in Chapter 8.

The message understanding task starts with real-world text. No editing is allowed.

The ground rules for this enterprise were set in the (as best as I can determine) original

message understanding system, called NOMAD [GrangerÊ1983]. NOMAD, as well as a
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number of succeeding systems built by other people, examined Navy ship-to-shore

messages, which looked like this:

a)  Challenged ship refused to heave to
b)  Locked on open fired destroyed

This is not beautiful English. Message a) may be analyzed as two sentences, both

missing their subjects, viz.: ÒWe challenged a ship; it refused to heave toÓ, or as a single

sentence missing an article, viz.: ÒThe challenged ship refused to heave toÓ. Message b) is

almost certainly three separate sentences glommed together, with large parts missing from

all three, and the middle one (Òopen firedÓ) has a grammatical error to boot.

The output of the message understanding task is a set of filled-in templates. These

templates are like forms to fill out. You can imagine you have a set of a dozen or so

stylized kinds of incident report forms: e.g. battle with another ship, communication from

ship to some other party, change in location, change in status, etc. Then you read a

message, decide which incident report forms apply, and fill them out as best you can.

This is why the enterprise has more recently come to be known as Òinformation

extractionÓ [Hirschman and Vilain 1995]. The goal is to fill out those templates by

whatever means necessary, extracting the information from the text, without necessarily

producing a complete semantic representation of the input text. In many applications,

most of the input text does not contribute to the output and is ignored.

Message understanding is being driven by DARPA, which runs a message

understanding competition and conference every two years or so [MUCÊ1993,
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MUCÊ1995, MUCÊ1998]. Descriptions of the tasks and scoring are available from Science

Applications International Corporation, which runs the conferences under contract.

The competitions have grown from six teams at the first one in 1987 to eighteen in

1998. The assigned competitive task has grown from a couple of messages and a couple of

different information templates to hundreds of messages and fifty different possible

information templates. The task isnÕt restricted to navy ship-to-shore messages anymore;

the last few have used unedited newspaper text from the Wall Street Journal and the New

York Times. Teams participate first in a dry run where the tasks are the same as in the

eventual competition but the problem domain is different. They do not learn the actual

domain until shortly before the competition. For example, in MUC-7 the dry run

involved newspaper stories about airplane crashes while the eventual competition

involved stories about space launchings.

There are three basic categories of MUC tasks, called Ònamed entity,Ó

Òcoreference,Ó and Òinformation extraction.Ó The named entity task is to locate and

categorize all the named entities in a passage. Generally these are proper nouns, which

must be categorized into place names, company names, etc. Also included are a great

number of entities like dates and times, profits, numbers, and so on. The coreference task

is to discover which items in the text are coreferential. The information extraction task

involves filling out the templates mentioned above.

To see examples of named entities and coreference, consider the following

hypothetical text:
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Ford Motors announced lower than expected second quarter profits
today.... The second largest auto company attributed the decline in earnings
to....

Here ÒFord MotorsÓ is a named entity, coreferential with Òthe second largest auto

company.Ó Similarly, Òsecond quarter profitsÓ is a named entity, coreferential with

Òearnings.Ó

As one might expect, there is no one method which is used in message

understanding. One of the dominant technologies is cascaded finite-state transducers

[Roche and SchabesÊ1997]. However different components of the same system may often

use differing technologies.

In order to process student initiatives in future versions of CIRCSIM-Tutor the

message understanding paradigm may be useful:

· The tutorial planner (or whatever planner is responding to student initiatives) would

have a finite set of initiative categories it could recognize. (In the Chapter 5 section on

student initiatives there is a short list.)

· Each category of student initiative in this regime would have a template, describing the

information requirements of that initiative.

· The input understander scans the student utterance to see which template (if any) it

might be able to fill in. If a match is found the information to fill the template is

extracted.

· If no initiative is recognized, the utterance is taken to be an answer to the last question

posed by the ITS.
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In fact this is exactly the approach I used in the CIRCSIM-Tutor version 2.5 input

understander for recognizing and processing the one student initiative currently handled:

variations on ÒI donÕt know.Ó

This suggestion contrasts with an alternative approach where the input

understander tries to build a semantic representation of the studentÕs statement. However

much of the information in the studentÕs statement is probably not needed in order to

create some sort of intelligent response. Furthermore the student probably has ways of

expressing this information which the input understander doesnÕt know how to parse or

represent. Both factors make it much more likely that a semantic representation cannot be

built, and input understanding will fail.

One can speculate that for longer, multi-turn, student initiatives the message

understanding approach could well fail, due to the need to model the progress of the

studentÕs plan across turns. Long, multi-part explanations may also pose difficulties. But

it seems to me that for that first big step of handling meaningful but short student

initiatives, the message understanding model is useful.

More Recent Approaches to Symbolic Understanding

Two recent pieces of work representing the latest in symbolic approaches toward

comprehending messy real-world text are the GLR* parser [LavieÊ1996] and the ExtrAns

Òanswer extractionÓ system [Moll� Aliod et al.Ê1998]. I include them here because it is

instructive to know what are the state-of-the-art techniques among people solving

problems similar to input understanding in the non-tutoring-system world.
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The GLR* parser is a descendant of LR(0) shift-reduce parsing. It is derived from

TomitaÕs Generalized LR parsing algorithm, a way of extending the LR(0) algorithm to

cover the full range of context-free grammars. LR(0) parsers are quite fast, but they can

cover only a subset of the context-free grammars. TomitaÕs algorithm replaced the basic

stack with a more complicated data structure, one that holds the results of many

alternative parses at once and combines their common parts. While TomitaÕs algorithm

parses it simultaneously advances (shifts and reduces) all alternative derivation paths; the

combining of common segments of the alternative derivations is what makes the algorithm

efficient.

Lavie was working in speech recognition.  Continuous speech can often be

characterized as a proposition being expressed plus many interstitial noises and less

relevant words. Furthermore speakers engage in frequent repair behaviors, such as backing

up a few words and starting over, which can be processed by eliding a few words.

If you are committed to trying to produce a parse of the utterance, one approach

is to skip the words which are not within a parsable proposition and parse the rest. So

which words might be skipped? You could try selectively eliding different words, in all

combinations, and seeing whether the resulting utterance is parsable. The longest parse

you achieve this way (the parse which succeeded after dropping the fewest words) can

then be taken to be the most interesting. However experimentally parsing every possible

subset of the input utterance would be very expensive, since for an n-word utterance

there are about 2n -1 possible reduced utterances.
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The principle driving the GLR* parser is to extend the Generalized LR algorithm

so that it combines (where possible) and processes the alternative parses which result

from skipping different subsets of words. In addition to expanding TomitaÕs parsing

algorithm and data structure to make this possible, Lavie added a number of methods (e.g.

statistical preferences, restrictions on the number of skipped words in a row, reorderings

of the search space) to reduce the number of alternatives considered and increase the

speed.

GLR*Õs robustness comes from its ability to try to skip many alternative subsets

of words and still operate with computationally tractable bounds. This is particularly

necessary in any system which needs to be interactive. It also benefits from a fairly

comprehensive grammar, since it is trying to produce a parse of the utterance. Ultimately

it produces a functional structure, similar to the f-structures of LFG. Although earlier

versions of CIRCSIM-TutorÕs input understander had this kind of comprehensive parse as

a goal, that step has not proven to be necessary for CST input understanding.

The ExtrAns system [Moll� Aliod et al.Ê1998] is an attempt to build something

which is more specific than information retrieval yet covering a broader, shallower domain

than a question-answering system. It answers questions about Unix operations, taking its

answers from Unix ÒmanÓ manual pages. An information retrieval approach would use the

words from the userÕs query to search the database of man pages and return those pages

which are deemed to be relevant. This isnÕt specific enough for a help system, it leaves

the user with a number of man pages to read without knowing where within each man

page lie the relevant bits, if any. Additionally some of the retrieved documents will have
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the right words scattered about, but still will not be relevant. A question-answering

approach would have a comprehensive knowledge base of Unix operations over which it

could inference, so as to generate the answer to the question. So far, this is practical for

only very small domains. The ExtrAns system tries to have broader coverage than might

be practical in a question-answering system.

Very briefly, the approach is to parse the man pages and build a database of

logical forms. Associated with each logical form is a pointer to the segment of text it was

derived from, so text neednÕt be generated from the database. The userÕs query is similarly

parsed, and an inferencing mechanism compares it to the database, retrieving some of the

stored logical forms. The result is that the segments of the text which produced the best

matches are displayed to the user.

The ExtrAns system would seem to be a competitor to the Latent Semantic

Analysis information retrieval technique used by AutoTutor, as described in Chapter 7.

In AutoTutor, it is necessary to match a studentÕs utterance to stored databases of

sentences in order to determine their truth, relevancy, etc. It seems to me that the ExtrAns

approach, if used in a system like AutoTutor, could be more precise in its evaluations.

When judging whether a student sentence was relevant to the topic at hand, it might more

exactly pinpoint what parts of the topic the student addressed and what remains to be

tutored. On the other hand, a compelling advantage of Latent Semantic Analysis is that no

parses and logical forms are generated from either the student utterances or the sentences

(whole textbooks of them) which go into the databases.
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Direct Memory Access Parsing

An approach to semantic parsing which captured my interest for a while is

ÒDirect Memory Access Parsing,Ó described by Charles Martin [1990], who calls his

parser DMAP. It is a case-based parsing program which uses small amounts of syntax. A

smaller version called Micro-DMAP is described by Riesbeck and Schank [1989].

All the case-based reasoning programs described by Riesbeck and Shank use a

common content-addressed memory organization, which is composed of packets they call

MOPs. MOPs are linked in several ways, first forming a kind of class-and-properties

inheritance hierarchy (called the abstraction hierarchy) where each MOP inherits

properties from its superclasses, second forming a kind of network of slot-and-filler

records (called the packaging hierarchy), where each MOP can have a record whose slots

are filled with other MOPs. MOPs are divided into Òabstraction MOPsÓ and Òinstance

MOPs,Ó where one abstraction MOP can have several instance MOPs underneath it,

instance MOPs cannot be abstractions of anything else.

In practice, MOP memory contains a kind of semantic network of abstraction

MOPs, and information is added to this network by creating instance MOPs and filling in

records. There is an associative search mechanism which, given a new MOP to add, can

search the hierarchy to figure out where it fits. A power of MOP memory comes from the

fact that the abstraction hierarchy can be changed on the fly. For example, if new data

shows up that cannot fit into the existing semantic network (the abstraction hierarchy),

the system can see how this new data differs from the existing data, create a new

abstraction, and reorganize the semantic network.
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There were two qualities which attracted me to DMAP. The first is that its parser

is predictive and goal oriented, skipping constituents which are uninteresting, rather

similar to the robust parser in SOPHIE. Second is that DMAP doesnÕt produce a ÒresultÓ

in the conventional sense, rather what it does is use incoming phrases to update the state

of its MOP memory. As more words and sentences are parsed, the state of the memory is

continuously updated.

This second feature is interesting in the abstract. Imagine the following bit of

made-up dialogue:

S: CO increases. [We imagine this is wrong]
T: What are the determinants of CO?
S: HR.
T: And . . . ?
S: SV.
T: Very good.

But you predicted that SV decreases and HR doesnÕt change.
Do you still think CO increases?

S: Decrease.

In a MOP-based system, MOP memory contains a lot of state information structurally

encoded. In particular, in CIRCSIM-Tutor it would contain the fact that CO is the variable

which the student got wrong and is currently being tutored. Pre-coded structural

information would show that CO is the kind of thing which has determinants,

determinants being another kind of thing, and an instance of ÒdeterminantsÓ would exist

for CO, showing HR and SV. The tutorÕs question about Òwhat are the determinants of

COÓ would set up a parallel set of MOPs with the same information, which the studentÕs

answer would have to match.

The studentÕs answer is processed a piece at a time. In the above example, which

is similar to behavior sometimes observed in our tutoring transcripts, the studentÕs
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answer can be split over several turns.  In CIRCSIM-Tutor as it currently exists, a partial

answer causes a difficulty. A subplan must be invoked to fetch the other half of the

answer. In a DMAP system no such work is necessary. The studentÕs words arrive in a

continuous stream, updating the memory as they arrive. If the answer arrives in two

separate turns, there should be no problem.

This small example is an illustration of the general observation that an intelligent

tutoring system contains a lot of state information, and every student utterance changes

its state.

Ultimately, after experimenting with DMAP grammars for simple questions and

answers, it proved not very useful for CIRCSIM-Tutor. The big issue is that there is no

MOP-based planner in the traditional sense, and traditional planning is how we think

about the tutoring problem. This is not to say that case-based reasoning couldnÕt be used,

I do not know that it canÕt. But DMAP is driven by the state of MOP memory and each

input changes the state of MOP memory. In order to utilize it fully we would have to

restart the CIRCSIM-Tutor project from the beginning with a completely different planning

paradigm.

Another fundamental difficulty is that in a dialogue, each turn is an event. Though

it be attractive to think of each utterance updating the state of MOP memory, in fact each

utterance needs to be evaluated and responded to. The partial answers which arrive over

several turns, as illustrated above, are a special situation.
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CHAPTER VII

USING LATENT SEMANTIC ANALYSIS IN THE
INPUT UNDERSTANDING TASK

A fairly new language processing technology, developed for information retrieval

[Deerwester et al. 1990, Berry et al. 1994] but finding uses elsewhere, is Latent Semantic

Analysis or LSA. A good introductory reference is [Landauer et al. 1998]. Using a

technique similar to factor analysis, LSA builds a model to explain the occurrences of

words in documents as linear combinations of factors.

Simplified Introduction to LSA

Suppose we have a collection of local news articles from the Chicago newspapers.

Each article is taken only as a set of words, ignoring grammar, sentences, etc. Now we

have some factors, say Òeducation,Ó Òlaw enforcement,Ó Òpolitics,Ó and Òcommunity

organization.Ó To every word we can assign a four-element vector, representing the

strength of each factor in that word. For example, ÒchiefÓ would have a high education

component and a low law-enforcement component, while ÒcommissionerÓ might have a

low education component and a high law-enforcement component. The point is that the

head of the schools is usually called the Òschools chiefÓ in the Chicago papers and the

head of the police department is usually the Òpolice commissioner.Ó The word ÒchiefÓ

would have ÒpoliticsÓ and Òcommunity organizationÓ components derived from how

often that and similar words occur in articles containing those concepts. A word like

ÒpetitionÓ might have a large community-organization component, middling politics and
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law-enforcement components, and a low education component, derived simply from the

frequency with which it occurs in articles related to those topics.

Each word can thus be represented by a four-tuple, representing a point in factor-

space. By summing (for example) the four-tuples of each word in a document, it is

possible to assign to the whole document a four-tuple point in factor-space. An article

containing many instances of both the words ÒchiefÓ and ÒcommissionerÓ could be about

law enforcement and education both, and so on.

It is helpful to think of this document as a vector in factor space, starting from the

origin. It may be a fairly long vector (because of many words added together) or a short

one, but its direction will be determined solely by the relative contributions of the four

components.

When using Latent Semantic Analysis for information retrieval the collection of

documents is analyzed in this manner, producing factor-space vectors for each word and

for each document. When a query is processed the query itself is treated as a document:

the components of each word are looked up and combined to form a vector for the query-

document. Then the vector representation of the query-document is compared to the

vectors for all the stored documents in order to retrieve ones which are similar.

A common measure of similarity is the cosine of the angle between the vectors

representing two documents. If your query contains only a few words, its vector may be

quite short. Yet there should be a way to measure its similarity to documents, which

(because they are wordier) may have longer vectors. If the factors in the query and a

stored document are in the same proportion (e.g., equal parts education and law
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enforcement), that document is likely to be one you want to retrieve. In this case the

vectors point in the same direction, and the angle between the query vector and stored

document vector is very small.

LSA in More Detail

The particular mathematical model used by Latent Semantic Analysis is called

singular value decomposition. The thing being modeled is a matrix of word frequencies in

documents: each row of the matrix represents a different word and each column of the

matrix represents a different document. A cell of the matrix contains the count of the

number of times one word occurs in one document.

In general, these matrices are rather sparse. The set of fifty K-series CIRCSIM-

Tutor project transcripts (without spelling correction) contains roughly 3800 different

words. There are 10,600 documents, where each sentence is one document. However each

document contains only a few words, so the matrix contains 51,000 non-zero entries, for

an occupancy of 1 3 10 3. ´ - .

If A  is an m n´  matrix (where m  is the number of words and n  is the number of

documents), singular value decomposition produces three matrices U , S , and V , where:

A USV T=

andU  is an m n´  matrix, V  is an n n´  matrix, and U U V V IT T
n= =  identity matrix. S  is

a diagonal matrix of values   s sn1K  called the singular values.

Intuitively, the singular values are scaling constants, one for each column of U  and

corresponding column of V . The columns with the largest scaling constants contribute the

most to the reconstruction of A .
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If one picks only the k  largest singular values, and the corresponding k  columns

of U  and V , then one obtains a k -dimensional approximate model using the most

explanatory dimensions. The reduced U  is an m k´  matrix called the term vectors, where

one row of U  represents the k  components for one word. The reduced V  is an n k´

matrix called the document vectors, where one row of V  contains the k  components for

the one document.

If we want to convert a query into a document vector, first form an m -element

vector q  of the counts for each word in the query. If we are using the CIRCSIM-Tutor

project K transcripts q  contains 3800 elements, one for every possible word. Since a

typical query contains only a few different words, most of the elements are zero. The

corresponding encoded document vector ¢q  is given by:

q' = qTUS-1

The process is straightforward:

· Find the k -dimensional term vector for each word in the query

· Scale it by the number of occurrences of that word in the query

· Vector-add all the results

· Scale each dimension by the inverse of that dimensionÕs singular value

The cosine between ¢q  and any other document vector v  is computed in the

conventional manner:

cos( , )¢ =
¢ ×
¢

q v
q v

q v
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Latent Semantics

In contrast to the simplified example I gave above, which has semantic

components such as ÒeducationÓ and Òlaw enforcement,Ó the actual SVD technique

induces components without regard to any pre-conceived semantic meaning. It may be

possible to manually observe that all the education-related words or articles have high

values for one particular component, and thus assign a semantic interpretation of

Òeducation-nessÓ to that dimension, but the model remains ignorant of such

classifications.

In fact, words and documents with related meanings will tend to have similar

vectors. A comparatively small number of dimensions effectively segregates documents

by differences in meaning. But no lexicon or set of semantic primitives was ever used in

the derivation of those components; the only data is frequencies of words occurring in

documents. For this reason the semantic meanings of the words and documents are said to

be ÒlatentÓ in the original set of documents and discovered by the SVD procedure.

Sometimes the consequences of using latent semantics can be startling. It is

possible to retrieve highly relevant documents which have no words in common with the

query vector. If two different words tend to occur in similar contexts (taken across all the

documents), then a query using one word might retrieve a document using the other. On

the other hand, the fact that syntax and word order are ignored means that two queries ÒA

increases BÓ and ÒB increases AÓ are considered identical.

The model produced by decomposing a set of documents (the term vectors,

document vectors, and singular values) is called a semantic space. It makes little sense to
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compare words and documents between semantic spaces. The meaning of a word in a

semantic space is its vector components, but the components themselves have no

meaning except that they are the ones which best fit this collection of documents and

words.

Not much is known about picking the optimum number of dimensions k . Most

important is that k n< , the number of documents in the semantic space. Without some

reduction in the number of dimensions the original term-document matrix is perfectly

modeled; the ÒmeaningÓ of a word becomes an explanation of exactly how many times it

occurs in each individual document. To see why this is undesirable, consider two very

similar words ÒphysicianÓ and Òdoctor.Ó A good semantic representation would predict

that both words were almost equally likely to occur in some document which contained

that concept. More generally, it would predict an ideal term-document matrix where

(almost) synonymous terms were (almost) equally likely in any given context. However

suppose document number 17 was written using ÒdoctorÓ several times, but no

Òphysician,Ó while semantically similar document number 18 made the opposite choice. A

model which exactly reconstructs the observed term-document matrix contains

distinctions which explain the observed occurrences of ÒdoctorÓ and non-occurrence of

ÒphysicianÓ in document 17, and the opposite behavior in document 18. In fact, for

information retrieval purposes, we would like the two words to be equivalent. Any model

which explains differences between the two will have lower recall. Between any two

synonyms this problem will occur: the more the model attempts to explain why one word

was chosen (perhaps randomly) over another, the less useful it may become.
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Generalizing, the reason not to exactly model a particular term-document matrix is

that the set of documents being modeled can be thought of as a statistical sample drawn

from an ideal set, thus differing from the ideal. Explaining these differences is counter-

productive. Furthermore, consider that there may be biases in usage which you actively

desire not to model. ÒPhysicianÓ may happen to be used preferentially in some

population of documents, thereby biasing the model, but if ÒdoctorÓ occurs with any

frequency you may very well want your information retrieval query to ignore the bias.

If the number of dimensions in the model is equal to the number of documents,

you could assign one dimension to each document and exactly reconstruct the term-

document matrix. Singular value decomposition produces the same effect, with the

difference that it constructs the dimensions to be orthogonal in a way which can be

ordered from most explanatory to least explanatory. This means that the most

explanatory dimensions are, as a practical matter, capturing the semantic distinctions

which most explain the term-document frequency matrix while the least explanatory

dimensions are, in effect, forcing particular words into particular documents. Thus picking

the k n<  most explanatory dimensions can produce a more useful model.

There seems to be no principle for picking k . In their early paper, Deerwester et

al. [1990] reported good results with k = 100 in two information retrieval experiments:

one on a 5823 term, 1033 document set of medical abstracts and one on a 5135 term, 1460

document set of computer science abstracts. More recently, Landauer and Dumais [1997]

performed word synonym experiments using a semantic space of articles (truncated to

2000 characters) from an encyclopedia intended for young students, for a total of 30,473
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documents. Testing increasing sizes of model up to 1032 dimensions, plus the full

unreduced model, they discovered a broad peak around k = 300 .

LSA and Psychology

One view of information retrieval is that it is a kind of stimulus-response process

of the human organism, where the stimulus is the occurrences of terms in documents and

the response is a judgment about a documentÕs meaning or the relevance of a document to

a query. This thinking informs various term-weighting schemes used by a number of

information retrieval algorithms. Dumais [1991] experimented with applying several such

schemes to LSA,3 showing that it can be made considerably more effective in this way.

For Latent Semantic Analysis, term-weighting starts by scaling each count in the term-

document matrix. Ai j, , the number of occurrences of term i  in document j , is replaced

by log( ) G( ),A ii j + 1 , where G( )i  is the entropy of term i  across all documents.

Psychologically, this is modeling an organismÕs logarithmic response to the strength of a

stimulus and its direct response to the specificity of the stimulus. The stimulus in this

case is the frequency of occurrence of a term in a document. Specificity is modeled by

inverse entropy; high entropy for a word means that it occurs equally frequently in all

documents, which makes it not very specific. Recent papers on LSA all make use of these

transformations, although I have not yet incorporated them into my own experiments.

There has been considerable interest in using Latent Semantic Analysis as a model

for human acquisition of word meanings. Landauer and Dumais [1997] explore PlatoÕs

                                                
3 Dumais [1991] makes no reference to the possible psychological validity of term-
weighting, saving such discusion for [Landauer and Dumais 1997].
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Problem, the question of how people learn as much as they do given an apparent

insufficiency of stimulus. In particular they were interested in the acquisition of

vocabulary. Anderson and Nagy [1993] estimate that the average high school senior has a

reading vocabulary of about 40,000 different words, having learned 2,000 to 3,000 new

words per year throughout much of elementary and high school. In their accounting,

words whose meaning could be guessed from morphology or compounding were not

distinct, thus ÒclevernessÓ is not a new word to a student who knows Òclever,Ó but

ÒbusyÓ is distinct from ÒbusinessÓ because knowing one does not confer a knowledge of

the other. The bases for counting words as distinct are described in their earlier work

[Nagy and Anderson 1984]. Anderson and Nagy admit that their estimate is low, omitting

the proper nouns which constitute a large fraction of ordinary vocabulary (they cite

ÒMethodist,Ó ÒAmazon,Ó ÒRepublican,Ó ÒEgypt,Ó and ÒPlatonicÓ as examples) and not

counting the variety induced by polysemy. Landauer and Dumais also note that 40,000 is

at the low end of published estimates. They cite studies that show that 60% of words

found in newspapers, primarily proper nouns, do not occur in dictionaries, and are

therefore (due to experimental design) excluded from most measurements of studentsÕ

vocabulary. In any case there is no evidence that students are directly instructed in the

meanings of so many words; typically an elementary school class may receive definition-

based instruction of 300 words per year of which a student learns 200 [Anderson and

Nagy, p.Ê12]. Neither do students look up many thousands of words in dictionaries every

year.
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In short, it seems likely that people acquire their vocabularies largely from

context, from reading and listening. Recall that Latent Semantic Analysis builds its models

entirely from text; it never uses a dictionary of terms, relationships, or any other external

source of semantic knowledge. Can the behavior of LSA possibly model human behavior?

One of the questions asked by Landauer and Dumais was the following: do LSA

models learn vocabulary at the same rate that humans do? ÒLearningÓ in this case means

how much vocabulary a model ÒknowsÓ versus how much text went into the construction

of the model. For this investigation they obtained a set of eighty word-matching questions

used by the Test of English as a Foreign Language. A question consists of a target word

and several candidate words, the student must pick which of the candidates is closest in

meaning to the target word. This task is readily suited to LSA. The measure of a modelÕs

vocabulary was taken to be the score on the exam. The semantic space was generated

from text from a student encyclopedia, the amounts of text used in model construction

were chosen to represent the amounts of text that a child might have cumulatively read by

various ages. Landauer and Dumais conclude that LSA models can acquire vocabulary at

the same rate that children do, and in the end it performs as well on the TOEFL

vocabulary exam as adult test-takers. Furthermore the pattern of mistakes mimics the

human pattern of mistakes; when the model picked incorrect candidates, the ones it

picked correlated well with the mistakes that humans made.

From the perspective of a computer scientist these results are very encouraging.

They obviate the need for a variety of specialized and sometimes baroque constructs

postulated by linguists and cognitive scientists in order to explain innate language ability.
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These mental structures are tailor-made for correctly inducing grammatical distinctions,

semantic distinctions, and so on. Pinker [1994, pp.Ê149 et seq.] has a typical discussion

of the vocabulary problem, estimating that an average person learns a new word every

ninety waking minutes from the ages of one until eighteen. Again, that excludes words

whose meanings can be derived from other words. We would not expect the average

person to be able to learn and retain that many phone numbers, for example, especially

without explicit memorization. However there is evidence that when presented with new

unexplained or wholly invented words, children are frequently able to ascribe useful

meanings after a surprisingly small number of encounters. Pinker describes a thought

experiment which illustrates the problem:

There is one more reason we should stand in awe of the simple act of learning a
word. The logician W.ÊV.ÊO. Quine asks us to imagine a linguist studying a
newly discovered tribe. A rabbit scurries by, and a native shouts ÒGavagai!Ó
What does gavagai mean? Logically speaking, it neednÕt be Òrabbit.Ó It could
refer to that particular rabbit (Flopsy, for example). It could mean any furry
thing, any mammal.... It could mean scurrying rabbit, scurrying thingÊ... or
scurrying in general... or ÒIt rabbiteth,Ó analogous to ÒIt raineth.Ó

The problem is the same when the child is the linguist and the parents are the
natives. Some how a baby must intuit the correct meaning of a word and avoid
the mind-boggling number of logically impeccable alternatives.

 [Pinker 1994, p. 153. Many alternatives elided for brevity.]

Pinker concludes that there must be specialized word-learning mechanisms in the mind

which are pre-disposed toward some varieties of distinguishing characteristics, concluding

Òwe all get away with induction because we are not open-minded logicians but happily

blinkered humans, innately constrained to make only certain kinds of guessesÑthe



86

probably correct kindsÑabout how the world and it occupants work.Ó Later he mentions

various experiments that tried to tease out what some of those inductive biases might be.

The clear conclusion of the LSA vocabulary-learning studies is that it is possible

to learn words at human rates without an elaborate specific word categorizing mechanism.

These experiments do not show what human learning looks likeÑthere is no reason to

believe that people are performing singular value decomposition in their headsÑwhat the

experiments show is that there is enough contextual information in ordinary text to make

vocabulary learning possible.

Tied up with the vocabulary learning problem is an epistemological question: what

does it mean to ÒknowÓ a term? For Landauer and Dumais, their model knew a word if it

successfully picked the word nearest in meaning from a set of alternatives. By that

criterion knowing a word means being able to identify its relationship to other words, as

opposed to being able to write a definition or use it in a sentence. Measurements of

human reading vocabulary are usually obtained by similar means: match a word with its

antonym, place a word in one of several categories, identify which word is represented by

x in ÒA is to B as C is to x.Ó Nagy [1995] notes that repeated exposure to words in

context deepens a personÕs ability to distinguish between polysemous senses, know the

register in which a word may be used, make finer distinctions with other words, etc. A lot

of vocabulary knowledge seems to pertain to the relationships between words. LSA

models well the human behavior of deepening knowledge of lexical distinctions with

increased exposure. On the other hand Nagy also argues that vocabulary learning needs

some grounding. As he puts it Òthere may be theoretical reasons to distinguish linguistic
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knowledge from world knowledge; but I would not recommend that a teacher avoid

mention of trunks in a discussion of the word ÔelephantÕ on the grounds that having a

trunk is not a logically necessary property of elephants.Ó LSA doesnÕt model this very

well; were it not induced from the term-frequency matrix, an LSA model wouldnÕt

ÒknowÓ there is a relationship between elephants and trunks.

To give more concreteness to the epistemology question, consider the words

ÒsoffitÓ and Òfascia.Ó I know that they are architectural terms, name components which

occur near each other, and are frequently related to the underside of the eaves of a house.

As measured by a general-knowledge pick-the-nearest-term vocabulary test (such as

might occur on the TOEFL) I probably know these words. On an architectural vocabulary

exam I would surely flunk. An LSA semantic space built from general texts would

probably model my own knowledge of these two words, while a semantic space built

from the appropriate architecture textbooks would model the expertÕs knowledge.

From the standpoint of writing an intelligent tutor, the experiments that show

LSA learns vocabulary as well as humans do (as measured by tests) are extremely useful.

It means that using an LSA-generated semantic space for understanding human input,

without a conventional lexicon of word meanings, may be a plausible approach.

Application of LSA in AutoTutor

There is one intelligent tutoring system which incorporates Latent Semantic

Analysis into its input understanding component, namely AutoTutor [Graesser et al.

1998, Anwar et al. 1998, Wiemer-Hastings et al. 1998] from the Tutoring Research Group

at the University of Memphis. AutoTutor teaches basic computer literacy. One of its
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communication modes, in addition to animated diagrams and vocalization, is written

dialogue. A primary object of AutoTutor is to exploit Òsubjective construction of

explanationsÓ on the part of the student. To put this more concretely, AutoTutor asks

open-class questions such as ÒWhat is the function of the CPU?Ó and ÒWhat are the

differences between RAM and ROM?Ó The student formulates a free-text reply possibly

several sentences long.

Partly from observing untrained college tutors, the Tutoring Research Group

makes the following observation: even without using sophisticated strategies, tutoring via

dialogue can still be extremely effective. We would like to promote hinting and Socratic

dialogue in CIRCSIM-Tutor, dialogue strategies which have proven to take considerable

effort to implement. The AutoTutor project is testing the hypothesis that if they ignore

the sophisticated tutorial strategies and engage their students in simpler dialogue, useful

learning might result.

In AutoTutor the computer literacy curriculum is divided into three topics:

hardware, operating systems, and the Internet. Each of these topics is divided into 12

subtopics to teach. Vastly simplifying (there are extensive curriculum scripts, curriculum

planning production rules to pick subtopics, and animated graphics scripts), AutoTutor

teaches a subtopic by presenting a question or problem and accepting the studentÕs

response. Then the response is evaluated as to truth, relevance, and proximity to various

stored right and wrong responses and a set of possible student questions. Depending on

these calculations, and after consulting a script, AutoTutor can issue an acknowledgment
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(positive, negative, or neutral), possibly hint, possibly prompt for more information,

issue a summary, and so on. Teaching one subtopic typically requires several turns.

Since questions such as ÒWhat is the function of the CPUÓ can admit of a wide

variety of answers, many of which will be misguided, it is clear that producing a symbolic

semantic representation of the free-text, multi-sentence utterance could be a tall order.

After several stages of processing (including recognizing some short answers and frozen

expressions, and recognizing dialogue acts via a neural network), AutoTutor usually

doesnÕt attempt to parse or produce a symbolic representation of a studentÕs lengthy

input. Instead, it computes an LSA vector-space representation. The semantic space was

derived from the relevant sections of two textbooks, several articles on computer literacy,

and content specifications for all the topics and subtopics that AutoTutor teaches. Then

AutoTutor performs the following tests:

· To determine whether the studentÕs answer is true or not, the maximum of the cosines

compared to every document in the semantic space is computed. Notice that a

studentÕs answer might be judged as true even if it is not relevant to the subtopic at

hand.

· To determine whether the studentÕs answer is relevant, it is compared to the all the

documents relevant to the topic being taught.

· Comparing the studentÕs answer to the vector representations of various known bad

answers tells whether the student needs certain remedial information or certain hints.

· Similarly, the studentÕs answer can be compared to various known good answers.
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The results of all these comparisons are used for choosing AutoTutorÕs next dialogue

move.

It seems to me that the primary reason the LSA approach works for AutoTutor

input understanding is that computer literacy is a vocabulary course; the students are

expected to learn vocabulary and concepts. For this curriculum the student shows

knowledge of the topic by being able to define concepts or state which concepts are

relevant to a particular situation. Unless the student is acting perversely, the words and

phrases uttered ought to be a pretty good indicator of the concepts and relationships the

student is trying to convey. It should also help that the student has been exposed to the

subject; tutoring happens after the student has read the book or attended the class, so the

studentÕs language is more likely to contain terms from AutoTutorÕs LSA semantic space.

The question of vocabulary epistemology is important here. One might suppose

that properly responding to a studentÕs explanation of ÒWhat are the differences between

RAM and ROM?Ó demands detailed semantic descriptions of words such as ÒRAM,Ó

ÒROM,Ó Òstorage,Ó Òread,Ó and Òwrite.Ó Said descriptions could then be used to construct

a semantic representation of the studentÕs utterance, which could be reasoned about or

compared with stored semantic representations in order to make judgments. What an LSA

model knows about ÒRAM,Ó ÒROMÓ, Òmemory,Ó Òread,Ó and ÒwriteÓ is the differences

in lexical contexts in which they occur (or the latent semantics derived therefrom). For

AutoTutorÕs purpose this is just enough and not too much. If the semantic space is

constructed from documents relevant to the topic then the LSA representation of the
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studentÕs utterance can be compared to various classifications of known utterances,

thereby picking a classification for the studentÕs answer with fair confidence.

In the demonstration that I witnessed it was notable that AutoTutor ended the

dialogue for each subtopic with a summary of the material to be taught. If this is

AutoTutorÕs general behavior (I have not seen it documented), it seems to be a safe

strategy. In the event that AutoTutor does not correctly classify and respond to a

studentÕs answer the final summary ensures that the student is left with a correct

explanation.

Diagnostic Questions: A Potential Application of LSA in CIRCSIM-Tutor

For the normal answers to the questions that CIRCSIM-Tutor version 2 currently

asks there seems to be no advantage to applying Latent Semantic Analysis. Partly this is

because the questions are so closed. All the questions are readily answered with a few

words at most. Even when the student gives a longer utterance in response to a question,

the answer can almost always be recognized from a few words within it. Furthermore

there are syntactic issues. For example the ÒisÓ confusionÑcopula vs. inotropic stateÑis

a syntactic issue, and thus would have to be solved by other means. It is easy to find

examples in the human tutoring dialogue where syntax is important within exchanges

which are no more complicated than ones CST v. 2 currently participates in. Here is an

example of a potential problem:

T: What does CC affect?
S: SV

*  T: Sure. So what happens to SV?
* S: If CC d, then SV d.

T: You got it. [K5-89]
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The starred response cannot be understood if it is treated as an unordered bag of words as

LSA would treat it. To see this, imagine the student had typed ÒIf CC i then SV d.Ó This

utterance would contain two parameters and two opposite changes (one increase and one

decrease), but there would be no way to distinguish which increased and which decreased.

It might be possible to notice the causality from the occurrence of the words ÒifÓ and

ÒthenÓ but have no way to infer which is causing which. Unlike computer literacy, the

subject of AutoTutor, the baroreceptor reflex is not a vocabulary course: the distinctions

which are syntactically marked can be the heart of the matter.

Nevertheless I think that CIRCSIM-Tutor v. 3 presents opportunities for taking the

LSA approach. The key observation is what Hume [1995, p.Ê73] called the Òinformation

gathering questionÓ (I will call it a diagnostic question) which the tutor asks right after the

predictions are collected, eliciting an explanation from the student Here are two examples:

T: OK. That completes your DR predictions. Most of them are
correct. However I want to pursue IS with you. Can you tell
me what you think IS means? [K47-tu-56]

T: Let's talk about your answers here. Why do you think that
tpr will increase? [K45-tu-54]

Noting that the tutors often have difficulty explaining their own intentions, Hume

provides three possible explanations as to why these questions are asked:

· Provide the student an opportunity to re-think and correct an answer

· Provide the tutor useful information about the studentÕs misconceptions

· Provide some kind of hint

Perusing examples in the transcripts, it seems that the studentÕs response is often ignored,

which makes it hard to divine what the tutorÕs intention was.
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Let me propose two more reasons why asking these diagnostic questions might be

useful:

· Stimulate the self-explanation effect

· Provide a polite context before possibly informing the student of a mistake

I have not found any attestation for this last reason in the tutoring literature. Nevertheless

I make the claim, substantiated only by introspection, that there can be powerful

psychological and social reasons why asking the diagnostic question is polite. Firstly, as

anybody with teaching experience knows, students often want to explain themselves after

they have made a mistake. Indeed, sometimes it can be hard to stop them. Even though

the diagnostic question might have other uses, asking it can recognize and assuage the

studentÕs desire to explain. Secondly, in normal conversation it is often polite and more

effective to ask people for their opinion before telling them your own. They are more

likely to hear you if you ask them their own opinion first. In a similar vein, it is possible

that asking the question makes the person more invested in knowing the answer. I claim

that when tutors ask these diagnostic questions at the start of teaching a new topic it is an

analogous behavior.

Notice that of the five possible reasons for asking diagnostic questions, four of

them do not require the tutor to have a good understanding of the answer. For providing

the student an opportunity to re-think and correct, for providing a hint, for providing an

opportunity to self-explain, and for providing a polite context, the value of the question

lies in the side effects it has on the student. Only for acquiring information about the

studentÕs misconceptions is a good understanding of the answer needed.
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Graesser [1993] provides evidence that tutors rarely use the results of diagnostic

questions. One part of that study was comprised of 44 one-hour sessions of face-to-face

tutoring of undergraduates in a psychology research-methods course, taught by three

students who were successful in the equivalent graduate-level course. The college tutors

devoted 14% of their questions to Òget[ting] student to justify something, explain

something, or generate an example,Ó but only 2% of the tutor turns after a question was

answered were categorized as Òtutor diagnosis, dissects, or remediates student errors.Ó

Nevertheless, despite the paucity of deep diagnoses of student misconceptions, the tutors

were shown (by pre- and post-tests) to be quite effective.

Given that asking diagnostic questions might be beneficial, even absent precise

understanding of the student responses, I propose that we add diagnostic questions to

CIRCSIM-Tutor. The idea is to use an LSA mechanism similar to AutoTutorÕs to process

the results.

First we catalog every diagnostic question in the transcripts, noting the question,

the answer, the tutoring context, and how the tutor responded. From these we create a set

of scenarios, containing the question, the points in the tutoring when that question gets

asked, the categories of answer, and the actions prompted by each category. These

scenarios are small versions of the AutoTutor scripts. The final step is to build a bundle

of documents for each category of answer; LSA will be used to compare the studentÕs

utterance with these documents in order to categorize it. Once categorized, a suitable

response can be generated.
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Crucial to this technique is the observation that frequently in our transcripts the

content of the studentÕs answer to such a question is ignored, especially if the answer was

long and involved or if it was dramatically wrong. In the proposed implementation,

common easily expressed conceptual mistakes will be cataloged, they will each have a

separate category and response. Correct answers likewise can be responded to, although

the tutor should echo back a summary just in case there was a mistake in classifying the

answer as correct. Involved or dramatically wrong answers will fit in a category which is

essentially ignored. Thus it may be possible to effectively mimic human tutoring

responses to these diagnostic questions by using only the limited ÒunderstandingÓ of

student responses that LSA can provide.

One advantage we have in incorporating this experiment into CIRCSIM-Tutor is

that the diagnostic questions are optional. They would be grafted into the normal tutorial

dialogue at the point that human tutors would ask them. But if some of the scenarios are

hard to define, or are impractical, or result in drastic revisions of the tutorial plan, we can

simply not include them in the tutorial plans at that point, and the CST planner will

behave as it currently does.

Experiment using LSA for CIRCSIM-Tutor

IÕve been experimenting with using the K-series transcripts as a semantic space,

seeing what results from various queries, trying different numbers of dimensions, etc. One

such semantic space has the whole unedited set of K-series dialogue. Another has just the

student turns, and another has spell-corrected student turns.
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As an illustration of matching a hypothetical student utterance to a CIRCSIM-Tutor

semantic space, Table 5 shows the sentences in the CIRCSIM-Tutor transcripts that are

closest to the query ÒFrank Starling.Ó

In this experiment, each ÒdocumentÓ was a single tagged sentence from the first

fifty K-series transcripts. The resulting matrix had 3823 words and 10251 documents

(sentences). The transcripts were not spell-corrected, which I estimate meant that there

were about 900 nonsense words, reducing the accuracy. Neither were the words

Table 5. Sentences Closest to ÒFrank StarlingÓ

Rank Cosine Tag Text
1 0.751 K5-tu-21-2 Very little filling takes place in thisperiod.
2 0.742 K9-st-36-2 IsnÕt the amount of filling equivalent to

the preload?
3 0.729 K9-tu-35-3 ItÕs the effect of increased filling on

contractility.
4 0.709 K26-tu-54-2 You are confusing the Frank-Starling effect

(increased filling gives greater output) and
contractility.

5 0.705 K41-tu-72-2 ItÕs the Starling mechanism.
6 0.702 K35-tu-44-2 Sv is most importantly determined by

filling of the ventricle (Fra nk-Starling
effect) thus the mt potent determiner is
rap.

7 0.691 K9-st-24-8 Thus, the question becomes -- what effect
8 0.680 K9-tu-35-7 The change in performance that is

associated with a change in filling is
StarlingÕs effect, the length/tension effect.

9 0.672 K40-tu-54-4 We call that the Frank-Starling Effect
10 0.667 K3-st-46-1 Filling decreases
11 0.648 K8-st-32-1 Decreased filling time between

contractions
12 0.630 K2-tu-26-2 Remember thatmost of the filling takes

place early in diastole and very littlelate in
diastole.

13 0.628 K37-tu-98-3 So you need to keep it distinct from the
frank-starling effect.

14 0.616 K8-tu-33-1 This effect is really very small until you
get to very high HRs
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lemmatized, so ÒincreasesÓ and ÒincreasingÓ were counted as separate words.  I estimated

the number of nonsense words by sampling approximately 200 of the almost 2000 words

which occurred only once in the transcripts. In this experiment I used a 70 dimension

model, and the psychologically-inspired term-weighting adjustments (described above)

were not applied.

In this and the other experiments I used the SIS2 singular value decomposition

routine from the SVDPACKC package [Berry et al. 1993].

 For the ÒFrank StarlingÓ query note that the three sentences judged closest

contain neither of the query words, yet they are quite relevant. (The Frank-Starling effect

dictates that when the heartÕs chambers are filled with more blood, distending the muscle

fibers more, the heart exhibits more contractile force.)  Note also that there are

considerable spelling errors among the retrieved sentences, such as ÒthisperiodÓ joined

into one word and ÒFra nkÓ sporting an interstitial space. Despite the dirtiness of the

data, which lowers retrieval precision, the experimental queries almost always returned

relevant documents.

Notice that sentences containing the word ÒeffectÓ are strongly related to the

query ÒFrank StarlingÓ in this semantic space, causing a number of false hits. This comes

from the prevalence of the phrase ÒFrank Starling effect.Ó

The experiments with using LSA did confirm that there are important semantic

distinctions which the Latent Semantic approach is not capable of making. The two

sentences ÒA increases BÓ and ÒB increases AÓ are equivalent, as expected, because
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syntax is ignored. This may make it difficult for the LSA approach to understand answers

which involve causal reasoning, for instance.

In a similar vein, note that two words which occur in the same contexts will be

analyzed as being quite similar. In this semantic space ÒincreaseÓ and ÒdecreaseÓ are such

a pair; in the transcripts any sentence containing the one word could just as well contain

the other. Queries involving the one thus frequently retrieve sentences containing the

other. It is not clear to me why this should be a limitation, however.
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CHAPTER VIII

CIRCSIM-TUTOR V2.5 ENHANCED INPUT UNDERSTANDER

This chapter contains a description of the new input understander which is

currently running in CIRCSIM-Tutor version 2. Since many aspects of the system have

been significantly upgraded in the past year we call it version 2.5. It is my intention that

the same input understanding code will be able to run in the new CSTÊv.Ê3.

In contrast to the previous CIRCSIM-Tutor input understander (see Chapter 2), the

fundamental idea in the new one is to be as permissive as possible. The new input

understander extracts whatever is needed from the studentÕs input and ignores the rest.

Only a little parsing is done; mostly the understander is searching for words and phrases

which could be answers to the question that CST just asked. It is possible to ÒfoolÓ the

understander, viz.:

T: Which determinant is dominant in this case?
S: Anything except HR.
T: HR is correct.

As a practical matter this is not a problem. In the log files of student instruction since the

new understander was introduced, I found no instances of this permissiveness causing a

studentÕs input to be understood incorrectly.

Context of the Input Understander in  CIRCSIM-Tutor v.Ê2

In CIRCSIM-Tutor version 2, the input understander is called directly after a

question is asked. It is given a logic form which is usually the same logic form as was

given to the text generator to emit the preceding question. The understander returns a logic

form (usually) or a simple list (in a few instances) containing the studentÕs answer. The
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logic form is the sole input to the understander, which runs as a subroutine without side

effects. In particular, the understander has no knowledge about the state of the tutorial

dialogue beyond what was the immediate question, and leaves no result beyond the

answer it returns. Figure 4 shows the questions asked to the student, the logic forms used

for generating each question, the logic form passed to the input understander (if different),

and the form of the answer returned by the input understander. Some of these questions

are expressed in different words when they are re-asked after a studentÕs mistake, but the

content doesnÕt change.

It is important to realize that the capabilities of the input understander are limited

by the rest of the CIRCSIM-Tutor v. 2 software. There are only eleven short-answer

questions that CSTÊv. 2 can ask the student. Due to haphazard accretion of code changes,

before the new input understander was added the answers to some of those questions

were processed by ad hoc code bypassing the input understander, so the actual variety of

questions for which the old input understander handled answers was even less. The task

of categorizing student answers is handled by the student modeler, which until recently

recognized only ÒcorrectÓ (exactly what was expected) and ÒincorrectÓ (anything else

which made it past the input understander). The discourse planner had provisions for

only those two categories, so having the input understander recognize nuances such as

various near misses was not possible.
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Which determinant is dominant in this case?
(QUESTION (ACTUAL-DETERMINANT <var>))
(ANSWER (ACTUAL-DETERMINANT <var>))

Which variables are changed by the reflex?
(QUESTION (AFFECT REFLEX VARIABLE)) [generator]
(QUESTION (REFLEX *IS*)) [understander]
(<varlist>)

Which of the variables in the prediction table are determinants of <var>?
(QUESTION (AFFECTED-BY <var>))
(ANSWER (AFFECTED-BY <var> (<varlist>))

Will the reflex compensate for the change in Mean Arterial Pressure in DR?
(QUESTION (COMPENSATE REFLEX CHANGE *MAP*))
(<y-or-n>)

Will the reflex overcompensate for the change in Mean Arterial Pressure in DR?
(QUESTION (OVERCOMPENSATE REFLEX CHANGE *MAP*))
(<y-or-n>)

By what mechanism is <var> controlled?
(QUESTION (MECHANISM *IS*))
(ANSWER (MECHANISM (<mech>) <var>))

Is the relationship from <var-1> to <var-2> direct or is it inverse?
(QUESTION (RELATION <var-1> <var-2>))
(ANSWER ((<rel>) <var-1> <var-2>))

What stage must the value of <var> follow in SS?
(QUESTION (FOLLOW <var>))
(<stage>)

What variable is regulated by the baroreceptor reflex?
(QUESTION (REGULATE BARORECEPTOR-REFLEX VARIABLE)) [generator]
(QUESTION (BARORECEPTOR-REFLEX *MAP*)) [understander]
(<var>)

What is the correct value of <var>?
(QUESTION (VALUE <var>))
(ANSWER (VALUE <var> <val>))

What is the value of <var> in DR?
(QUESTION (VALUE-DR <var>))
(ANSWER (VALUE-DR <var> <val>))
There are two more logic forms for RR and SS similar to VALUE-DR.

Figure 4. CSTÊv. 2 Questions, Logic Form(s) and Input Understander Results

Legend: <var> is a parameter, <varlist> is a list of parameters, <val> is one of +, Ð, or 0,
<mech> is a mechanism of control, e.g. NEURAL, PHYSICAL, or STARLING,
<rel> is POSITIVE or NEGATIVE, <y-or-n> is Y or N,
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The CSTÊv. 2 student modeler and discourse planner have recently been enhanced

to be able to handle more cases4. The same eleven  questions are asked, but  a wider range

of answers is permitted. For example, the question Òby what mechanism is <var>

controlled?Ó formerly admitted only answers which could be construed as naming a neural

mechanism. Now the planner admits answers which can be construed as referring to the

Frank-Starling relationship (which is a near-miss for the control of Inotropic State),

arteriolar radius (a near-miss for the control of Total Peripheral Resistance), and other

non-neural mechanisms. The planner can emit a considerable number of new hints, which

means that it has more alternatives when the student makes a simple mistake. These

changes have made for a tremendous increase in the usability of CIRCSIM-Tutor, and made

it possible to use the program on classes of medical students.

Concomitant with the enhancements to CIRCSIM-TutorÕs planner and student

modeler, and partly to match their new capabilities, I replaced the input understander.

Overview of Processing

 Figure 5 is a block diagram, showing the sequence of processing and the important

data sources in the new input understander. The stages of processing are as follows:

· Regularizing the input string, dividing it into (putative) words.

· Lexical lookup, producing a list of lexicon entries

· Spelling correction (combined with lexical lookup)

                                                
4 Yujian Zhou deserves most of the credit for upgrading the pedagogical capabilities of
CSTÊv.Ê2.
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Figure 5. CSTÊv. 2 Improved Input Understander Processing



104

· Processing for student initiatives and hedges with a finite state transducer

· Processing with a cascade of finite state transducers, using different sets of

transducers for different questions which the student could be answering

· Checking the results of the transducers for errors and producing a logic form to return

The input understander in CSTÊv. 2.5 is called as a subroutine and given the logic form for

the question which was just asked. It returns a logic form with the answer.

Regularizing the input string consists of converting alphabetic characters to lower

case, eliminating much of the punctuation, and dividing up into words. No lexicon is

consulted, words are delimited by the Òwhite spaceÓ in the input string.

Lexical lookup and spelling correction are described below.

The finite state transducers are also described below. This is a technology

borrowed from information extraction (see Chapter 6) which can accomplish light parsing

and extract from the text specific elements which are being looked for.

The stage of the input understander which checks for errors and produces logic

forms is largely ad hoc code. The results produced by the finite state transducers are

generally fairly convenient for use, so this is not as ugly as it could be. For example, if the

question was to name a list of parameters, the transducers extract a list of parameters.

Converting this list to the logic form which is to be returned to the planner is

straightforward.

Error-checking is partially accomplished by examining the final state of the

transducers. However the transducers could be more helpful with the error checking than

they currently are. For example, if the acceptable answers are Òdirectly proportionalÓ or
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Òinversely proportionalÓ, the final state of the transducer will tell if at least one such

answer was extracted. Unfortunately the transducer will not tell you if both answers were

encountered in the same utterance, which is an error. Currently ad hoc code checks the

output of the transducers for that and similar cases, but the transducers will be updated to

check for errors like these in the future.

Finite State Transducer Mechanism

The central mechanism in the new input understander is a cascade of finite state

transducers, with potentially a different set of transducers for each type of expected

answer.

Cascaded finite state transducer technology is frequently used in information

extraction systems, a good example is FASTUS [Hobbs et al.Ê1997]. Finite state machines

are popular because they are fast and modular. They run in linear time with the length of

the input; most algorithms based on context-free grammars are considerably slower. It is

possible to combine finite state machines mechanically, producing machines for some

combination of the languages processed by each machine. In the cascaded transducer

model, each machine produces an output, which is usually some modification of the

input. For example a transducer which looks for noun phrases might take as input a list of

words (an utterance) with parts of speech marked and emit the same utterance with

markers for the beginning and end of the NP. Then this result can serve as input to the

next transducer, which might (for example) be looking for coreference between the phrases

found by previous processing. Many aspects of the finite state approach to language

processing are described in [Roche and Schabes 1997].



106

 The transducers in the new input understander are basically ordinary non-

deterministic Mealy machines (cf.  [Hopcroft and Ullman 1979]), where every transition

arc from one state to another contains a symbol to emit. The finite state machines can be

described as follows:

· A state machine consists of a set of states plus a comparison function.

· A state consists of a state name, an ordered list of arcs, and a deterministic flag.

· An arc consists of a label which must be matched against a symbol from the input

string, a string of output symbols to emit when the label is matched , and the name of

a new state to enter when the label is matched.

·  The comparison function is used for matching input symbols against arc labels.

The interpreter for these machines, a Lisp function, takes as input a state machine (a Lisp

structure), an input string (a list of symbols), and the name of the initial state. It iterates

over the input string, making state transitions and collecting the emitted symbols until the

input string is empty. The machines being interpreted can be non-deterministic, meaning

that more than one (or even none) of the arcs from a state might simultaneously match the

current symbol in the input string. Because of this potential non-determinism the

interpreter does not maintain a single current state. Rather, the interpreter mechanism

maintains a set of all possible Òroutes,Ó where each route contains a possible current state

together with the list of symbols emitted en-route to that state. There are no states

specially marked as ÒacceptingÓ; interpretation ends when the input string is exhausted.

The set of routes is the result.
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The input string is a list whose ÒsymbolsÓ are any kind of Lisp objects. The

comparison function is invoked to compare the label on an arc to an item in the input list

without reference to the type or structure of a symbol. In the new input understander,

one symbol in the input string is typically an entry from the lexicon containing a word, its

meanings, parts of speech, etc. The symbols to emit on each state transition can also be

any Lisp data object. Optionally there can be a function which is invoked to produce the

output symbols.

Each state can be marked as deterministic. When a state is deterministic, only the

first arc which matches the input symbol is taken, other possible transitions are ignored.

In place of having a label, an arc can be marked so it is always transited when

encountered.

An example state/transition diagram illustrating many of these points is Figure 6,

the finite state transducer for copula deletion (below).

Some Finite State Transducers

Copula Deletion. This finite state machine is responsible for eliding the finite

form of Òto beÓ from student utterances such as ÒSV is not changedÓ and Òit is SV.Ó The

output of this machine is the same sentence as the input with copula ÒisÓ elided. The

point of this exercise is to distinguish between copula ÒisÓ and physiological parameter

Òis,Ó the latter being the common abbreviation for Inotropic State. This machine will not

alter sentences such as Òis increased,Ó but Òsv is increasedÓ will be reduced to Òsv

increased.Ó Thus, of course, Òis is increasedÓ will be reduced to Òis increased.Ó
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The basic pattern of this machine is to look for the sequences:

{noun} + ÒisÓ + {optional negation} + {past/present participle or adj or adv}

{pronoun} + ÒisÓ + {anything}

This transducer is the first one in many of the cascades. It is a good illustration of

the style and power of the cascaded transducer approach: it uses limited syntax to

accomplish a limited but useful transformation of the text. After its operation, succeeding

stages can assume that any occurrence of ÒisÓ refers to the physiological parameter.

Parameter and Qualitative Change Extraction. There are several machines

here which basically perform keyword extraction, looking for parameter name, for

<any>/<w> noun/<w> is/<empty>

v-ing, v-en, adv, adj
 / <w>

neg/neg

v-ing, v-en, adv, adj
 / <w>

is/<empty>pronoun
/ <w>

<any>/<w>

>

X/Y    = match symbol X, emit symbol Y

<any> = match any word

<w>    = word which matched

= start

= finish

Figure 6. Example Finite State Transducer: Copula Deletion
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qualitative changes (up, down, change, nochange) preceded by optional negation, and for

parameters followed by qualitative changes. What is emitted is the ÒmeaningÓ attribute

from the lexical entry of the word (described later in this chapter), so that a word like

ÒafterloadÓ is converted to the concept map (for mean arterial pressure). Anything in the

utterance which is not selected is deleted.

Negation. This machine looks for negation followed by a qualitative change and

combines them. Thus an original utterance of ÒdoesnÕt changeÓ is transformed into neg +

change in the parameter/change extraction step which becomes a unitary nochange in

this step. There is no reason this machine needs to be restricted to negating qualitative

changes, but there are no other cases for it right now.

Proportionality. This is another keyword extraction machine which looks for

words and phrases meaning ÒdirectÓ or Òinverse.Ó It is used for answers to questions

about whether one parameter is directly or inversely proportional to another. Our medical

students have a linguistic tic of using ÒindirectÓ as an antonym for the ÒdirectÓ in

Òdirectly proportional.Ó

Neural Mechanism. This machine is used for answers to the Òby what

mechanism is X controlledÓ question. It looks for an optional parameter name plus

anything which can be matched to the mechanism ontology, shown in Figure 7. There are

a number of near-miss answers in this ontology, like radius of arterioles and fiber length,

which are not actually mechanisms of control. The mechanism ontology is described later

in this chapter.
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Easy Prepositional Phrases. These machines parse easy prepositional phrases

which represent parameters. The central issue is that certain frequently occurring

prepositional phrases have common meanings. For example the phrase Òvolume of

blood,Ó as it is normally used in our dialogues, can be taken to mean the volume of blood

in the central venous compartment, which is the parameter cbv (central blood volume). It

is tempting to put Òvolume of bloodÓ in the lexicon with the meaning of cbv. However

consider Òvolume of blood in the ventricleÓ which is equivalent to the parameter filling

(ventricular filling). The phrase Òvolume in the ventricleÓ has the same meaning. The

phrase Òvolume of blood ejected by the heartÓ means stroke volume, but it is beyond the

capability of any transducer I have written. Similar phenomena occur (although maybe

not as often) with ÒpressureÓ + {optional Òof bloodÓ} + preposition + anatomical part.

Simple ÒpressureÓ means map but Òpressure in the veinsÓ means cvp. Finally there is a

set of phrases beginning with words such as ÒlengthÓ or ÒradiusÓ or ÒdiameterÓ followed

by an anatomical part, such as the ever-popular Òradius of arterioles.Ó

There have been two versions of these machines. One looks for all the possible

patterns directly, and accepts the longest one which matches. It uses a small ontology to

recognize the anatomical parts. ÒVolume,Ó Òpressure,Ó Òblood,Ó Òlength,Ó etc. are built

into the machine, and the only prepositions it recognizes are ÒofÓ and Òin.Ó The second

version adds an extra cascaded step which recognizes and replaces Òblood volumeÓ and

Òvolume of {the} bloodÓ before looking for the main prepositional phrase in the next

machine.
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Easy Student Initiatives. This is a transducer which runs before the question-

specific cascades, looking for known easy student initiatives. Here is where the various

forms of ÒI donÕt knowÓ are recognized.

Hedges. Currently hedges are not used by CST, so this transducer has not been

implemented. It will run early in every cascade, causing known hedges such as a question

mark or ÒI think thatÓ to be replaced by a hedge token. It could also check for easily

recognizable inverted verbs, signaling an answer phrased as a question.

Equations. I have experimented with machines to recognize simple equations.

From the prevalence of equations in the transcripts, I feel confident this capability will be

needed in the future, but the current CSTÊv. 2 asks no questions which routinely elicit

equations from the students. Because of equations such as MAP = CO x TPR, we

occasionally see student utterances such as ÒCO x TPRÓ as an answer to Òwhat are the

determinants of MAP?Ó Since the parameter-name extraction machine is simply looking

for parameter names and ignoring the rest, such student answers are correctly recognized

without recourse to a special recognizer for equations.

Lexicon and Lexical Lookup

The lexical lookup phase of the new input understander replaces a sentence by a

list of lexical entry structures. This list is processed by the transducers.

The lexicon was derived from the words attested in the K-series keyboard-to-

keyboard transcripts.5 This list of words was edited and augmented by hand, inserting,

                                                
5 Martha Evens, Kumar Ramachandran, and Murugan Kannan were the primary
compilers and editors of the lexicon.
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for example, phrases, synonyms, antonyms, abbreviations, and unattested forms. Each

entry in the lexicon consists of a list of attribute-value pairs. Lexical attributes and values

were manually derived, generally following the grammar of Quirk et al. [1972]. Here is a

simple entry from the lexicon for the phrase Òsteady state:Ó

STEADY_STATE ((pos noun) (cm mass) (abbrev ÒssÓ) (mean ss))

ÒSteady stateÓ is a mass noun. It is abbreviated by ÒssÓ (which has its own entry in the

lexicon) and it has a meaning of SS. Phrases are no different than other lexical entries. The

individual components of a phrase, such as ÒsteadyÓ and Òstate,Ó may or may not also

have their own entries. Every distinct string has a separate entry, so that every form of a

verb is entered separately, as are plurals, abbreviations, and so on. The different forms of

a word are linked together, so that the inflected verbs are linked with the infinitive, the

abbreviations and fully spelled-out forms are linked together, etc. Counting all distinct

forms there are 4300 entries. Polysemous words increase the total number of entries to

5000.

There are many more attributes marked in the lexicon than are currently used by

the input understander. The only attributes examined while the input understander is

running are mean (meaning), pos (part-of-speech) and the lexeme itself. The cross-

reference attributes such as those linking abbreviations with spelled-out forms, inflected

with infinitive verb forms, and plurals with singular forms are processed off-line in the

course of ensuring that the lexicon is consistent.
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The different possible values for the mean attribute are shown in Table 6. Words

have been assigned meanings only when needed for processing student input to answer

CIRCSIM-TutorÕs questions. Other words have no ÒmeaningÓ assigned.

There is some polysemy in the lexicon, sometimes in less than obvious places. For

example, the hyphen (which represents a minus sign) is in the lexicon as meaning both

ÒdecreaseÓ and Òinversely proportional.Ó When there are multiple lexicon entries for the

same word, all of them are fetched by lexical lookup.

When the finite state transducers are examining the next item in the sentence, that

item is typically not a single lexical entry structure but (due to potential polysemy) a list

of lexical structures. The transducer is usually looking for either a meaning attribute, a

part-of-speech attribute, or the lexeme itself. In this case the transducer examines all the

available lexical entry structures for that particular word, and makes a transition if any

one of them matches. If the transducer emits a lexical entry during the transition, it will

emit the one which matched, and the other polysemous senses are dropped.

The approach to phrases in the lexical lookup phase is what is colloquially known

as the Òmaximal munchÓ strategy: the longest phrase in the lexicon which matches the next

segment of input words is taken. There is a table of all proper prefixes of phrases in the

lexicon to aid this strategy. A proper prefix is a sequence of words up to but not including

the whole phrase: the proper prefixes of Òright atrial pressureÓ are ÒrightÓ and Òright

atrial.Ó
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Spelling Correction

Spelling correction is triggered in the lexical lookup phase only when a word or

phrase is not recognized in the lexicon.

Table 6. Values of the MEAN Attribute in the Lexicon

MEAN Meaning MEAN Meaning
ABV arterial blood volume F-S Frank Starling effect
ANS autonomic nervous

system
HEDGE <hedge>

BP blood pressure HR heart rate
BR baroreceptor INVPROP inversely
BRP baroreceptor pressure IS inotropic state
BRR baroreceptor reflex KNOW know/understand
BRRATE baroreceptor firing rate NEG negation of verb: not,

isnÕt, wonÕt, etc.
BRSIZE baroreceptor size NO no
BV blood volume NOCHANGE unchanged
CBV central blood volume NS nervous system
CC cardiac contractility PIT intrathoracic pressure
CHANGE changed PHYSICAL hemodynamic / non-

neural control
CNS central nervous

systems
PNS parasympathetic

nervous system
CNSR central nervous system

response
PRELOAD preload

CO cardiac output RA arteriolar radius
CVP central venous

pressure
RAP right atrial pressure

DIRPROP directly REFLEX reflex
DN decreased RR reflex response
DR direct response RV venous resistance
DUNNO doesnÕt know SNS sympathetic nervous

system
EDP end diastolic pressure SS steady state
EDV end diastolic volume SV stroke volume
ESV end systolic volume TPR total peripheral

resistance
FILLING ventricular filling UP increased
FL fiber length VR venous return
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Handling spelling errors has been a major function of the input understander in

previous versions of CIRCSIM-Tutor [LeeÊ1990, Lee et al. 1990, Seu and EvensÊ1991,

SeuÊ1992]. For the new input understander I am using the spelling corrector written by

Mohammad Elmi [1994, Elmi and Evens 1998]. Its algorithm is an enhancement of the

one from earlier CIRCSIM-Tutor spelling correctors.

The original CIRCSIM-Tutor spelling corrector by Lee was built around an

algorithm which compared the misspelled word with every word in the lexicon. A sliding

window selects several characters from the misspelled word and from the candidate word.

These are then compared in three ways. If they are equal, the window slides over one, and

proceeds.

If the sliding window is at character mi of the misspelled word and cj of the

candidate word, LeeÕs algorithm compares mi to cj, mi to cj+1, and mi+1 to cj.

The common one-character spelling errors produce distinctive mismatches in such

a comparison. Single character substitutions, additions, and elisions are all identified and

fixed up as the window slides over them. Multiple differences are thus fixed one at a time.

Each fix-up is tabulated into a mismatch statistic, with a weight for each type of

difference fixed. If the misspelled word and the candidate word are too different, as judged

by the mismatch statistic, the candidate is rejected.

The output of the spelling correction algorithm is a list of words from the lexicon

which approximately match the misspelled word, ranked according to degree of mismatch.

Elmi improved LeeÕs algorithm and analyzed its behavior thoroughly. He has

shown that his four-way match algorithm (which additionally compares mi+1 to cj+1) is
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generally superior to previously published algorithms for correctly identifying candidates.

Among other things, it is far superior at finding character reversals. Elmi also employs

various techniques which are informed by observed categories of spelling errors. For

instance, given that people are observed to abbreviate by shortening a word, letters which

have been truncated from the end of the misspelled word are weighted less then letters

elided from the middle. The mismatch computation is also adjusted by other factors, such

as the observation that letters which have similar sounds are more likely to be confused,

as are letters which are adjacent on the typewriter keyboard.

When a word in the studentÕs utterance is not in the lexicon, the spelling corrector

is called. The closest match from the lexicon is taken. In future versions of the input

understander I hope to implement notions of topicality and locality as discussed in

Chapter 9.

There is a special interaction between phrase lookup and spelling correction which

in practice seems to improve the accuracy of correction considerably. If a word is not

recognized, but the lexical lookup process is in the process of trying to match a phrase,

the whole phrase prefix is spell-corrected. For example, the phrase Òright atrial pressureÓ

has a prefix Òright atrial.Ó Suppose the studentÕs utterance contains Òright atril.Ó At the

moment of spelling correction the input understander realizes it is trying to match a

phrase, so it spell-corrects Òright atrilÓ instead of just Òatril.Ó I would like to extend this

technique to phrase suffixes as well.
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NS       = Nervous System
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CNSR = Central Nervous System  Response

CNS    = Central Nervous System

BR       = Baroreceptor

BRR    = Baroreceptor Response

SNS = Sympathetic Nervous System

PNS = Parasympathetic Nervous
System

EDV = End Diastolic Volume

Ra    = Arteriolar Radius

Physical
Hemodynamic

Physical

Figure 7. Mechanism Answer Ontology
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Ontologies

The new input understander employs small ontologies during language processing.

Primarily these are used by the transducers for matching symbols in the input stream to

symbols needed for state-machine transitions. Thus, for example, a state machine might

call for a transition based on scanning a parameter. Suppose the input is Òarteriolar

radius,Ó which has a meaning attribute of ra. As part of symbol matching, the parameter

ontology shows that ra is a parameter, so the match occurs.

The mechanism ontology is illustrated in Figure 7. It categorizes the kinds of

meaning attributes for the answers to the question Òby what mechanism is X controlled?Ó

Arteriolar radius (ra) appears in this ontology (as well as in the parameter ontology),

even though ra is properly speaking a parameter and not a mechanism of control.

However ra can occur as an answer to the question Òby what mechanism is TPR

controlled,Ó where it is categorized a near miss. Thus the mechanism ontology classifies

ra as a kind of near miss.

Ontologies can be used by the input understander to classify words in ways other

than Òkind of answer.Ó For example, the ontology for the recognition of prepositional

phrases classifies various veins, arteries, heart chambers, and other anatomical terms as

Òcontainers,Ó which is needed for understanding phrases such as Òpressure in the central

venous compartment.Ó

Performance with a Class of Medical Students

When the first-year physiology class taught by Joel Michael and Allen Rovick at

Rush Medical College used CIRCSIM-Tutor v. 2 in November, 1998, there were about fifty
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students producing thirty-eight sessions (twenty-four of the students worked in pairs). In

total, there were 1801 student turns.

Table 7 shows a summary of how many student turns were and were not

recognized by the input understander. In this accounting, the ten garbled unusable turns

include any turns for which I could not divine an intention of the student. All were no

more than few characters long, for example the number Ò93,Ó the letter Òh,Ó and the string

Table 7. Input Understander Performance in
 November 1998

Total student turns 1801
Garbled or ambiguous 10
Total usable turns 1791

Of total usable turns:
 Bare symbol (+/-/0) 393
 Bare question mark 3
 Alphabetic 1395

1791

Of usable alphabetic turns:
 Recognized in a useful manner directly 1346
 Not recognized in a useful manner 19
 Recognized after correcting spelling,
  typing and impromptu abbreviations 30

1395

Of not recognized alphabetic turns:
 Spelling or typing errors 6
 Missing or incomplete lexical entry 5
 Expressions of frustration 2
 Abbreviations 2
 ÒHelpÓ and ÒOKÓ 2
 Domain concepts beyond
  CSTÕs knowledge 2

19
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Òcvr.Ó (It is possible that ÒcvrÓ stood for something in the mind of the student, but I

couldnÕt divine it from context.) If there was a recognizable answer plus a few garbled

characters additionally, the turn was counted as usable, not garbled.

Of the usable turns, some were simply the plus, minus, and zero symbols used to

indicate values of increased, decreased, and no change. The input understander recognized

all of these. I included the four times a student typed a single letter ÒoÓ instead of digit

Ò0Ó in this category. Also there were three turns which consisted of a bare question mark.

The question mark is recognized by the input understander, but it does nothing special

with it, so the standard error message is emitted explaining what kind of answer is

expected. I deemed this to be an appropriate response. Here is an example:

T: What parameter in the prediction table represents preload?
S: ?
T: Please respond with prediction table parameters
S: cvp
T: Right, Central Venous Pressure determines preload, therefore determines

Stroke Volume.

The remaining 1395 turns were almost entirely alphabetic characters. Of these,

nineteen (1.4% of alphabetic turns, 1.1% of all usable turns) were not recognized by the

input understander. Table 8 shows examples of unrecognized input. Of the turns which

were recognized, thirty required spelling correction. Representative examples are shown

in Table 9.

It should be noted that in addition to the input understander phenomena described

above, many of the tutoring phenomena we had planned for occurred during this session.

Students produced many near-miss answers and exercised many of the new hints that

CIRCSIM-Tutor v. 2.5 is capable of producing.
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Table 8. Representative Samples of Input Understander Failure in November 1998

Student Input Reason Not Recognized

ÒincreaseedÓ Spelling correction algorithm did not repair it.
ÒistprÓ Here ÒisÓ and ÒtprÓ are joined, but joins are not

currently recognized by spelling correction.
ÒneurologicalÓ There was a defect in the lexicon entry for this word.
Òcentral venous volumeÓ Missing from the lexicon
Òkiss my assÓ Expressions of frustration are not explicitly

recognized.
ÒinÓ This is a too-drastic abbreviation for Òinverse.Ó
ÒhelpÓ Requests for help are not currently recognized as a

category, thus the word ÒhelpÓ in the lexicon has no
assigned meaning.

Òmetabolic factorsÓ This is a domain concept beyond CSTÕs knowledge, so
the words have no assigned meaning in the lexicon

Table 9. Representative Spelling Errors Corrected
 in November 1998

Student Input Result of Correction
ÒrhÓ ÒhrÓ
ÒtrpÓ ÒtprÓ
ÒcariacÓ ÒcardiacÓ
ÒinotrphicÓ ÒinotropicÓ
ÒtrokeÓ ÒstrokeÓ
ÒcahngeÓ ÒchangeÓ
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CHAPTER IX

MORE LANGUAGE-ORIENTED TOPICS
FOR INPUT UNDERSTANDING

Spelling Correction and the Input Understander

It is my suggestion that the CIRCSIM-Tutor input understander can further

improve its spelling correction by using notions of locality and topicality to pick from

possible candidate corrections. This simple idea doesnÕt seem to occur in most spelling

correction software, but should make a noticeable difference.

Here is a short extract from transcript K12 containing two problems which I will

use to illustrate the idea. Please note Òimmed.Ó and ÒventricaleÓ in the following:

T: Does venous return go up immediately?

S: Does the rate of blood removal from the central veins mean that blood entering
the right atrium, if so i think venous return does go up immed.

T: We need to get our terminology straight. Venous return means blood returning
from the systemic circulation to the heart. That does not go up immediately. It
takes about a minute after CO I. Does more blood enter the ventricale for CO
to I, Yes. [K12-45]

The abbreviation Òimmed.Ó in this example occurs only once in our eighty or so

transcripts. It happens shortly after the use of the spelled-out word Òimmediately.Ó I

suggest that this is not a coincidence, that it is natural for impromptu abbreviations to

occur on second and subsequent uses. Let us call this Òlocality.Ó

The misspelling ÒventricaleÓ for ÒventricleÓ is analyzed a little differently.

Ventricles have not been mentioned in the preceding dialogue. However central veins and

the right atrium have been mentioned. This is a discussion which includes anatomy. In a

discussion of anatomy, ventricle fits right in. Let us call this Òtopicality.Ó
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It may be objected that this sample discourse is far more complicated than

anything the new input understander will need to process. This objection does not

invalidate my claim that locality and topicality might be useful. Even in the realm of short

answers it may be that CIRCSIM-Tutor will ask a question for which ÒventricleÓ is a

plausible answer. For example, imagine the following hypothetical exchange:

T: What determines CO?
S: Ventricale filling.

The spelling correction algorithm might propose both ÒverticalÓ and ÒventricleÓ from the

lexicon. One of the two must be picked. There may possibly be several methods for

picking. I am proposing that if there had been a discussion of cardiac anatomy

immediately preceding, the input understander could keep track of that fact and use it to

pick Òventricle.Ó

It might be possible for the input understander to implement a notion of locality

which is rather more sophisticated than simply Òwithin the previous k wordsÓ for some

constant k. In particular, I would like to try something approximating Òwithin the

currently open discourse (or pedagogical?) segments.Ó

The key here is that the tutor is controlling the conversation. Within one problem,

the tutor first gives the student the problem description, then prompts for the studentÕs

predictions, then tutors the errors. Within the tutoring phase, there is a conversation

segment for each of the three stages of the problem. Within each stage, there is a segment

for each incorrect variable [FreedmanÊ1996, Freedman and EvensÊ1996]. While correcting
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each variable, there is a segment for each attempt to remediate the error. Each of these

segments of conversation is derived from a separate goal in the tutorial planner.

At most points in time, it should be possible to examine the tutorial plannerÕs

current plan tree and identify the open discourse segments. Then the input understander

can take the vocabulary which exists in the discourse history and build a block structured

table of recently used words, those in the currently open discourse segments, to use

whenever it invokes locality to disambiguate a word.

Implementing the notion of topicality will start with the notion of locality and add

an appeal to the concept ontology. In the above transcript example, where ÒventricleÓ is

correct and ÒverticalÓ isnÕt, several anatomical terms were mentioned in the current

conversation segment, in particular Òatrium.Ó Both ÒatriumÓ and ÒventricleÓ are

specializations of Òcardiovascular-partÓ in the ontology. The input understander can

examine each word in the locality table, looking it up in the concept ontology, to see if it

has any close relations to the words proposed by the spelling corrector.

It must be noted that identifying what I call ÒtopicalityÓ here is a small part of

what has been done elsewhere. In a seminal paper, Grosz [1977] presents an algorithm to

dynamically identify the Òfocus spaceÓ of a conversation, represented as a partition of a

semantic network. If we had more complex dialogue, this kind of analysis would be what

is needed.

Use of Equations in the Transcripts

I decided to study equations in the transcripts with several goals in mind. First, it

would be useful to describe the language involved if we are to ever generate or understand
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text containing equations. Next, I wanted to see how equations might challenge the

CIRCSIM-Tutor v. 3 input understander, even given the limited conception of the kinds of

questions v. 3 might ask. We have attested examples of students using such equations in

response to simple questions. Finally, since none of the common tutoring tactics and

schemas described in earlier work for CIRCSIM-Tutor involve equations, I wanted to see

what new tactics and schemas I could find.

There are only two equations which occur with regularity in the tutoring

transcripts: CO SV HR= ´  and MAP CO TPR= ´ . Here I catalog the contexts in which

they occur.

I have extracted 45 instances among the 50 K-transcripts and 36 instances among

the 31 N-transcripts where one or the other of the above equations was mentioned. An

ÒinstanceÓ may contain several occurrences of the same equation, for example when the

student is trying to understand it or states it incorrectly, or somebody repeats back an

equation just introduced, so the total number of occurrences of equations in the text is

somewhat higher. I located equations in the text by searching for strings as shown in

Table 10.

Table 10. Identifying Equations

String Typical Occurrence
Ò x Ó CO x TPR
Ò*Ó CO * TPR
ÒtimesÓ sv times hr
ÒprodÓ MAP is the product of TPR and CO
Ò=Ó MAP = É
ÒequaÓ ÒequationÓ in textual proximity to an

equation
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The equations in the transcripts almost always conform to the following grammar.

In the equation ÒMAP = CO x TPRÓ I refer to MAP as the LHS and ÒCO x TPRÓ as the

RHS. If you write the equation in reverse as ÒCO x TPR = MAPÓ I still refer to the single

variable side as the LHS.

LHS ® variable
RHS ® variable MULT-SYMBOL variable |

    Òthe product ofÓ variable ÒandÓ variable
EQN ® LHS EQ-SYMBOL RHS | RHS EQ-SYMBOL LHS
MULT-SYMBOL® Ò*Ó | ÒxÓ | ÒtimesÓ | space | null-string
EQ-SYMBOL ® Ò=Ó | ÒisÓ | Òis equal toÓ | other verbs

Note that some of the verbs which can be used for EQ-SYMBOL are not symmetric

predicates of equality. For example if you use Òdetermines,Ó the sentence ÒHR times CO

determines TPR.Ó would not mean the same as ÒTPR determines HR times CO.Ó

Equations can occur in isolation, or they can occur as constituents of sentences.

They can be expressed in their entirety or only the RHS might be expressed. All four

cases, isolated vs. run-in and entire vs. RHS only, are attested:

(1) CO=TPR*HR [K3-st-22-1]

(2) But isn't CO X TPR =MAP ? [K7-st-100-1]

(3) SV X HR [K38-st-49-1]

(4) Co does decr (the product of sv and hr is down)
and tpr is decr. [K25-tu-154-2]

It is rare to find an RHS which occurs by itself as a constituent of a sentence as

inÊ(4). Usually the corresponding LHS is also present, joined by a verb or an equal sign.

However once an equation has been embedded into a sentence it is subject to the normal

syntactic transformations. In (5) we have an example of an equation run into a sentence

where the LHS ÒMAPÓ has been pronominalized to Òit.Ó This shows clearly that the LHS

and RHS are distinct syntactic constituents:
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(5) I did forget to tell you that MAP increased because
it is equal to CO times TPR. [N5-tu-44-1]

In (6) below, in addition to LHS pronominalization, the equation has been

passivized around the EQ-SYMBOL Òdetermines,Ó thereby moving LHS and RHS in

relation to each other:

(6) This caused the CO to decrease because it is determined by SV times HR, but
HR does not change. [N7-tu-66-10]

There is a strong preference for using symbols over words; ÒtimesÓ and ÒequalsÓ

are rather uncommon compared to Ò*Ó or ÒxÓ and Ò=Ó. It would be tempting, from a

parsing point of view, to separate equations into two varieties, one using symbols and

one using words. There are a few equations which have no symbols. Here is another:

(7) The cardiac output equals stroke volume times heart rate. [K9-st-24-2]

However, hybrid examples such as the following motivate one to produce a single

combined grammar:

(8) Sv times hr =co [K13-st-52-1]

Examples (5) and (6) demonstrate that when equations are embedded into a

sentence, the LHS ÒitÓ and the RHS ÒSV times HRÓ or ÒCO times TPRÓ are syntactically

serving as NPs. If we were to parse equations which are embedded in sentences, I would

argue for treating ÒtimesÓ and the other multiplication symbols as a kind of conjunction

between two NPs.

A dramatic example of what can be interpreted as an equation run into a sentence

followed by a syntactic transformation is:

(9) But isnÕt CO X TPR =MAP? [K7-st-100-1]
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This would seem to argue that EQ-SYMBOL is serving as a verb.

Note, however, that most often an equation run into a sentence is treated as a

clause unto itself, even sometimes an independent clause or an embedded S:

(10) MAP = CO X TPR is a deterministic statement. [K40-tu-108-2]

(11) SV x HR = CO so the cardiac output will incise also. [K40-st-65-1]

(12) ÉSince HR doesnÕt change in the DR, CO must have
 gone up (CO = HR X SV). [K39-tu-78-6]

Note that when the equation is expressed in symbols, inter-word blanks are often

not written, e.g. ÒCO=TPR*HRÓ instead of ÒCO = TPR * HR.Ó Usually this is not a

problem, since symbols are not normally part of variable names or English words in

general. For example, the blank missing in Ò=MAPÓ in example (9) should cause little

difficulty. However when ÒxÓ is used as a multiplication symbol the result of missing

blanks is mysterious words, e.g. ÒcoxtprÓ (which occurs five times in the transcripts),

Òsvxhr,Ó and ÒhrxÓ (from Òhrx svÓ), among other attested examples.

An occasional construction is the elision of the multiplication symbol, mimicking

common mathematical practice. The result is not always pretty because the two operands

are sometimes combined into one word without a space:

(13) CO = HR SV [K3-tu-23-2]

(14) Co=hrsv [K25-st-65-1]

It seems that if we are to accept equations as student input a certain number of ad

hoc lexical entries and grammar rules might be convenient. We can put all the

combinations such as ÒsvxhrÓ and ÒsvhrÓ into the lexicon, perhaps as abbreviations. The

scanner will separate symbols from adjoining words, so that ÒTPR*HRÓ will become
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three tokens. And the grammar will have to recognize an equation as a possibly

independent clause which can be mixed with the other constituents.

As I have mentioned previously, students sometimes really do type equations in

response to questions which do not ask for one. Here are two examples:

(15) T: When CO increases, does it affect the value of another variable?

S: Yes, MAP=CO * TPR. [K4-tu-41]

(16) T: But, what are the determinants of co?

S: Hr x sv [K42-tu-110]

My feeling is that these cases are ones that CIRCSIM-Tutor v. 3 truly ought to understand.

It should be able to deduce the expected answers, ÒMAPÓ and ÒCO, TPRÓ respectively,

from the studentÕs response.

How the equation is interpreted will depend on the question which was asked. Let

me suggest how to process example (15):

· Recognize that the input is an equation MAP = CO * TPR, build an internal

representation for it.

· Verify that the original question, Òwhat variables does parameter X affect,Ó is one that

is known to be answerable by an equation. Locate the method for doing so, expressed

in the next few steps.

· Verify that the parameter in the question, CO, is on the right hand side of the

studentÕs equation.

· Find the left hand side, if one was input by the student, and propose this as the

answer. In this case that is MAP.
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· As a side issue, verify that the equation is correct. If the student typed, for example,

ÒMAP = CO * SV,Ó which is false, we still have a correct answer ÒMAP is affected

by CO.Ó However the erroneous equation should not pass by without comment;

CIRCSIM-Tutor might want to emit some sort of correction. How to do that is up to

the instructional planner.

· At this point, processing can continue as if the student had typed ÒMAPÓ

Note that processing (16) will contain some different steps in equation

interpretation, because the original question was different:

· The original question is Òwhat parameters determine variable X.Ó

· Verify that the parameter in question, CO is on the left hand side of the equation. If

the student didnÕt specify any LHS we can assume it is CO.

· Find the parameters on the right hand side as input by the student, and propose these

as the answer.

· Again, we verify that the equation is correct so a correction could be issued if needed.

Note that to process (15) we extracted the answer from the left hand side, and to process

(16) we extracted the answer from the right hand side.

One important thing to notice here is that there can be several results which

simultaneously come from processing the studentÕs answer. In addition to the straight

answer to the question, there is the side issue of whether the equation was correct. This

side issue was not among the tutorÕs current goals, but if the student types the equation

incorrectly the student introduces a new tutoring goal to correct the equation (albeit a goal
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which will be only briefly addressed). For this reason, it might be processed in the same

manner as a simple student initiative.

There are several tutoring schemas involving equations which appear in the expert

tutor transcripts. Here are two which occur more than once and are clear enough for me to

abstract the logic.

A frequent goal which causes the tutor to introduce the equation CO = HR x SV is

to teach that HR is (in this case) a stronger determinant of CO than SV is. The strategy is

to point out that:

· HR has increased

· SV has decreased

· CO = HR x SV means that HR and SV are influencing CO in opposite directions

· CO increased, so HR is the stronger determinant

Sometimes the tutor elicits the equation from the student then the tutor supplies

the parameter values, sometimes the tutor states the equation and lets the student

discover the conflict. It is possible for the tutor to provide everything or to elicit all steps

from the student in a directed line of reasoning. In any event, tutoring this goal often

involves invoking an equation. Here is one of the shorter examples of this type:

(17) T: What two variables determine CO?

S: HR and SV

T: Right. CO = HR x SV. So, as long as HR increases more than SV decreases,
CO will be increased. [K49-tu-62]
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Another situation which occurs several times in the expert transcripts is to teach

the student the value of CO in steady state, given already known values for MAP and

TPR. The reasoning is:

· TPR has increased (for instance)

· MAP has decreased

· MAP = CO x TPR, so CO must have decreased MAP more than TPR increased it.

I note parenthetically that the reason this goal occurs in steady state is that the

tutors usually do not try to reason causally among the steady state values. In DR and RR,

the predictions were derived from the procedure variable, causal relations among the

concept map variables, and various principles such as Òneural variables do not change in

DR.Ó In SS the tutors usually derive their predictions from the DR and RR values, which

enables them to obtain values for TPR and MAP with some believability. The value for

CO can be derived by a consistency argument which invokes this equation.

Here is a brief example of that kind of schema. As with other tutoring schemas,

the component propositions can be either elicited from the student or contributed by the

tutor.

(18) T: Well, you previously told me that map=co x tpr.
You predicted that map was still i and tpr MUST be d since it was
0 in dr and d in rr.
So what about co? [K44-tu-206]

Sometimes the expert tutors try to elicit equations from the student as a last resort

to get determinants after some other tactic has failed. For example, in K39 the tutor writes

ÒWrite an equation using only the variables in the prediction table that says MAP =,Ó but
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the tutor isnÕt actually interested in obtaining that equation. It is the tutorÕs third and final

attempt to elicit from the student the determinants of MAP, which would have been

evident had the student responded with the correct equation.

A common locution is to interpolate an equation to support a causal argument.

Similarly, students often invoke equations when asked to explain their reasoning. Here are

some examples:

(19) A fall in TPR would cause a fall in MAP (map=TPR*co) [K3-st-64]

(20) T: Next?

S: CO

T: Change?

S: I, as HR X SV= CO [K39-tu-30] 

(21) T: In what way can co affect sv?

S: Co=hr x sv so an increased co would mean an
increased sv [K4-tu-39]

(22) T: In this case the first thing that changed was HR- it increased.
This caused CO to increase because of CO= HRxSV.
Now because CO goes up, so does MAP (because of
MAP= CO x TPR). [N12-tu-52]

Example (21) contains a misconception about using equations to support causal

arguments which occurs from time to time in student thinking. In this domain,

physiological causality proceeds from the right hand side determinants to the left hand

side result.

A final use of equations in service of an ancillary goal is to invoke an equation to

support a statement that one parameter is a determinant of another.

(23) S: I would say that TPR predicts it because that controls the pressure.

T: So does the CO control the pressure, MAP = CO X TPR.
[K39-st-175]
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(24) T: Ok, remember that MAP is dependent on CO and TPR
 (MAP =TPR x CO) [N2-tu-110]
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CHAPTER X

CONCLUSIONS

Summary and Significance

CIRCSIM-Tutor is among a small number of intelligent tutoring systems where the

tutor has control of a dialogue and the student types free text. That this modality is rare

in a tutoring system might be surprising, since human tutors commonly let their students

talk almost at will. But being able to comprehend and act on the freely expressed thoughts

of a student is a formidable task which almost nobody has undertaken. Nevertheless Joel

Michael and Allen Rovick, authors and users of several more traditional tutoring systems,

perceived the desirability of a tutoring system which at some level engages  in a dialogue

with the student.

One of the goals of this thesis is therefore to justify that perception: to show that

CIRCSIM-TutorÕs mode of tutoring works, that tutoring works in general, that asking

questions and having students utter answers and explanations increases their learning. As

part of that justification I compared expert to novice tutors and showed that the experts,

in one specific way, cause students to generate (rather than listen to) more answers than

the novice tutors do.

 CIRCSIM-Tutor severely constrains the range of student utterances by asking very

closed questions and by responding to only a limited variety of responses. I have

managed to show from human tutoring transcripts and from logs of previous versions of

CIRCSIM-Tutor that even within this constrained domain there are a number of phenomena
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that can be exploited and a number of phenomena which must be coped with. I have done

a extensive analysis of the kind of language which students use in these tutoring sessions.

Among the phenomena that we can now or may soon be able to exploit are Ònear

missÓ answers, where the student says something unexpected but still usable for tutoring,

answers which are known to be diagnostic of various misconceptions, equations

interpolated into the answers, and answers which are hedged.

I examined  some of the available technologies for input understanding, and wrote

a new input understander for CIRCSIM-Tutor. The new understander is based on the

technique of finite state transducers, using the robust approach of extracting only what is

needed from the student answer and ignoring the rest. Having a new understander helped

to upgrade the tutoring ability of  CSTÊv. 2, which is now being used by medical students.

Furthermore the new input understander will be able to handle the kinds of student input

we expect in the new CSTÊv. 3, which is currently being written by other members of our

group.

I have performed experiments with the new technology of Latent Semantic

Analysis. I discussed how  CIRCSIM-Tutor might use the technique to sensibly handle

student answers to Òdiagnostic questions,Ó a class of much more open questions than

CST now asks.

Engaging in dialogue, particularly tutorial dialogue, is at the forefront of research

right now. Endeavors like the Human Tutorial Dialogue Project [FoxÊ1993] are studying

how tutorial dialogue works and how it might be adapted to computers. Other tutoring

projects are starting to realize the potential for free-text student input, and a recent one
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(AutoTutor) has plunged into that area in ways not tried before. The new input

understander enables CIRCSIM-Tutor to go into new territory and advance the state of the

art in intelligent tutoring. I am proud to be a part of that effort.

Future Work

There is considerable future work to be done in input understanding for CIRCSIM-

Tutor. There are phenomena which it is ready to handle that I have not implemented

fully, such as hedges and equations. Furthermore, as the current tutor improves, the input

understander needs to be upgraded to match its needs.

There is an experiment in using Latent Semantic Analysis to process diagnostic

questions which I hope to perform at Rush Medical College the spring of 1999. If the

experiment works, it may be a big improvement for CIRCSIM-Tutor.

Finally, CIRCSIM-Tutor v.Ê3 is on the horizon; parts of it are being written right

now. The new input understander has the technology and the structure to meet the needs

of the new tutor, and to provide it with access to student answer phenomena which have

not been previously available.
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