Objectives:
1. To understand Object-Oriented Design (OOD) and its advantages.
2. To revisit the concepts of objects and classes, with emphasis on implementation.
3. To understand the responsibilities of a class.
4. To understand how to use the Classes, Responsibilities and Collaborations (CRC) card to generate a good class design.

Reading Assignment:
1. Nell/Chip/Mark, Chapter 6

Concepts:
1. The OOD Model
2. Implementing OOD
3. Inheritance
4. Data Representation
5. Packages

Announcements:
1. Midterm Test next week
2. Lab- Midterm Review Session
1. OOD Model
 - OOD advantages over traditional functional decomposition
 - OOD focuses on objects instead of tasks
 - Objects are self-contained entities composed of data and operations on that data
 - Classes define the pattern used when instantiating an object
 - OOD is better suited to solve large problems

2. Implementing OOD
 - Identify the initial set of objects in the problem
 - Nouns represent Objects
 - Verbs represent Actions (methods)
 - Filter the list to eliminate all duplication
 - Identify the responsibilities of the objects necessary to solve the problem
 - A responsibility of a class is an action the class must be able to perform
 - Types of responsibilities include:
 - Constructor
 - Copy Constructor
 - Transformer
 - Observer
 - Iterator
 - Identify the collaboration necessary between classes to solve the problem
 - Information collected can then be transferred to a CRC card, which aids in the design process
 - Now teamwork can occur with individual programmer

3. Inheritance
 - Defining a new class based on an existing class
 - Adapting the methods in the new class

4. Data Representation
 - Instance Data- internal representation of a specific object, records object’s state
 - Class Data- available to all objects of a class, defined by using static keyword
 - Local Data is specific to a given call of a method

5. Packages
 - A compilation of classes
 - Any field or method with package access can be accessed by any member of the package
Objectives:
1. To prepare students for Midterm Exam
2. To understand the material in the Midterm Study Guide Handout

Midterm Study Guide Handout

Chapter 1 main topics
- Software Life Cycle Phases
 - Design
 - Implementation
 - Debugging
 - Testing
 - Documentation
 - Maintenance
- Basic Programming Terminology
 - Object Oriented Design – Objects, Classes
 - Algorithms and Psuedocode
 - Programming Languages- Machine, Assembly, High-Level
 - Compilation, Linking, Interpretation- How does Java Work?
 - Basic Control Structures- sequence, selection, loop, subprogram
 - What are Data Types
- Java Specific Terminology
 - Java Virtual Machine
 - Java Compiler
 - Structure of a Java Program
 - Java Identifiers
 - Reserved Words

Chapter 2 main topics
- Primitive Data Types
 - Byte, char, short, int, long – Understand what each is used to store
 - Boolean
 - Floating Point Numbers – float, double
- Methods
 - Why use Methods?
 - Constructors
 - Void methods
 - Helper methods
- Variables
- Java String Class
- Java I/O Device
- Arithmetic Expression
 - Arithmetic Operators
 - Modulus
 - Rules of Precedence
 - Associatively
Chapter 3 main topics

- Java Operators
 - Increment / Decrement
 - Prefix / Postfix
 - Precedence
 - Associativity
 - Logical / Rational Operators
- Type and String Conversion
 - Type casting
 - String conversion
 - Primitive / reference types
- String Operators
 - String Methods
 - Substrings
 - Converting to Numberical Representations
 - Getting Input
 - Copying References

Chapter 4 main topics

- The boolean data type
- Logical expressions
 - Relational operators: < > <= >= == !=
 - Logical operators:
 - && (AND)
 - || (OR)
 - ! (NOT)
 - Short-circuit evaluation
- Comparing String objects
 - s1.equals(s2) — returns true or false
 - s1.compareTo(s2) — returns an int value (negative, 0, positive)
- Relational operators with floating point types
 - “x == y” vs. “Math.abs(x – y) < 0.00001”
 - “x != y” vs. “Math.abs(x – y) >= 0.00001”
- The if statement
 - if-else form
 - blocks (compound statements)
 - if form
 - Nested if statements

Chapter 5 main topics

- Converting String s to int or double:
 - int number = Integer.parseInt(s);
 - double amount = Double.parseDouble(s);
- Additional useful String operations:
 - Trim whitespace from the ends of a String object:
 - s.trim()
 - Find the position of the first occurrence of “x” in String s:
 - int pos = s.indexOf(“x”);
 - Find the position of the next occurrence of “x” in s:
 - int pos = s.indexOf(“x”, pos + 1);
 - Get the substring of s from position p1 to position p2:
 - String s2 = s.substring(p1, p2);
- Get the substring of s from position p to the end of the string:
 String s2 = s.substring(p);
- Get the character at position p in the String s:
 char ch = s.charAt(p);

- The while statement
- Count-controlled loops
- Event-controlled loops
 - Sentinel-controlled loops
 - End-of-file-controlled loops
- Nested loops

Some final suggestions:
Try the Quick Check and Exam Preparation Exercises at the ends of the chapters.

Good luck!