Objective:

1. To introduce students to the design and analysis of algorithms.

Reading Assignment:

Neapolitan and Naimipour: Chapter 1

Contents:

1. Discuss class syllabus. ($\frac{1}{4}$ hour)
2. Define “Algorithm.” ($\frac{1}{4}$ hour)
3. Show example problems & solutions. ($\frac{3}{4}$ hour)
4. Efficient Algorithms: Sequential vs. Binary Search ($\frac{1}{2}$ hour)
5. Recursive Algorithms ($\frac{1}{4}$ hour)
6. Time Complexity Analysis of Algorithms ($\frac{1}{2}$ hour)
7. Order ($\frac{1}{2}$ hour)
CS 430: Week 1

Time

1. Discuss class syllabus. (1/4 hour)
 - Course expectations
 - Grading Policy

2. Define “Algorithm.” (1/4 hour)
 - Techniques for solving problems using a computer.
 - Multiple approaches for solving the same problem.

3. Show example problems & solutions. (3/4 hour)
 - Sort a list of n numbers in decreasing order.
 - Determine whether the number x is in a list of n numbers.
 - Add array members.
 - Matrix multiplication.

4. Efficient Algorithms: Sequential vs. Binary Search (1/2 hour)
 - Sequential search.
 - Binary search.

5. Recursive Algorithms (1/4 hour)
 - Fibonacci sequence example.

6. Time Complexity Analysis of Algorithms (1/2 hour)
 - Worst-Case Time Complexity Analysis of Algorithm
 - Average-Case Time Complexity Analysis of Algorithm
 - Best-Case Time Complexity Analysis of Algorithm:

7. Order (1/2 hour)
 - Quadratic-Time Algorithms
 - Theta Notation
 - “Big O” Notation
Handouts, etc. for Lecture, including Syllabus.