

A Performance Study of the Globus Toolkit® and Grid Services via DiPerF, an automated DIstributed PERformance testing Framework

> Ioan Raicu Distributed Systems Laboratory Computer Science Department University of Chicago

Adviser: Ian Foster Committee Members: Ian Foster, Rick Stevens, John Reppy

> MS Thesis Defense May 11th, 2005

Grid Computing & the Globus Toolkit®

- The Globus Toolkit® (GT®) is the "de facto standard" for grid computing
- Grid Computing's focus:
 - large-scale resource sharing: direct access to computers, software, data
 - innovative applications
 - high-performance orientation
- The 'Grid problem':
 - Definition: flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions, and resources, namely virtual organizations
 - Challenges: Authentication, Authorization, resource access, resource discovery
- Globus Toolkit® Components
 - GRAM: Job Management
 - MDS: Monitoring and Discovery System
 - GridFTP: File Transfer
 - Others: RLS, RFT, CAS, OGSA-DAI, GTCP

Motivation & Goals

- Part 1: Testing the performance of the Globus Toolkit®
 - The Globus Toolkit® is the "de facto standard" for grid computing
 - Performance of GT® in a WAN & LAN is essential
 - expected performance from the GT® in a realistic deployment in a distributed and heterogeneous environment
 - Performance of grid services in a WAN
 - complex interactions between network connectivity and service performance.

• Part 2: Developing DiPerF

- Performance testing is an 'everyday' task, HOWEVER testing harnesses are often built from scratch for a particular service
- DiPerF can be used to test the scalability and performance limits of a service
- controlled LAN-based tests are not enough
- Wide-area, heterogeneous deployment provided by the PlanetLab and/or Grid3 testbed
- DiPerF can provide accurate estimation of the service performance as experienced by both LAN and WAN clients

Obstacles in Performing Distributed Measurements

- Accuracy
 - synchronizing the time across an entire system that might have large communication latencies
- Flexibility
 - in heterogeneity normally found in WAN environments and the need to access large number of resources
- Scalability
 - the coordination of large amounts of resources
- Performance
 - the need to process large number of transactions per second

My Thesis in a "Nutshell": Part 1 - Performance of GT®

- Job submission: pre-WS GRAM and WS-GRAM included with GT® 3.2 and 3.9.4
- Information services: the scalability and performance of the WS-MDS Index bundled with GT® 3.9.5
- A file transfer protocol: the scalability and fairness of the GridFTP server included with the GT® 3.9.5
- Grid Services:
 - DI-GRUBER, a distributed usage SLA-based broker based on the GT® 3.2 and 3.9.5
 - Instance creation and message passing performance in the GT® 3.2

My Thesis in a "Nutshell": Part 2 - DiPerF

- Goals: simplify and automate large scale service performance evaluation
- DiPerF Features
 - coordinates a pool of machines that test a single or distributed target service
 - collects and aggregates performance metrics from the client point of view
 - generates performance statistics
- DiPerF Implementation
 - modularized tool written in C/C++/perl
 - Uses off-the-shelf tools and protocols: Ssh-based tools (i.e. scp, rsync), telnet, TCP/UDP/IP
 - tested over various testbeds: PlanetLab, Grid3, Computer Science Cluster at the University of Chicago
- DiPerF Performance:
 - 10,000+ clients & 100,000+ transactions per second & validation study

5/10/2005

MS Thesis Presentation

DiPerF Components

- Controller
 - Receives the address of the service and a client code
 - Distributes the client code across all machines in the pool
 - Gathers and stores performance statistics
- Tester
 - Receives client code
 - Runs the code and produce performance statistics
 - Sends back to "controller" raw statistic metrics
- Analyzer
 - Aggregates and summarizes performance statistics

PlanetLab Testbed Characteristics

PlanetLab Testbed Characteristics

PlanetLab Network Performance from 268 nodes to UChicago

Time Synchronization

- Distributed approach:
 - Tester uses Network Time Protocol (NTP) to synchronize time
 - Not deployed or configured properly everywhere
- Centralized approach:
 - Controller uses time translation to synchronize time
 - Could introduce some time synchronization inaccuracies due to non-symetrical network links and the RTT variance

Metric Aggregation

Communication Overview

MS Thesis Presentation

Summary of Communication Performance and Scalability

Analyzer: Performance Metrics

- service response time:
 - the time from when a client issues a request to when the request is completed minus the network latency and minus the execution time of the client code
- service throughput:
 - number of jobs completed successfully by the service averaged over a short time interval
- offered load:
 - number of concurrent service requests (per second)
- *jobs completed / failed* (per client):
 - The number of jobs completed successfully and the number of failed jobs
- service utilization (per client):
 - ratio between the number of requests served for a client and the total number of requests served by the service during the time the client was active
- service fairness (per client):
 - ratio between the number of jobs completed and service utilization
- network latency to the service:
 - time taken for a minimum sized packet to traverse the network from the client to the service
- time synchronization error:
 - real time difference between client and service measured as a function of network latency variance
- client measured metrics:
 - Any performance metric that the client measures and communicates with the tester

5/10/2005

MS Thesis Presentation

Analyzer

• Design

- 4000+ lines of C++ code
- Performance metrics:
 - 8 generic metrics
 - Client specific metrics
- Supported features:
 - Analyze just parts of data
 - Verify data files_____
 - Time Quanta

Performance

# of Mach	Test Length	# of Trans	Memory Footprint (MB)	Time Quanta	Execution Steps	Time (sec)	Time / Trans (ms)	Trans / sec
8	168	100	0.0	1 sec		1.4	14.0	71.4
40	1000	2900	0.5	1 sec	Vorify	1.6	0.6	1812.5
200	11000	45000	26.5	1 sec	Load	5.1	0.1	8840.9
1000	255	125000	6.5	1 sec		33.0	0.2	3787.9
1000	3000	2000000	91.6	1 sec Resp. tir	Resp. time	951.7	1.0	2101.6
1700	6500	671000	145.7	1 sec	Resp. line	166.5	0.3	4030.0
3600	12000	354000	504.5	1 sec		359.0	0.5	986.1
MS Thesis Presentation								20

5/10/2005

INS THESIS PRESENTATION

DiPerF Validation: GridFTP

DiPerF Validation: TCP Server

Performance of GT®

- Job submission: pre-WS GRAM and WS-GRAM included with GT® 3.2 and 3.9.4
- Information services: the scalability and performance of the WS-MDS Index bundled with GT® 3.9.5
- A file transfer protocol: the scalability and fairness of the GridFTP server included with the GT® 3.9.5
- Grid Services:
 - DI-GRUBER, a distributed usage SLA-based broker based on the GT® 3.2 and 3.9.5
 - Instance creation and message passing performance in the GT® 3.2

Job Submission: GRAM

- GT3.2 GRAM
 - Job submission via Globus Gatekeeper 2.4.3 using Globus Toolkit 3.2 (C version)
 - Job submission using Globus Toolkit 3.2 (Java version)
- GT3.9.4 GRAM
 - Job submission using Globus Toolkit 3.9.4 and a pre-WS GRAM client (C) and pre-WS GRAM Service (C)
 - Job submission using Globus Toolkit 3.9.4 and a WS GRAM client (C) and WS GRAM Service (Java)

Performance of GT®

- Job submission: pre-WS GRAM and WS-GRAM included with GT® 3.2 and 3.9.4
- Information services: the scalability and performance of the WS-MDS Index bundled with GT® 3.9.5
- A file transfer protocol: the scalability and fairness of the GridFTP server included with the GT® 3.9.5
- Grid Services:
 - DI-GRUBER, a distributed usage SLA-based broker based on the GT® 3.2 and 3.9.5
 - Instance creation and message passing performance in the GT® 3.2

Performance of GT®

- Job submission: pre-WS GRAM and WS-GRAM included with GT® 3.2 and 3.9.4
- Information services: the scalability and performance of the WS-MDS Index bundled with GT® 3.9.5
- A file transfer protocol: the scalability and fairness of the GridFTP server included with the GT® 3.9.5

• Grid Services:

- DI-GRUBER, a distributed usage SLA-based broker based on the GT® 3.2 and 3.9.5
- Instance creation and message passing performance in the GT® 3.2

GridFTP Server Performance Upload 10MB file from 1800 clients to ned-6.isi.edu:/dev/null

Performance of GT®

- Job submission: pre-WS GRAM and WS-GRAM included with GT® 3.2 and 3.9.4
- Information services: the scalability and performance of the WS-MDS Index bundled with GT® 3.9.5
- A file transfer protocol: the scalability and fairness of the GridFTP server included with the GT® 3.9.5
- Grid Services:
 - DI-GRUBER, a distributed usage SLA-based broker based on the GT® 3.2 and 3.9.5
 - Instance creation and message passing performance in the GT® 3.2

Performance of GT®

- Job submission: pre-WS GRAM and WS-GRAM included with GT® 3.2 and 3.9.4
- Information services: the scalability and performance of the WS-MDS Index bundled with GT® 3.9.5
- A file transfer protocol: the scalability and fairness of the GridFTP server included with the GT® 3.9.5
- Grid Services:
 - DI-GRUBER, a distributed usage SLA-based broker based on the GT® 3.2 and 3.9.5
 - Instance creation and message passing performance in the GT® 3.2

Contributions: Performance Testing of GT

- Quantified the performance gain or loss among different versions or implementations
- Discovered upper limits on scalability and performance
- Gave users a tool for better resource planning
- Gave developers feedback

Contributions: DiPerF

- Allows large scale testing of grid services, web services, and network services to be done in both LAN and WAN environments
 - Service capacity
 - Service scalability
 - Resource distribution among clients
 - Accurate client views of service performance
 - How network latency or geographical distribution affects client/service performance
 - Allows the collection of the appropriate metrics to build analytical models
- DiPerF has been automated to the extent that once configured, the framework will automatically do the following steps:
 - check what machines or resources are available for testing
 - deploy the client code on the available machines
 - perform time synchronization
 - run the client code in a controlled and predetermined fashion
 - collect performance metrics from all the clients
 - stop and clean up the client code from the remote resources
 - aggregate the performance metrics at a central location
 - summarize the results
 - generates graphs depicting the aggregate performance of the clients and tested service

Future Work

- Analytical Models
 - Large data sets...
 - AI and Machine Learning techniques:
 - Neural networks, decision trees, support vector machines, regression, statistical time series, wavelets, polynomial approximations, etc...
- Resource Management
 - Job Profiling
 - Co-scheduling
 - Predictive Scheduling

Related

Publications & Tech Reports

Published / Technical Reports

- C. Dumitrescu, I. Raicu, M. Ripeanu, I. Foster. "*DiPerF: an automated DIstributed PERformance testing Framework*", 5th International IEEE/ACM Workshop in Grid Computing, 2004, Pittsburg, PA.
- **I. Raicu**. "Decreasing End-to-End Job Execution Times by Increasing Resource Utilization using Predictive Scheduling in the Grid", Technical Report, Grid Computing Seminar, Department of Computer Science, University of Chicago, March 2005.
- C. Dumitrescu, I. Foster, I. Raicu. "A Scalability and Performance Evaluation of a distributed Usage SLAbased Broker in Large Grid Environments", GriPhyN/iVDGL Technical Report, March 2005.

Under Review

- C. Dumitrescu, I. Raicu, I. Foster. "*DI-GRUBER: A Distributed Approach for Grid Resource Brokering*", submitted for review to IEEE/ACM SC 2005.
- B. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I. Raicu, I. Foster. "*Zebra: The Globus Striped GridFTP Framework and Server*", submitted for review to IEEE/ACM SC 2005.
- C. Dumitrescu, I. Raicu, I. Foster. "*Performance Measurements in Running Workloads over a Grid*", submitted for review to IEEE/ACM SC 2005.

Work in Progress

- I. Raicu, C. Dumitrescu, I. Foster. "A Performance Analysis of the Globus Toolkit®'s Job Submission, GRAM', will submit to IEEE/ACM Grid 2005.
- I. Raicu, C. Dumitrescu, I. Foster. "A Performance Evaluation of WS-MDS in the Globus Toolkit®", will submit to IEEE/ACM Grid 2005.
- I. Raicu, C. Dumitrescu, I. Foster. "A Performance Study of the Globus Toolkit®", will submit to a journal.
- C. Dumitrescu, I. Raicu, M. Ripeanu, I. Foster. "Extending a distributed usage SLA resource broker with overlay networks to support Large Dynamic Grid Environments", will submit to ICSOC 2005.

5/10/2005

MS Thesis Presentation

Network Protocols:

- S. Zeadally, R. Wasseem, I. Raicu, "*Comparison of End-System IPv6 Protocol Stacks*", IEE Proceedings Communications, Special issue on Internet Protocols, Technology and Applications (VoIP), June 2004.
- Sherali Zeadally, **Ioan Raicu**. "Evaluating IPV6 on Windows and Solaris", IEEE Internet Computing, May-June 2003.
- I. Raicu, S. Zeadally. "Impact of IPv6 on End-User Applications", IEEE International Conference on Telecommunications 2003, ICT'2003, Feb 2003, Tahiti Papeete, French Polynesia.

Other Publications

- I. Raicu, S. Zeadally. "Evaluating IPv4 to IPv6 Transition Mechanisms", IEEE ICT'2003, Feb 2003, Tahiti Papeete, French Polynesia.
- I. Raicu. "An Empirical Analysis of Internet Protocol version 6 (IPv6)", Wayne State University, Computer Science Department, MS Thesis, May 2002, Detroit, Michigan.

Wireless Sensor Networks:

- I. Raicu, L. Schwiebert, S. Fowler, S.K.S. Gupta. "Local Load Balancing for Globally Efficient Routing in Wireless Sensor Networks", Intrnl. Journal of Distributed Sensor Network, 2005.
- I. Raicu, L. Schwiebert, S. Fowler, S.K.S. Gupta. "e3D: An Energy-Efficient Routing Algorithm for Wireless Sensor Networks", IEEE ISSNIP 2004 (The Intrnl. Conference on Intelligent Sensors, Sensor Networks and Information Processing), Melbourne, Australia, December 2004.
- **I. Raicu**. "*Efficient Even Distribution of Power Consumption in Wireless Sensor Networks*", ISCA 18th Intrnl. Conf. on Computers and Their Applications, CATA 2003, March 2003, Honolulu, Hawaii, USA.
- I. Raicu, O. Richter, L. Schwiebert, S. Zeadally. "Using Wireless Sensor Networks to Narrow the Gap between Low-Level Information and Context-Awareness", CATA 2002, San Francisco, CA, April, 2002.

Questions?

- More info on thesis:
 - <u>http://people.cs.uchicago.edu/~iraicu/research</u> /uchicago/ms_thesis/
- More info on DiPerF:
 - http://diperf.cs.uchicago.edu/
- Questions?

