

AstroPortal: A Science Gateway for Large-scale Astronomy Data Analysis

Ioan Raicu

Distributed Systems Laboratory Computer Science Department University of Chicago

Joint work with:

Ian Foster: Univ. of Chicago, CS & Argonne National Laboratory, MCS Alex Szalay: Johns Hopkins University, Dept. of Physics and Astronomy Gabriela Turcu: Univ. of Chicago, CS

Funded by: NSF TeraGrid: June 2005 – September 2006 NASA Ames Research Center GSRP: October 2006 – September 2007

> AstroGrid 2007 Meeting February 12th, 2007

Dynamic & Distributed Analysis of Large Datasets

- Science Portals enable entire communities access to both compute and storage resources
 - Can enable the efficient analysis of large datasets
 - Move the computations to the data
- Potential Applications Characteristics
 - Large data sets
 - Large number of users
 - Relatively easy parallelization
- Applicable fields:
 - Astronomy
 - Medicine
 - Others

Astronomy Field

- Astronomy datasets (i.e. SDSS) are the crownjewels
 - SDSS DR5
 - 1.5M images
 - 350M+ objects
 - 3TB compressed images (2MB x 1.5M)
 - 9TB raw images (6.1MB x 1.5M)
 - 100K worldwide potential users (100s of big users)
- Applications:
 - Stacking
 - Montage

2/11/2007 AstroPortal: A Science Gateway for Large-scale Astronomy Data Analysis

Object Distribution SDSS DR4

Files

Architecture Overview

AstroPortal Web Service

Raw Cutout Performance LAN GPFS in GZ Format

Stacking via the AstroPortal LAN GPFS in GZ Format

Stacking via the AstroPortal Local Disk in FIT Format

AstroPortal Stacking Profile LAN GPFS in GZ Format

San Diego Supercomputer Center (SDSC) DataStar: 03/2004 – 03/2005

Time (days)

Open Research Questions

- Data Resource management
 - Data set distribution among various storage resources
 - Data placement based on past workloads and access patterns
 - Caching strategies: LRU, FIFO, popularity, ...
 - Replication strategies to meet a desired QoS
 - Data management architectures
- Compute Resource management
 - Resource Provisioning
 - Harness entire TeraGrid pool of resources
 - Workload management, moving the work vs. moving the data
 - Distributed resource management between various sites
 - Scheduling of computations close to data

DRP: Dynamic Resource Provisioning

- State monitoring
- Resource allocation based on observed state
- Maintain a set of resources (even in the absence of lease extension mechanisms)
- Resource de-allocation based on observed state
- Exposes relevant information to other systems

DRP Architecture

DRP Advantages

- Allows for finer grained resource management, including the control of priorities and usage policies
- Optimize for the grid user's perspective: reduces delays on per job scheduling by utilizing pre-reserved resources
- Increased resource utilization (on the surface)
- Opens the possibility to customize the resource scheduler per application basis
 - use of both data resource management and compute resource management information for more efficient scheduling
- Reduced complexity to the application developer

DRP Disadvantages

- All jobs submitted by different members need to map to the same user
- Initial startup overhead
- Work could be halted unfinished when the original time lease on a particular resource expires if the time lease not being exposed to the work dispatcher
- Underutilization of raw resources

3DcacheGrid Engine: Dynamic Distributed Data cache for Grid Applications

- Performs data indexing necessary for efficient data discovery and access
- Cache eviction policy
 - RAND: Random
 - FIFO: First In First Out
 - LRU: Least Recently Used
 - Perfect LFU: Perfect Least Frequently Used
 - Hybrid Perfect LFU: Hybrid (using the object distribution in the dataset) Perfect Least Frequently Used
- Offers efficient management for large datasets along various dimentions
 - Number of files managed
 - Size of dataset
 - Number of storage resources used
 - Level of replication among the storage resources

3DcacheGrid Architecture

3Dcache Pros/Cons

- Pros:
 - Ease of application implementation: achieves a good separation of concerns between the application logic and the complicated data management task of large data sets
 - Improved performance with higher cache hits if data lcality is present
 - Improved scalability as the data I/O will be distributed over more resources with higher cache hits
 - Improved availability as cached data could be accessed without the need for the original data
 - Can enable compute scheduling to be data aware
- Cons:
 - Added complexity/overhead to a running system
 - Could produce worse overall performance than without 3DcacheGrid

Data Management & Scheduling Performance ¹/₂

Data Management & Scheduling Performance

Stacking Size

~

4 0

ω

Replication Level

16

128 –

Data Management & Scheduling Performance Conclusions

- Stacking size: less than 32K (although another order of magnitude probably won't pose any performance risks)
- Resource pool size: less than 1000 resources might offer decent performance if there is the replication level remains low, but for higher orders of replication, less than 100 resources are recommended
- Index Size: 2M~10M depending on the level of replication using a 1.5GB Java heap; larger index sizes could be supported linearly without sacrificing performance by increasing the Java heap size (needing more physical memory and possibly a 64 bit JVM environment)
- Replication Level: less than 128 replicas (although more could be supported as long as the dataset size remains relatively fixed)
- Resource Capacity: 100GB of local storage per resource (this could be increased, but its unclear what the performance effects would be)

DeeF: Distributed execution environment Framework

- Binding glue connecting DRP, 3DcacheGrid, and CompuStore
- Allows the execution of aritrary code as well as pre-configured/installed code on remote resources managed by DRP
- Uses CompuStore to schedule tasks based on data locality of the caches
- Amortizes queue wait times over many tasks
- Enables the use of batch-scheduled Grids for interactive applications

Questions?

- More information: <u>http://people.cs.uchicago.edu/~iraicu/research/AstroPortal/</u>
- AstroPortal Web Portal: <u>http://s8.uchicago.edu:8080/AstroPortal/index.jsp</u>
- Related materials and further readings:
 - Ioan Raicu, Ian Foster, Alex Szalay, Gabriela Turcu. "AstroPortal: A Science Gateway for Large-scale Astronomy Data Analysis", TeraGrid Conference 2006, June 2006.
 - Alex Szalay, Julian Bunn, Jim Gray, Ian Foster, Ioan Raicu. "The Importance of Data Locality in Distributed Computing Applications", NSF Workflow Workshop 2006.
 - loan Raicu, Ian Foster, Alex Szalay. "Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy Datasets", SuperComputing 2006.
 - Ioan Raicu. "Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy Datasets", NASA Ames Research Center GSRP Proposal, funded 10/2006 – 9/2007.
 - Ioan Raicu. "Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy Datasets", NASA Ames Research Center GSRP Proposal for 10/2007 – 9/2008.
 - loan Raicu, Catalin Dumitrescu, Ian Foster. "Dynamic Resource Provisioning in Grid Environments", submitted to TeraGrid Conference 2007.
- Related papers that are in the writing pipeline (planning for SC07 and Grid07):
 - 3DcacheGrid: A Dynamic Distributed Data cache for Grid Applications
 - Data Aware Scheduling in High Throughput Computing
 - AMDASK: An Abstract Model for Data-Centric Task Farms
 - DeeF: A Distributed execution environment Framework
 - Enabling the Efficient Analysis of Large Astronomy Datasets with the AstroPortal version 2
 - Discoveries in the Sloan Digital Sky Survey Dataset using the "Stacking" Analysis Implemented by the AstroPortal

