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Workflow Systems

Describes computation components, ports and channels

Describes data and event flow

Coordinate the execution of the components
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Functional MRI (fMRI)
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• Wide range of analyses
– Testing, interactive analysis,

production runs
– Data mining
– Parameter studies



B. Berriman, J. Good (Caltech)
J. Jacob, D. Katz (JPL)
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Molecular Dynamics

• Determination of free 
energies in aqueous solution
– Antechamber – coordinates

Charmm solution– Charmm – solution
– Charmm - free energy

5Scientific Workflow Systems for 21st Century



start

DOCK6
Receptor

(1 per protein:
defines pocket

to bind to)

ZINC
3-D

structures

NAB script
parameters

(defines flexible
residues, 
#MDsteps)

BuildNABScript

NAB
Script

NAB
Script

Template

Amber prep:
2. AmberizeReceptor
4. perl: gen nabscript

FRED
Receptor

(1 per protein:
defines pocket

to bind to)

Manually prep
DOCK6 rec file

Manually prep
FRED rec file

1 
protein
(1MB)

6 
GB
2M 

structures
(6 GB)

DOCK6FRED ~4M x 60s x 1 cpu
~60K cpu-hrs

PDB
protein

descriptions

Many Many Tasks:
Identifying Potential Drug Targets

report ligands complexes

Amber Score:
1. AmberizeLigand
3. AmberizeComplex
5. RunNABScript

end

Amber ~10K x 20m x 1 cpu
~3K cpu-hrs
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500,000 cpu-hrs
(50 cpu-years)6



Characterizing 
Scientific Workflows

• Inherit workflow system definition +…
• Describe complex scientific procedures
• Automate data derivation processes
• High performance computing (HPC) to 

improve throughput and performance
• Provenance management and query
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Characterizing 
Scientific Applications

• Increasing in scale and complexity
– Wide inherent parallelism
– Multiple successive stages
– Wide range of number of tasks

• thousands to billions
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• Potentially compute intensive
– Widely varying task execution times

• 100s of ms to 10s of hours

• Potentially data intensive
– I/O operation rates and aggregate I/O rates
– Meta-data creation and modification
– Significant data re-use

• Produced data is consumed by later stages



Many-Core Growth Rates

• Increasing attention to
parallel chips
– Many plans for cores

with “In-Order” execution
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On-chip shared memory
Far faster to access on-chip memory than DRAM

Interesting challenges in synchronization (e.g. 
locking)

Inexpensive Low-Power Parallel Chips
Amazing amounts of computing very cheap

Slower (or same) sequential speed!2004 2006 2008 2010 2012 2014 2016 2018
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Pat Helland, Microsoft, The Irresistible Forces Meet the Movable Objects, November 9th, 2007



What will we do 
with 1+ Exaflops 
and 1M+ cores?



1) Tackle Bigger and Bigger
Problems

Computational
S i ti t
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Scientist
as 

Hero



2) Tackle Increasingly Complex
Problems

Computational
Scientist

as 
Logistics
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Logistics
Officer



“More Complex Problems”

• Ensemble runs to quantify climate model uncertainty
• Identify potential drug targets by screening a database of 

ligand structures against target proteins
• Study economic model sensitivity to parameters

A l t b l d t t f ti
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• Analyze turbulence dataset from many perspectives
• Perform numerical optimization to determine optimal resource 

assignment in energy problems
• Mine collection of data from advanced light sources
• Construct databases of computed properties of chemical 

compounds
• Analyze data from the Large Hadron Collider
• Analyze log data from 100,000-node parallel computations



Programming Model Issues

• Massive task parallelism
• Massive data parallelism
• Integrating black box applications
• Complex task dependencies (task graphs)
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• Complex task dependencies (task graphs)
• Failure, and other execution management issues
• Data management: input, intermediate, output
• Dynamic computations (task graphs)
• Dynamic data access to large, diverse datasets
• Long-running computations
• Documenting provenance of data products 



Problem Types
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An Incomplete and Simplistic View of 
Programming Models and Tools
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Major Challenges to Large 
Scale Scientific Computation

• Managing heterogeneous scientific data
– Idiosyncratic layouts & formats (file sys, db, spreadsheet, XML, etc…) 

• Describing complex science problems
• Coordinating distributed diverse computation procedures

– Executables scripts Web servicesExecutables, scripts, Web services
• Long wait queue times
• Scheduling & executing numerous tasks reliably and efficiently

– Large quantity of data (Petabytes/year)
– Large number of parallel/dependent tasks (103~106 tasks)

• Organizing, archiving and tracking
– Datasets, procedures, workflows, provenance

• Supporting data-intensive applications
17Scientific Workflow Systems for 21st Century



Grid Opportunities in 
Medical Imaging 

A Case Study
• Daniela S. Raicu, PhD

– Assistant Professor
– Email: draicu@cs.depaul.edu
– Lab URL: http://facweb.cs.depaul.edu/research/vc/
– Original slides: 

http://www ci uchicago edu/wiki/bin/viewfile/VDS/DslCS/DSLWorkshop2007?rehttp://www.ci.uchicago.edu/wiki/bin/viewfile/VDS/DslCS/DSLWorkshop2007?re
v=1;filename=draicu_DSL_workshop.pdf
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The study of medical imaging is concerned with the interaction of all forms of
radiation with tissue and the development of appropriate technology to extract
clinically useful information from observation of this technology.

What is Medical Imaging (MI)?

19

X-Ray fMRICT



Filtering

Registration

CT Medical Imaging (MI)@ CTI
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Correction

Segmentation

Analysis

Visualization Classification Retrieval

Project 1: Texture-based 
soft-tissue segmentation

Project 2: Content-based medical 
image retrieval 



Goal: context-sensitive tools for radiology reporting
Approach: pixel-based texture classification

Soft-tissue Segmentation in 
Computed Tomography
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Pixel Level Texture 
Extraction

Pixel Level 
Classification Organ Segmentation

1 2, , kd d d⎡ ⎤⎣ ⎦K _tissue label⎡ ⎤⎣ ⎦



Pixel-based texture extraction:

Soft-tissue Segmentation in 
Computed Tomography

Input Patient Data Characteristics: 
hundreds of images per patient
image spatial resolution: 512 x512
image gray-level resolution: 212
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Pixel Level Texture 
Extraction

1 2, , kd d d⎡ ⎤⎣ ⎦K

Challenges:
Storage:

Input: 0.5+ terabyte of raw data
dispersed over about 100K+ images

Output: 90+ terabytes of low-level
features in a 180 dimensional feature space

Compute:
24 hours of compute time = 180 features

for a single image on a modern 3GHz
workstation

Output Data Characteristics: 
low-level image features (numerical 

descriptors)
k=180 Haralick texture features per 

pixel (9 descriptors x4 directions x5 displacements)



Grid Computing Opportunities

Challenges and Grid Opportunities:
Storage

define the logical and physical organization of the medical image datasets along with
the relevant information extracted from them

Compute time
coordinate the parallel execution of the texture feature extraction and classification

algorithms such that each image, pixel and feature could be processed independently
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g g , p p p y
of the other images, pixels and features, respectively.

Grid data service Grid data service
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Grid analytical service:
Pixel Feature Extraction

labeltissue __

Grid analytical service:
Pixel Classification



Definition of Content-based Image Retrieval:
Content-based image retrieval is a technique for retrieving images on the
basis of automatically derived image features such as texture and shape.

Content-based medical image 
retrieval (CBMS) systems

Applications of Content-based Image Retrieval:

24

-Applications of Content based Image Retrieval:
Teaching
Case-base reasoning
Evidence-based medicine



Choose a nodule
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Choose an image 
f & i il i

26

feature& a similarity 
measure

M. Lam, T. Disney, M. Pham, D. Raicu, J. Furst, “Content-Based  Image  Retrieval  for  
Pulmonary Computed Tomography Nodule Images”, SPIE Medical Imaging Conference, 
San Diego, CA, February 2007 
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Grid Computing Opportunities

Challenges and Grid Opportunities:

Compute time: Given the image retrieval system, four different layers can be
identified that offer potential for parallelization:

Queries tend to be mutually independent. Thus, several queries can be processed
in parallel. This is of interest, if several users access the system at the same time or

28

if several queries are run in batch mode.

The distances from the queries to the database images can be calculated in
parallel as the database images are independent from each other.

Parallelization is possible on the feature level, because the distances for the
individual features can be calculated in parallel.

Multiple combinations of feature spaces and similarity metrics can be run in
parallel to determine the best retrieval results

2047 vectors * 3 similarity measures * 5 number of retrieved images = 30,705
combinations



Solutions?
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Workflows?
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Scales to Grids ++ - - - ++ - - - + +

Existing and emerging 
workflow technologies
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++ ++ + +

Typing ++ ++ ++ ++ - - - + - +

Iteration ++ -/+ - + - - - + + +

Scripting ++ - - + + + - - - ++

Dataset Mapping + - - - - - - - - -

Service Interop + - + - - - - + - -

Subflow/comp. + - + + - - + + - +

Provenance + - - + - + - + - -

Open source + + + - + + + + - -



Virtual Node(s)Abstract
computation

S iftS i t

Specification Execution

Virtual Node(s)

file1
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(Karajan w/

Swift Runtime)
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Functional MRI (fMRI)
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• Wide range of analyses
– Testing, interactive analysis,

production runs
– Data mining
– Parameter studies



Completed Milestones: 
fMRI Application

48085000

6000
GRAM
GRAM/Clustering

• GRAM vs. Falkon: 85%~90% lower run time
• GRAM/Clustering vs. Falkon: 40%~74% lower run time

Scientific Workflow Systems for 21st Century 33Falkon: a Fast and Light-weight tasK executiON framework
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B. Berriman, J. Good (Caltech)
J. Jacob, D. Katz (JPL)
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Completed Milestones: 
Montage Application

3000

3500

GRAM/Clustering
MPI

• GRAM/Clustering vs. Falkon: 57% lower application run time
• MPI* vs. Falkon: 4% higher application run time
• * MPI should be lower bound
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Molecular Dynamics

• Determination of free 
energies in aqueous solution
– Antechamber – coordinates

Charmm solution– Charmm – solution
– Charmm - free energy

36Scientific Workflow Systems for 21st Century
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1
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• 244 molecules 20497 jobs
• 15091 seconds on 216 CPUs 867.1 CPU hours
• Efficiency: 99.8%
• Speedup: 206.9x 8.2x faster than GRAM/PBS
• 50 molecules w/ GRAM (4201 jobs) 25.3 speedup

MolDyn Application
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MARS Economic Modeling 
on IBM BG/P

• CPU Cores: 2048
• Tasks: 49152
• Micro-tasks: 7077888
• Elapsed time: 1601 secs
• CPU Hours: 894
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• CPU Hours: 894
• Speedup: 1993X (ideal 2048)
• Efficiency: 97.3%



Managing 120K CPUs

High-speed local disk

Falkon

39Scientific Workflow Systems for 21st Century

Slower shared storage



MARS Economic Modeling 
on IBM BG/P (128K CPUs)
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Processors
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Throughput (tasks/sec)

• CPU Cores: 130816
• Tasks: 1048576
• Elapsed time: 2483 secs
• CPU Years: 9.3

Speedup: 115168X (ideal 130816)
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Many Many Tasks:
Identifying Potential Drug Targets

2M+ ligandsProtein        x
target(s)          

(Mike Kubal, Benoit Roux, and others)
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DOCK on SiCortex

• CPU cores: 5760
• Tasks: 92160
• Elapsed time: 12821 sec
• Compute time: 1.94 CPU years
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• Average task time: 660.3 sec
• Speedup: 5650X (ideal 5760)
• Efficiency: 98.2%



DOCK on the BG/P

CPU cores: 118784
Tasks: 934803
Elapsed time: 2.01 hours
Compute time: 21.43 CPU years
Average task time: 667 sec
Relative Efficiency: 99 7%

44

Relative Efficiency: 99.7%
(from 16 to 32 racks)
Utilization: 
• Sustained: 99.6%
• Overall: 78.3%

Scientific Workflow Systems for 21st Century



Support for 
Data Intensive Applications 
(Falkon and Data Diffusion)

• Resource acquired in 
response to demand

• Data and applications diffuse 
from archival storage to 
newly acquired resources

text

Task Dispatcher
Data-Aware Scheduler Persistent Storage

Shared File System

Idle Resources
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• Resource “caching” allows 
faster responses to 
subsequent requests 
– Cache Eviction Strategies: 

RANDOM, FIFO, LRU, LFU
• Resources are released 

when demand drops 

Shared File System

Provisioned Resources



AstroPortal Stacking Service

• Purpose
– On-demand “stacks” of random 

locations within ~10TB dataset

• Challenge
– Rapid access to 10-10K “random” files

+

+
+
+

+

+

=

+
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ap d access to 0 0 a do es
– Time-varying load

• Sample Workloads
S4 Sloan

Data

=

Web page 
or Web 
Service

 Locality Number of Objects Number of Files
1 111700 111700

1.38 154345 111699
2 97999 49000
3 88857 29620
4 76575 19145
5 60590 12120
10 46480 4650
20 40460 2025
30 23695 790



AstroPortal Stacking Service
with Data Diffusion

• Aggregate throughput:
– 39Gb/s
– 10X higher than GPFS

• Reduced load on GPFS
– 0.49Gb/s

1/10 of the original load
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Data Diffusion:
Data-Intensive Workload

• 250K tasks on 128 processors
– 10MB read, 10ms compute

• Comparing GPFS with data diffusion
– 5011 sec vs. 1427 sec (ideal is 1415 sec)

1000 11000
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Hadoop vs. Swift

• Classic benchmarks for MapReduce
– Word Count
– Sort

• Swift performs similar or better than Hadoop 
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Mythbusting

• Embarrassingly Happily parallel apps are trivial to run
– Logistical problems can be tremendous

• Loosely coupled apps do not require “supercomputers”
– Total computational requirements can be enormous
– Individual tasks may be tightly coupled

W kl d f tl i l l t f I/O
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– Workloads frequently involve large amounts of I/O
– Make use of idle resources from “supercomputers” via backfilling 
– Costs to run “supercomputers” per FLOP is among the best

• BG/P: 0.35 gigaflops/watt (higher is better)
• SiCortex: 0.32 gigaflops/watt
• BG/L: 0.23 gigaflops/watt
• x86-based HPC systems: an order of magnitude lower

• Loosely coupled apps do not require specialized system software
• Shared file systems are good for all applications

– They don’t scale proportionally with the compute resources
– Data intensive applications don’t perform and scale well



Features Scientific Workflow 
Systems should Have!

• Parallelism
– Support for both explicit and implicit parallelism

• Performance and Scalability
– Million to billions of tasks
– Handle 100s~1000s of tasks/sec

51Scientific Workflow Systems for 21st Century

– Handle 100s 1000s of tasks/sec

• Data management
– Reduce reliance on shared file systems
– Scale with processing power
– Data-aware scheduling

• Reliability
– Self healing
– Efficient and scalable monitoring

• Provenance



Solutions
(we have experience with)

• Falkon
– A Fast and Light-weight tasK executiON framework
– Globus Incubator Project
– http://dev.globus.org/wiki/Incubator/Falkon

• Swift
P ll l i t l f id d li bl ifi ti ti
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– Parallel programming tool for rapid and reliable specification, execution, 
and management of large-scale science workflows

– http://www.ci.uchicago.edu/swift/index.php
• Environments:

– Clusters: TeraPort (TP)
– Grids: Open Science Grid (OSG), TeraGrid (TG)
– Specialized large machines: SiCortex 5732
– Supercomputers: IBM BlueGene/P (BG/P)



More Information
• More information: 

– Personal research page: http://people.cs.uchicago.edu/~iraicu/
– Falkon: http://dev.globus.org/wiki/Incubator/Falkon
– Swift: http://www.ci.uchicago.edu/swift/index.php

• Collaborators:
– Ian Foster, The University of Chicago & Argonne National Laboratory
– Alex Szalay, The Johns Hopkins University
– Rick Stevens, The University of Chicago & Argonne National Laboratory
– Yong Zhao, Microsoft
– Mike Wilde Computation Institute University of Chicago & Argonne National LaboratoryMike Wilde, Computation Institute, University of Chicago & Argonne National Laboratory 
– Catalin Dumitrescu, Fermi National Laboratory
– Zhao Zhang, The University of Chicago
– Jerry C. Yan, NASA, Ames Research Center
– Kamil Iskra, Argonne National Laboratory
– Pete Beckman, Argonne National Laboratory
– Mihael Hategan, The University of Chicago 
– Ben Clifford, The University of Chicago
– Veronika Nefedova, Argonne National Laboratory 
– Tiberiu Stef-Praun, The University of Chicago 
– Daniela Stan Raicu, DePaul University
– Gabriela Turcu, The University of Chicago   
– Atilla S. Balkir, The University of Chicago
– Jing Tie, The University of Chicago 
– Quan T. Pham, The University of Chicago
– Sarah Kenny, The University of Chicago 
– Gregor von Laszewski, Rochester Institute of Technology 
– Jim Gray, Microsoft Research 
– Julian Bunn, California Institute of Technology
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Handling Megajobs
BOF at SC08

• More and more people need to run thousands to millions of closely related 
jobs that are associated with individual projects. Scientists seek convenient 
means to specify and manage many jobs, arranging inputs, aggregating 
outputs, identifying successful and failed jobs and repairing failures. System 
administrators seek methods to process extraordinary numbers of jobs for 
multiple users without overwhelming queuing systems or disrupting fair-
share usage policies And grid developers are producing a new generationshare usage policies. And, grid developers are producing a new generation 
of queuing and scheduling systems as well as auxiliary systems for use with 
existing queuing and scheduling systems. This Birds-of-feather session 
provides a venue for the exchange of information about processing large 
numbers of jobs. Short presentations of an invited sample of projects will be 
followed by discussion. 

• For more information, contact:
– Marlon Pierce: mpierce@cs.indiana.edu
– Dick Repasky: rrepasky@indiana.edu
– Ioan Raicu: iraicu@cs.uchicago.edu

Scientific Workflow Systems for 21st Century 55


