

• Funding and Support (2003 – 2009)

– University of Chicago

• Computer Science

• Computational Institute

– Argonne National Laboratory

• Math and Computer Science Division

• Argonne Leadership Computing Facility

– NASA

• Ames Research Center

• Over 60 Collaborators

– Ian Foster (UC/ANL), Rick Stevens (UC/ANL), Alex Szalay (JHU),

Jim Gray (MSR), Pete Beckman (ANL), Jerry Yan (NASA ARC),

Mike Wilde (UC/ANL), Douglas Thain (ND), Amitabh Chaudhary (ND),

Yong Zhao (MS), Zhao Zhang (UC), Catalin Dumitrescu (FNAL),

Matei Ripeanu (UBC)
2

3

• Worked under Professor Ian Foster

• Large Group

– Distributed Systems Laboratory, University of Chicago
• http://dsl-wiki.cs.uchicago.edu/index.php/Main_Page

– Computational Institute, University of Chicago
• http://www.ci.uchicago.edu/index.php

– Math and Computer Science Division, Argonne National Laboratory
• http://www.mcs.anl.gov/index.php

– Argonne Leadership Computing Facility
• http://www.alcf.anl.gov/

• Research Areas:

– Distributed systems, Grid middleware, Grid applications, Systems Design and
Implementation, Data-intensive Computing, Deep Supercomputing, Next Generation
Cybertools, Parallel Tools, Collaborative and Virtual Environments, Computational Science

• Many High Impact Projects:

– Open Science Grid, TeraGrid, Globus, National Microbial Pathogen Research Center,
Social Informatics Data Grid, Chicago Biomedical Consortium, Globus Toolkit, MPI, PVFS,
IBM Blue Gene/P Supercomputer

• PlanetLab (912 nodes at 470 sites all over the world)

• ANL SiCortex 5832 (6TF, 5832-cores)

• IBM Blue Gene/P Supercomputer at ANL (~557TF, 160K-cores)

• Sun Constellation Supercomputer (~579TF, 62K-cores)

• Cray XT5 (~1381TF, 150K-cores)

• Open Science Grid (43K-cores across 80 institutions in the US)

• TeraGrid (161K-cores across 11 institutions and 22 systems

over the US)

4

5
[GCE08] “Cloud Computing and Grid Computing 360-Degree Compared”

6

Computer clusters using commodity processors, network
interconnects, and operating systems.

7

Computational Resources
(size approximate - not to scale)

SDSC

TACC

UC/ANL

NCSA

ORNL

PU

IU

PSC

NCAR

2007
(504TF)

2008

(~1PF)
Tennessee

LONI/LSU

Grids tend to be composed of multiple clusters,
and are typically loosely coupled,

heterogeneous, and geographically dispersed

Tommy Minyard, TACC

8

13.6 GF/s

8 MB EDRAM

4 processors

1 chip, 1x1x1

13.6 GF/s

2 GB DDR

(32 chips 4x4x2)

32 compute, 0-4 IO cards

435 GF/s

64 GB

32 Node Cards

32 Racks

500TF/s

64 TB

Cabled 8x8x16Rack

Baseline System

Node Card

Compute Card

Chip

14 TF/s

2 TB

Highly-tuned computer clusters using commodity
processors combined with custom network

interconnects and customized operating system

• HTC: High-Throughput Computing

– Typically applied in clusters and grids

– Loosely-coupled applications with sequential jobs

– Large amounts of computing for long periods of times

– Measured in operations per month or years

• HPC: High-Performance Computing

– Synonymous with supercomputing

– Tightly-coupled applications

– Implemented using Message Passing Interface (MPI)

– Large of amounts of computing for short periods of time

– Usually requires low latency interconnects

– Measured in FLOPS 9

• Bridge the gap between HPC and HTC

• Applied in clusters, grids, and supercomputers

• Loosely coupled apps with HPC orientations

• Many activities coupled by file system ops

• Many resources over short time periods

– Large number of tasks, large quantity of computing,
and large volumes of data

[MTAGS08 Workshop] Workshop on Many-Task Computing on Grids and Supercomputers 2008

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

[MTAGS08] “Many-Task Computing for Grids and Supercomputers”
10

11
[MTAGS08] “Many-Task Computing for Grids and Supercomputers”

0

50

100

150

200

250

300

2004 2006 2008 2010 2012 2014 2016 2018

N
u

m
b

e
r

o
f

C
o

re
s

0

10

20

30

40

50

60

70

80

90

100

M
a
n

u
fa

c
tu

ri
n

g
 P

ro
c
e
s
s

Number of Cores

Processing

Pat Helland, Microsoft, The Irresistible Forces Meet the Movable
Objects, November 9th, 2007

Top500 Projected Development,
http://www.top500.org/lists/2008/11/performance_development

0.1

1

10

100

1000

2002-2004 Today

M
B

/s
 p

e
r

P
ro

c
e
s

s
o

r
C

o
re

Local Disk
Cluster
Supercomputer

13

--2.2X2.2X
--99X99X --15X15X

--438X438X

• Local Disk:

– 2002-2004: ANL/UC TG Site

(70GB SCSI)

– Today: PADS (RAID-0, 6

drives 750GB SATA)

• Cluster:

– 2002-2004: ANL/UC TG Site
(GPFS, 8 servers, 1Gb/s each)

– Today: PADS (GPFS, SAN)

• Supercomputer:

– 2002-2004: IBM Blue Gene/L
(GPFS)

– Today: IBM Blue Gene/P (GPFS)

• Segregated storage and compute

– NFS, GPFS, PVFS, Lustre

– Batch-scheduled systems: Clusters, Grids, and

Supercomputers

– Programming paradigm: HPC, MTC, and HTC

• Co-located storage and compute

– HDFS, GFS

– Data centers at Google, Yahoo, and others

– Programming paradigm: MapReduce

– Others from academia: Sector, MosaStore, Chirp

14

• Segregated storage and compute

– NFS, GPFS, PVFS, Lustre

– Batch-scheduled systems: Clusters, Grids, and

Supercomputers

– Programming paradigm: HPC, MTC, and HTC

• Co-located storage and compute

– HDFS, GFS

– Data centers at Google, Yahoo, and others

– Programming paradigm: MapReduce

– Others from academia: Sector, MosaStore, Chirp

15

• Segregated storage and compute

– NFS, GPFS, PVFS, Lustre

– Batch-scheduled systems: Clusters, Grids, and

Supercomputers

– Programming paradigm: HPC, MTC, and HTC

• Co-located storage and compute

– HDFS, GFS

– Data centers at Google, Yahoo, and others

– Programming paradigm: MapReduce

– Others from academia: Sector, MosaStore, Chirp

16

• Segregated storage and compute

– NFS, GPFS, PVFS, Lustre

– Batch-scheduled systems: Clusters, Grids, and

Supercomputers

– Programming paradigm: HPC, MTC, and HTC

• Co-located storage and compute

– HDFS, GFS

– Data centers at Google, Yahoo, and others

– Programming paradigm: MapReduce

– Others from academia: Sector, MosaStore, Chirp

17

Compute & Storage

Resources

Network

Fabric

What if we could combine the
scientific community’s existing

programming paradigms, but yet
still exploit the data locality that

naturally occurs in scientific
workloads?

18

19

• Streamlined task dispatching

• Dynamic resource provisioning

– Multi-level scheduling

– Resources are acquired/released in response to demand

• Data diffusion

– Data diffuses from archival storage to transient resources

– Resource “caching” allows faster responses to subsequent
requests

– Co-locate data and computations to optimize performance

20

[HPDC09] “The Quest for Scalable Support of Data Intensive Workloads in Distributed Systems”
[DIDC09] “Towards Data Intensive Many-Task Computing”
[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”
[DADC08] “Accelerating Large-scale Data Exploration through Data Diffusion”
[UC07] “Harnessing Grid Resources with Data-Centric Task Farms”
[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”
[TG07] “Dynamic Resource Provisioning in Grid Environments”

• Abstract model
– Models the efficiency and speedup of entire

workloads

– Captures techniques to support MTC
• Streamlined task dispatching, dynamic resource

provisioning, data diffusion

– Lead to proof of O(NM) competitive caching

• Middleware to support MTC
– Falkon: a fast a light-weight execution framework

– Reference Implementation of the abstract model
[TPDS10] “Middleware Support for Many-Task Computing”, under preparation

[DIDC09] “Towards Data Intensive Many-Task Computing”

[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”
21

22

• Goal: enable the rapid and efficient execution of
many independent jobs on large compute clusters

• Combines three components:
– a streamlined task dispatcher

– resource provisioning through multi-level scheduling
techniques

– data diffusion and data-aware scheduling to leverage the
co-located computational and storage resources

• Integration into Swift to leverage many applications
– Applications cover many domains: astronomy, astro-physics,

medicine, chemistry, economics, climate modeling, etc
[SciDAC09] “Extreme-scale scripting: Opportunities for large task-parallel applications on petascale computers”

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

[Globus07] “Falkon: A Proposal for Project Globus Incubation”

[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”

23
[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”

24

• Falkon is a real system

– Late 2005: Initial prototype, AstroPortal

– January 2007: Falkon v0

– November 2007: Globus incubator project v0.1

• http://dev.globus.org/wiki/Incubator/Falkon

– February 2009: Globus incubator project v0.9

• Implemented in Java (~20K lines of code) and C
(~1K lines of code)

– Open source: svn co https://svn.globus.org/repos/falkon

• Source code contributors (beside myself)

– Yong Zhao, Zhao Zhang, Ben Clifford, Mihael Hategan
[Globus07] “Falkon: A Proposal for Project Globus Incubation”

25

• Workload

• 160K CPUs

• 1M tasks

• 60 sec per task

• 2 CPU years in 453 sec

• Throughput: 2312 tasks/sec

• 85% efficiency

[TPDS09] “Middleware Support for Many-Task Computing”, under preparation

26
[TPDS09] “Middleware Support for Many-Task Computing”, under preparation

27

Provisioner

Dispatcher

1

Executor

1

Cobalt

Client
Executor

256

Dispatcher

N

Executor

1

Executor

256

Login Nodes

(x10)

I/O Nodes

(x640)

Compute Nodes

(x40K)

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

High-speed local disk

Falkon

28

Slower distributed

storage

ZeptOS

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

29

text

Task Dispatcher

Data-Aware Scheduler
Persistent Storage

Shared File System

Idle Resources

Provisioned Resources

text

Task Dispatcher

Data-Aware Scheduler
Persistent Storage

Shared File System

Idle Resources

Provisioned Resources

[DADC08] “Accelerating Large-scale Data Exploration through Data Diffusion”

• Resource acquired in response to
demand

• Data diffuse from archival storage to
newly acquired transient resources

• Resource “caching” allows faster
responses to subsequent requests

• Resources are released when
demand drops

• Optimizes performance by co-
scheduling data and computations

• Decrease dependency of a
shared/parallel file systems

• Critical to support data intensive MTC

30

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

ANL/UC, Java
200 CPUs
1 service

ANL/UC, C
200 CPUs
1 service

SiCortex, C
5760 CPUs

1 service

BlueGene/P, C
4096 CPUs

1 service

BlueGene/P, C
163840 CPUs
640 services

604

2534

3186

1758

3071

T
h

ro
u

g
h

p
u

t
(t

a
s
k
s
/s

e
c
)

Executor Implementation and Various Systems

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

ANL/UC, Java
200 CPUs
1 service

ANL/UC, C
200 CPUs
1 service

SiCortex, C
5760 CPUs

1 service

BlueGene/P, C
4096 CPUs

1 service

BlueGene/P, C
163840 CPUs
640 services

604

2534

3186

1758

3071

T
h

ro
u

g
h

p
u

t
(t

a
s
k
s
/s

e
c
)

Executor Implementation and Various Systems

System Comments
Throughput

(tasks/sec)

Condor (v6.7.2) - Production Dual Xeon 2.4GHz, 4GB 0.49

PBS (v2.1.8) - Production Dual Xeon 2.4GHz, 4GB 0.45

Condor (v6.7.2) - Production Quad Xeon 3 GHz, 4GB 2

Condor (v6.8.2) - Production 0.42

Condor (v6.9.3) - Development 11

Condor-J2 - Experimental Quad Xeon 3 GHz, 4GB 22

System Comments
Throughput

(tasks/sec)

Condor (v6.7.2) - Production Dual Xeon 2.4GHz, 4GB 0.49

PBS (v2.1.8) - Production Dual Xeon 2.4GHz, 4GB 0.45

Condor (v6.7.2) - Production Quad Xeon 3 GHz, 4GB 2

Condor (v6.8.2) - Production 0.42

Condor (v6.9.3) - Development 11

Condor-J2 - Experimental Quad Xeon 3 GHz, 4GB 22
[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

31

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

256 1024 4096 16384 65536 163840

E
ff

ic
ie

n
c
y

Number of Processors

256 seconds
128 seconds
64 seconds
32 seconds
16 seconds
8 seconds
4 seconds
2 seconds
1 second

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

E
ff

ic
ie

n
c
y

Number of Processors

32 seconds
16 seconds
8 seconds
4 seconds
2 seconds
1 second

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

Toward Loosely Coupled Programming on Petascale Systems 32

33

• End-to-end execution time:

– 1260 sec in ideal case

– 4904 sec � 1276 sec

• Average task queue time:

– 42.2 sec in ideal case

– 611 sec � 43.5 sec

• Trade-off:

– Resource Utilization for
Execution Efficiency

GRAM

+PBS Falkon-15 Falkon-60 Falkon-120 Falkon-180 Falkon-∞

Ideal

(32 nodes)
Time to

complete

(sec) 4904 1754 1680 1507 1484 1276 1260
Resouce

Utilization 30% 89% 75% 65% 59% 44% 100%
Execution

Efficiency 26% 72% 75% 84% 85% 99% 100%

Resource

Allocations 1000 11 9 7 6 0 0

1 2 4 8 16 32
64

1

640

160

3 20 18 16 8 4 2 1
0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Stage Number

N
u

m
b

e
r

o
f

M
a

c
h

in
e

s

0

100

200

300

400

500

600

700

N
u

m
b

e
r

o
f

T
a

s
k
s

of Machines

of Tasks

- 18 Stages

- 1,000 tasks

- 17,820 CPU seconds

- 1,260 total time on 32 machines

0

5

10

15

20

25

30

35

0 580.386 1156.853 1735.62

Time (sec)

#
 o

f
E

x
e

c
u

to
rs

Allocated
Registered
Active

Ideal

0

5

10

15

20

25

30

35

0 494.438 986.091 1477.398

Time (sec)

#
 o

f
E

x
e

c
u

to
rs

Allocated
Registered
Active

Falkon-180 Falkon-15

GRAM

+PBS Falkon-15 Falkon-60 Falkon-120 Falkon-180 Falkon-∞

Ideal

(32 nodes)

Queue

Time (sec) 611.1 87.3 83.9 74.7 44.4 43.5 42.2

Execution

Time (sec) 56.5 17.9 17.9 17.9 17.9 17.9 17.8
Execution

Time % 8.5% 17.0% 17.6% 19.3% 28.7% 29.2% 29.7%

[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”

34

• Monotonically Increasing Workload
– Emphasizes increasing loads

• Sine-Wave Workload
– Emphasizes varying loads

• All-Pairs Workload
– Compare to best case model of active storage

• Image Stacking Workload (Astronomy)
– Evaluate data diffusion on a real large-scale data-

intensive application from astronomy domain

[DADC08] “Accelerating Large-scale Data Exploration through Data Diffusion”

[HPDC09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”

[DIDC09] “Towards Data Intensive Many-Task Computing”

35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

10

20

30

40

50

60

70

80

90

100

C
a
c
h

e
 H

it
/M

is
s
 %

N
o

d
e
s
 A

ll
o

c
a
te

d
T

h
ro

u
g

h
p

u
t
(G

b
/s

)
Q

u
e
u

e
 L

e
n

g
th

 (
x
1
K

)

Time (sec)
Cache Miss % Cache Hit Global % Cache Hit Local %
Throughput (Gb/s) Demand (Gb/s) Wait Queue Length
Number of Nodes

[HPDC09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”

[DIDC09] “Towards Data Intensive Many-Task Computing”

36

�Throughput:

– Average: 14Gb/s vs 4Gb/s

– Peak: 81Gb/s vs. 6Gb/s

Response Time �

– 3 sec vs 1569 sec � 506X

80

6

12

73
81 81

21

46

0

2

4

6

8

10

12

14

16

18

20

Ideal FA GCC
1GB

GCC
1.5GB

GCC
2GB

GCC
4GB

MCH
4GB

MCU
4GB

T
h

ro
u

g
h

p
u

t
(G

b
/s

)

Local Worker Caches (Gb/s)

Remote Worker Caches (Gb/s)

GPFS Throughput (Gb/s)

1569

1084

114
3.4 3.1

230
287

0

200

400

600

800

1000

1200

1400

1600

1800

FA GCC
1GB

GCC
1.5GB

GCC
2GB

GCC
4GB

MCH
4GB

MCU
4GB

A
v
e
ra

g
e
 R

e
s
p

o
n

s
e
 T

im
e
 (
s
e
c

)

[HPDC09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”

[DIDC09] “Towards Data Intensive Many-Task Computing”

• GPFS � 5.7 hrs, ~8Gb/s, 1138 CPU hrs

• GCC+SRP � 1.8 hrs, ~25Gb/s, 361 CPU hrs

37

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

10

20

30

40

50

60

70

80

90

100

C
a

c
h

e
 H

it
/M

is
s

N
o

d
e

s
 A

ll
o

c
a

te
d

T
h

ro
u

g
h

p
u

t
(G

b
/s

)
Q

u
e

u
e
 L

e
n

g
th

 (
x

1
K

)

Time (sec)

Cache Hit Local % Cache Hit Global % Cache Miss %
Demand (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes

j

[HPDC09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”, under review

[DIDC09] “Towards Data Intensive Many-Task Computing”, under review

• Pull vs. Push

– Data Diffusion

• Pulls task working set

• Incremental spanning

forest

– Active Storage:

• Pushes workload
working set to all nodes

• Static spanning tree

38

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

500x500
200 CPUs

1 sec

500x500
200 CPUs

0.1 sec

1000x1000
4096 CPUs

4 sec

1000x1000
5832 CPUs

4 sec

E
ff

ic
ie

n
c
y

Experiment

Best Case (active storage)
Falkon (data diffusion)
Best Case (parallel file system)

[HPDC09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”, under review

[DIDC09] “Towards Data Intensive Many-Task Computing”, under review

Experiment Approach

Local

Disk/Memory

(GB)

Network

(node-to-node)

(GB)

Shared

File

System

(GB)
Best Case

(active storage)
6000 1536 12

Falkon

(data diffusion)
6000 1698 34

Best Case

(active storage)
6000 1536 12

Falkon

(data diffusion)
6000 1528 62

Best Case

(active storage)
24000 12288 24

Falkon

(data diffusion)
24000 4676 384

Best Case

(active storage)
24000 12288 24

Falkon

(data diffusion)
24000 3867 906

500x500

200 CPUs

1 sec

500x500

200 CPUs

0.1 sec

1000x1000

4096 CPUs

4 sec

1000x1000

5832 CPUs

4 sec

Christopher Moretti, Douglas Thain,

University of Notre Dame

Virtual Node(s)

SwiftScript

Abstract

computation

Virtual Data

Catalog

SwiftScript

Compiler

Specification Execution

Virtual Node(s)

Provenance

data

Provenance

dataProvenance

collector

launcher

launcher

file1

file2

file3

App

F1

App

F2

Scheduling

Execution Engine

(Karajan w/

Swift Runtime)

Swift runtime

callouts

C

C CC

Status reporting

Provisioning

Falkon

Resource

Provisioner

Amazon

EC2

39[NOVA08] “Realizing Fast, Scalable and Reliable Scientific Computations in Grid Environments”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”

40

• Wide range of analyses

– Testing, interactive analysis,

production runs

– Data mining

– Parameter studies
[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”

41

Falkon: a Fast and Light-weight tasK executiON framework

1239

2510

3683

4808

456

866 992 1123

120
327

546 678

0

1000

2000

3000

4000

5000

6000

120 240 360 480

Input Data Size (Volumes)

T
im

e
 (

s
)

GRAM

GRAM/Clustering

Falkon

• GRAM vs. Falkon: 85%~90% lower run time

• GRAM/Clustering vs. Falkon: 40%~74% lower run time

[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”

42

B. Berriman, J. Good (Caltech)

J. Jacob, D. Katz (JPL)

[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”

43

Falkon: a Fast and Light-weight tasK executiON framework

0

500

1000

1500

2000

2500

3000

3500

m
P

ro
je

ct

m
D

iff
/F

it

m
B

ac
kg

ro
un

d

m
A

dd
(s

ub
)

m
A

dd

to
ta

l

Components

T
im

e
 (

s
)

GRAM/Clustering

MPI

Falkon

• GRAM/Clustering vs. Falkon: 57% lower application run time

• MPI* vs. Falkon: 4% higher application run time

• * MPI should be lower bound

[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”

• Determination of free

energies in aqueous solution

– Antechamber – coordinates

– Charmm – solution

– Charmm - free energy

44
[NOVA08] “Realizing Fast, Scalable and Reliable Scientific Computations in Grid Environments”

45

45

0 1800 3600 5400 7200 9000 10800 12600 14400

1

1001

2001

3001

4001

5001

6001

7001

8001

9001

10001

11001

12001

13001

14001

15001

16001

17001

18001

19001

20001

T
a
s

k
 I

D

Time (sec)

waitQueueTime execTime resultsQueueTime

• 244 molecules � 20497 jobs

• 15091 seconds on 216 CPUs � 867.1 CPU hours

• Efficiency: 99.8%

• Speedup: 206.9x � 8.2x faster than GRAM/PBS

• 50 molecules w/ GRAM (4201 jobs) � 25.3 speedup

[NOVA08] “Realizing Fast, Scalable and Reliable Scientific Computations in Grid Environments”

Scalable Resource Management in Clouds and Grids 46

• Classic benchmarks for MapReduce

– Word Count

– Sort

• Swift and Falkon performs similar or better than
Hadoop (on 32 processors)

Sort

42

85

733

25

83

512

1

10

100

1000

10000

10MB 100MB 1000MB

Data Size

T
im

e
 (

s
e
c

)
Swift+Falkon

Hadoop

Word Count

221

1143
1795

863

4688
7860

1

10

100

1000

10000

75MB 350MB 703MB

Data Size

T
im

e
 (

s
e

c
)

Swift+PBS

Hadoop

47

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

200000

400000

600000

800000

1000000

T
h

ro
u

g
h

p
u

t
(t

a
s

k
s
/s

e
c

)

T
a

s
k

s
 C

o
m

p
le

te
d

N
u

m
b

e
r

o
f

P
ro

c
e

s
s

o
rs

Time (sec)

Processors
Active Tasks
Tasks Completed
Throughput (tasks/sec)

• CPU Cores: 130816

• Tasks: 1048576

• Elapsed time: 2483 secs

• CPU Years: 9.3

Speedup: 115168X (ideal 130816)

Efficiency: 88%

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

start

report

DOCK6

Receptor

(1 per protein:

defines pocket

to bind to)

ZINC
3-D

structures

ligands complexes

NAB script

parameters

(defines flexible

residues,

#MDsteps)

Amber Score:

1. AmberizeLigand

3. AmberizeComplex

5. RunNABScript

end

BuildNABScript

NAB

Script

NAB

Script

Template

Amber prep:

2. AmberizeReceptor

4. perl: gen nabscript

FRED

Receptor

(1 per protein:

defines pocket

to bind to)

Manually prep

DOCK6 rec file

Manually prep

FRED rec file

1
protein
(1MB)

6
GB
2M

structures
(6 GB)

DOCK6FRED
~4M x 60s x 1 cpu

~60K cpu-hrs

Amber
~10K x 20m x 1 cpu

~3K cpu-hrs

Select best ~500

~500 x 10hr x 100 cpu

~500K cpu-hrs
GCMC

PDB
protein

descriptions

Select best ~5KSelect best ~5K

For 1 target:
4 million tasks

500,000 cpu-hrs
(50 cpu-years)48

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

49

CPU cores: 118784

Tasks: 934803

Elapsed time: 2.01 hours

Compute time: 21.43 CPU years

Average task time: 667 sec

Relative Efficiency: 99.7%

(from 16 to 32 racks)

Utilization:

• Sustained: 99.6%

• Overall: 78.3%

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

50

• Purpose

– On-demand “stacks” of

random locations within

~10TB dataset

• Challenge

– Processing Costs:

• O(100ms) per object

– Data Intensive:

• 40MB:1sec

– Rapid access to 10-10K

“random” files

– Time-varying load

AP Sloan

Data

+

+

+

+

+

+

=

+

 Locality Number of Objects Number of Files

1 111700 111700

1.38 154345 111699

2 97999 49000

3 88857 29620

4 76575 19145

5 60590 12120

10 46480 4650

20 40460 2025

30 23695 790
[DADC08] “Accelerating Large-scale Data Exploration through Data Diffusion”

[TG06] “AstroPortal: A Science Gateway for Large-scale Astronomy Data Analysis”

51

0

5

10

15

20

25

30

35

40

45

50

1 1.38 2 3 4 5 10 20 30
Locality

A
g

g
re

g
a

te
 T

h
ro

u
g

h
p

u
t

(G
b

/s
)

Data Diffusion Throughput Local
Data Diffusion Throughput Cache-to-Cache
Data Diffusion Throughput GPFS
GPFS Throughput (FIT)
GPFS Throughput (GZ)

0

5

10

15

20

25

30

35

40

45

50

1 1.38 2 3 4 5 10 20 30
Locality

A
g

g
re

g
a

te
 T

h
ro

u
g

h
p

u
t

(G
b

/s
)

Data Diffusion Throughput Local
Data Diffusion Throughput Cache-to-Cache
Data Diffusion Throughput GPFS
GPFS Throughput (FIT)
GPFS Throughput (GZ)

[DADC08] “Accelerating Large-scale Data Exploration through Data Diffusion”

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2 4 8 16 32 64 128

Number of CPUs

T
im

e
 (

m
s

)
p

e
r

s
ta

c
k

 p
e

r
C

P
U

Data Diffusion (GZ)
Data Diffusion (FIT)
GPFS (GZ)
GPFS (FIT)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2 4 8 16 32 64 128

Number of CPUs

T
im

e
 (

m
s

)
p

e
r

s
ta

c
k

 p
e

r
C

P
U

Data Diffusion (GZ)
Data Diffusion (FIT)
GPFS (GZ)
GPFS (FIT)

�High data locality

– Near perfect scalability

• Aggregate throughput:

– 39Gb/s

– 10X higher than GPFS

• Reduced load on GPFS
– 0.49Gb/s

– 1/10 of the original load

52

• There is more to HPC than tightly coupled MPI,
and more to HTC than embarrassingly parallel
long jobs
– MTC: Many-Task Computing

– Addressed real challenges in resource
management in large scale distributed systems to
enable MTC

– Covered many domains (via Swift and Falkon):
astronomy, medicine, chemistry, molecular
dynamics, economic modelling, and data analytics

53

• Identified that data locality is crucial to the
efficient use of large scale distributed systems
for data-intensive applications � Data Diffusion
– Integrated streamlined task dispatching with data

aware scheduling policies

– Heuristics to maximize real world performance

– Suitable for varying, data-intensive workloads

– Proof of O(NM) Competitive Caching

54

• Embarrassingly Happily parallel apps are trivial to run

– Logistical problems can be tremendous

• Loosely coupled apps do not require “supercomputers”

– Total computational requirements can be enormous

– Individual tasks may be tightly coupled

– Workloads frequently involve large amounts of I/O

– Make use of idle resources from “supercomputers” via backfilling

– Costs to run “supercomputers” per FLOP is among the best

• Loosely coupled apps do not require specialized system software

– Their requirements on the job submission and storage systems can be extremely large

• Shared/parallel file systems are good for all applications

– They don’t scale proportionally with the compute resources

– Data intensive applications don’t perform and scale well

– Growing compute/storage gap

“Impossible only means that you

haven't found the solution yet.”
Anonymous

• My publications directly related to MTC

– 27 articles and proposals

– 40+ formal presentations

– 250+ citations

• Activities for broader community engagement

– IEEE Workshop on Many-Task Computing on Grids and

Supercomputers (MTAGS) 2008, co-located with SC08

– MegaJob08 BOF at SC08

– ACM MTAGS09, co-located with SC09

– IEEE Transactions on Parallel and Distributed Systems (TPDS),

Special Issue on Many-Task Computing, November 2010

• Courses

– “Big Data” at University of Chicago (Ian Foster)

– “Data-Intensive Computing” at Northwestern Univ. (Ioan Raicu) 55

• Open source project

– Falkon Incubator Project with Globus

– System wide installs on a variety of large systems

– Dozens of users, 100s of millions of jobs, millions of CPU hours

• Other people’s work

– 2 PhD students at University of Chicago

– Multiple grant proposals to NSF

• New Science

– Astronomy: faint and transient object discovery

– Pharmaceuticals: drug screening and discovery

– Chemistry: predicting protein structure and recognizing docking partners

– Economic modeling: study economic model sensitivities

– Other domains: Astrophysics, bioinformatics, neuroscience, cognitive

neuroscience, data analytics, data mining, biometrics
56

• Falkon

– Needs Java (not portable to the largest supercomputers)

– Needs IP connectivity (an issue in the largest systems)

– Naïve decentralized scheduler

– No support for HPC workloads (e.g. MPI applications)

• Data Diffusion

– Data access patterns: write once, read many

– Task definition must include input/output files metadata

– Per task working set must fit in local storage

– Requires local storage (disk, memory, etc)

– Centralized data-aware scheduler
57

• Distributing Falkon architecture

– Distributed queuing system

– Distributed metadata management

– Scalable distributed data-aware scheduling

– Distributed file storage system

• Interactive HPC

– Ensemble MPI applications

– Computational steering

• Computational and I/O Benchmarks

– Workflow-based benchmarks

– Characterizing capabilities of I/O systems

– Application-oriented I/O benchmarks

• Generalizing, transparency, and alternative technologies
58

• Cluster Computing on GPUs

• Distributed file/storage systems

• Distributed Operating Systems

• Data-intensive computing in Cloud Computing

• HPC in Cloud Computing

• Parallel programming systems/languages

59

60

Hot Topics in Distributed Systems:
Data-Intensive Computing

61

ACM MTAGS09 Workshop

@ SC09

62

IEEE TPDS Journal

Special Issue on MTC

Due Date: December 1st, 2009

63

• More information: http://people.cs.uchicago.edu/~iraicu/

• Related Projects:
– Falkon: http://dev.globus.org/wiki/Incubator/Falkon

– Swift: http://www.ci.uchicago.edu/swift/index.php

• People contributing ideas, slides, source code, applications, results, etc
– Ian Foster, Alex Szalay, Rick Stevens, Mike Wilde, Jim Gray, Catalin Dumitrescu, Yong Zhao, Zhao

Zhang, Gabriela Turcu, Ben Clifford, Mihael Hategan, Allan Espinosa, Kamil Iskra, Pete Beckman, Philip
Little, Christopher Moretti, Amitabh Chaudhary, Douglas Thain, Quan Pham, Atilla Balkir, Jing Tie,
Veronika Nefedova, Sarah Kenny, Gregor von Laszewski, Tiberiu Stef-Praun, Julian Bunn, Andrew
Binkowski , Glen Hocky, Donald Hanson, Matthew Cohoon, Fangfang Xia, Mike Kubal, …

• Funding:
– NASA:

• Ames Research Center, Graduate Student Research Program

• Jerry C. Yan, NASA GSRP Research Advisor

– DOE:
• Mathematical, Information, and Computational Sciences Division subprogram of the Office of

Advanced Scientific Computing Research, Office of Science, U.S. Dept. of Energy

– NSF:
• TeraGrid

• CRA/NSF Computation Innovation Fellow

