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Motivaiing Use Case: AstroPorial

[ |

« Purpose E
— On-demand “stacks” of :.t
random locations within Y
~10TB dataset :

» Challenge E
®

— Processing Costs:
* O(100ms) per object

— Data Intensive:
« 40MB:1sec

— Rapid access to 10-10K @
“random” files

— Time-varying load




Challenges

1. Slow job dispatch rates
2. Long queue times

3. Poor shared/parallel file system scaling
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[UCO07] “Harnessing Grid Resources with Data-Centric Task Farms”

Throughput
System Comments e
Condor (v6.7.2) - Production | Dual Xeon 2.4GHz, 4GB 0.49
PBS (v2.1.8) - Production Dual Xeon 2.4GHz, 4GB 0.45
Condor (v6.7.2) - Production | Quad Xeon 3 GHz, 4GB 2
Condor (v6.8.2) - Production 0.42
Condor (v6.9.3) - Development 11
Condor-J2 - Experimental I- Quad Xeon 3 GHz, 4GB 1 22
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RHigh-Throughput Computing &
High-Performance Compuiing

« HTC: High-Throughput Computing
— Typically applied in clusters and grids
— Loosely-coupled applications with sequential jobs
— Large amounts of computing for long periods of times
— Measured in operations per month or years

« HPC: High-Performance Computing
— Synonymous with supercomputing
— Tightly-coupled applications
— Implemented using Message Passing Interface (MPI)
— Large of amounts of computing for short periods of time

— Usually requires low latency interconnects
— Measured in FLOPS



MTGC: Many-Task Computing

 Bridge the gap between HPC and HTC

» Applied in clusters, grids, and supercomputers
* Loosely coupled apps with HPC orientations

» Many activities coupled by file system ops

« Many resources over short time periods

— Large number of tasks, large quantity of computing,
and large volumes of data

[MTAGS08 Workshop] Workshop on Many-Task Computing on Grids and Supercomputers 2008
[SCO08] “Towards Loosely-Coupled Programming on Petascale Systems” 6
[MTAGS08] “Many-Task Computing for Grids and Supercomputers”



HTC/MTC
(Many Loosely
Coupled Tasks)
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[MTAGSO08] “Many-Task Computing for Grids and Supercomputers”



Local Disk:

— 2002-2004: ANL/UC TG Site 1000

(70GB SCSI) .
— Today: PADS (RAID-0,6 8
drives 750GB SATA) 5
Cluster: %
— 2002-2004: ANL/UC TG Site 9
(GPFS, 8 servers, 1Gb/s each) &
_ Today: PADS (GPFS, SAN) §
Supercomputer: 2
— 2002-2004: IBM Blue Gene/L
(GPFS)

— Today: IBM Blue Gene/P (GPFS)
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[JS09] “Middleware Support for Many-Task Computing”, under preparation

[HPDCO09] “The Quest for Scalable Support of Data Intensive Workloads in Distributed Systems”, under review
[DIDCO09] “Towards Data Intensive Many-Task Computing” , under review
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[SCO07] “Falkon: a Fast and Light-weight tasK executiON framework”

[MSESO07] “A Data Diffusion Approach to Large Scale Scientific Exploration”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”

[TGO7] “Dynamic Resource Provisioning in Grid Environments”

[NASA06-08] “Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy Datasets”
[SCO06] “Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy Datasets”

[TGO6] “AstroPortal: A Science Gateway for Large-scale Astronomy Data Analysis”

[NSFO06] “The Importance of Data Locality in Distributed Computing Applications” 9



Hypothesis

“Significant performance improvements can be
obtained in the analysis of large dataset by leveraging
information about data analysis workloads rather than

individual data analysis tasks.”

 Important concepts related to the hypothesis

— Workload: a complex query (or set of queries) decomposable into
simpler tasks to answer broader analysis questions

— Data locality is crucial to the efficient use of large scale distributed
systems for scientific and data-intensive applications

— Allocate computational and caching storage resources, co-scheduled to
optimize workload performance

10



[DADCO08] “Accelerating Large-scale Data Exploration through Data Diffusion”

Proposed Solution:
Data Diffusion

Resource acquired in response to
demand

Data diffuse from archival storage to
newly acquired transient resources

Resource “caching” allows faster
responses to subsequent requesiSscre

Data-Aware Scheduler

Resources are released when
demand drops

Optimizes performance by co-
scheduling data and computations

Decrease dependency of a
shared/parallel file systems

Critical to support data intensive MTC




Data Diffusion:
Absitract Model

« Captures data diffusion properties

* Models the efficiency and speedup of entire
workloads

» Base definitions
— Data Stores (Persistent & Transient)
— Compute resources (transient)
— Data Objects
— Tasks

[HPDCO09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”, under review
[DIDCO09] “Towards Data Intensive Many-Task Computing”, under review
[UCO07] “Harnessing Grid Resources with Data-Centric Task Farms”
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Data Diifusion:
Execution Model

 Dispatch Policy

— first-available (FA), max-compute-util (MCU), max-
cache-hit (MCH), good-cache-compute (GCC)

« Caching Policy
—random, FIFO, LRU, LFU, 2
» Replay Policy
» Data Fetch Policy
* Resource Acquisition Policy
— one-at-a-time, additive, exponential, all-at-once
* Resource Release Policy

[HPDCO09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”, under review
[DIDCO09] “Towards Data Intensive Many-Task Computing”, under review 13
[UCO07] “Harnessing Grid Resources with Data-Centric Task Farms”



Data Diifusion:
Performance Model

Average time to
complete task i

TK. = C + R*HR, + R,*HR, + R,*HR,

_ K
Time to complete an T\(D) = S TK;

entire workload D i—1
Speedup « SP=T,[D)/T\(D)
Efficiency « EF=SP/N
Arrival Rate - A = (N*P/T)"’K
Utilization « U= A*T/(N*P)
[HPDCO09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”, under review 14

[DIDCO09] “Towards Data Intensive Many-Task Computing”, under review



Data Diitusion:
O(NM)-Competiiive Caching

« Competitive ratio (worst case) between
online algorithm and offline optimal

— Measures the quality of the online algorithm,
iIndependent of data access patterns or
workload characteristics

* The relation we prove to establish that
2Mark is O(NM)-competitive

—2Mark (o) < (NM +2M /s+ NM /(s +v))-OPT (o)

for all sequences o Philip Little, Amitabh Chaudhary,
University of Notre Dame

[HPDCO09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”, under review 15
[DIDCO09] “Towards Data Intensive Many-Task Computing”, under review



From Theory to Praciice

« What would data diffusion look like in practice?
« Extend the Falkon framework

User Task Dispatcher

Persistent Storage
Data-Aware Scheduler

Dynamic
Resource

L)

Available Resources
(GRAM4)

[DADCO08] “Accelerating Large-scale Data Exploration through Data Bi‘ﬁﬁsic'iﬁ"’r
[SCO07] “Falkon: a Fast and Light-weight tasK executiON framework”
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Scheduling Policies

» FA: first-available

— simple load balancing
 MCH: max-cache-hit

— maximize cache hits
« MCU: max-compute-util

— maximize processor utilization

« GCC: good-cache-compute

— maximize both cache hit and processor utilization at
the same time

[DADCO08] “Accelerating Large-scale Data Exploration through Data Diffusion”
[HPDCO09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”, under review 17
[DIDCO09] “Towards Data Intensive Many-Task Computing”, under review



Data-Aware Scheduler Profiling

« 3GHz dual CPUs

« ANL/UC TG with 5
128 processors

. Scheduling window&

2500 tasks Es
 Dataset ]
* 100K files £2
* 1 byte each 'é 1
. Tasks °
 Read 1 file 0
« Write 1 file

B Task Submit

Notification for Task Availabilite(
Bl Task Dispatch (data-aware scheduler)
Task Results (data-aware scheduler)

Notification for Task Results

M WS Communication

- Throughput (tasks/sec)

5000

without /0 with I/O

[DIDCO09] “Towards Data Intensive Many-Task Computing”, under review

4000

- 3000

1 2000

- 1000

first- first- max- max-cache- good-
available available compute-util hit cache-

compute
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Workloads

» Monotonically Increasing Workload
— Emphasizes increasing loads

« Sine-Wave Workload
— Emphasizes varying loads

 All-Pairs Workload
— Compare to best case model of active storage

» Image Stacking Workload (Astronomy)

— Evaluate data diffusion on a real large-scale data-
intensive application from astronomy domain

[DADCO08] “Accelerating Large-scale Data Exploration through Data Diffusion”
[HPDCO09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”, under review 19
[DIDCO09] “Towards Data Intensive Many-Task Computing”, under review



Monotonically Increasing Workload

250K tasks

— 10MB reads

— 10ms compute

« Vary arrival rate:
— Min: 1 task/sec

— Increment function:
CEILING(*1.3)

— Max: 1000 tasks/sec_

128 processors

|deal case:
— 1415 sec

— 80Gb/s peak
throughput
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[HPDCO09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”, under review
[DIDCO09] “Towards Data Intensive Many-Task Computing”, under review
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Monotonically Increasing Workload
First-available (GPFS)

* GPFS vs. ideal: 5011 sec vs. 1415 sec
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[HPDCO09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”, under review 21

[DIDCO09] “Towards Data Intensive Many-Task Computing”, under review



Monotonically Increasing Workload
Max-compute-util & Max-cache-hit

Max-comput—util

Max-cache-hit
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[DIDCO09] “Towards Data Intensive Many-Task Computing”, under review




Monotonically Increasing Workload
Good-cache-compute
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[HPDCO09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”, under review
[DIDCO09] “Towards Data Intensive Many-Task Computing”, under review
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Monotonically Increasing Workload
Good-cache-compute

» Data Diffusion vs. ideal: 1436 sec vs 1415 sec
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[DIDCO09] “Towards Data Intensive Many-Task Computing”, under review



Monotonically Increasing Workload
Throughput and Response Time

N
o
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Response Time =>
— 3 sec vs 1569 sec = 506X

[HPDCO09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”, under review
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[DIDCO09] “Towards Data Intensive Many-Task Computing”, under review
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Monotonically Increasing Workload
Periormance Index and Speedup
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[HPDCO09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”, under review 26

[DIDCO09] “Towards Data Intensive Many-Task Computing”, under review



Sine-Wave Workload

« 2M tasks
— 10MB reads A=|(sin(sgre(time+0.11)*2.859678 +1) * (time+0.11)#5.705 |
— 10ms compute 1000 — Arrival Rate 2000000
« Vary arrival rate: opp - humberof Tasks //\)(/ 1800000
800 1600000 @

— Min: 1 task/sec

o
1400000 £

2 \
— Arrival rate function: ! 3 \ 1200000 S
— Max: 1000 tasks/sec g ... N\ VA W eeneer”
© (1]
e 200 processors = 400 / B(_/Iy \\ 800000
- Ideal case: £ %00 500000 g
' < 200 N | /\ ] \ 400000 E
-
— 6505 sec 100 [ N\ ] \ 200000 <
— 80Gb/s peak VAV VR VA
throughput
O < N \%QQ %@Q %QQQ %Q’QQ @QQ @QQ (o S @QQ @Q’QQ
Time (sec)
[HPDCO09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”, under review 27

[DIDCO09] “Towards Data Intensive Many-Task Computing”, under review



Sine-Wave Workload
First-available (GPFS)

e« GPFS = 5.7 hrs, ~8Gb/s, 1138 CPU hrs
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[HPDCO09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”, under review
[DIDCO09] “Towards Data Intensive Many-Task Computing”, under review
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« GPFS = 5.7 hrs, ~8Gb/s, 1138 CPU hrs
e« GCC+SRP = 1.8 hrs, ~25Gb/s, 361 CPU hrs
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[HPDCO09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”, under review
[DIDCO09] “Towards Data Intensive Many-Task Computing”, under review

29



Sine-Wave Workload
Good-cache-compuie and DRP

« GPFS = 5.7 hrs, ~8Gb/s, 1138 CPU hrs
e GCC+SRP = 1.8 hrs, ~25Gb/s, 361 CPU hrs

+ GCC+DRP 9 1.86 hrs, ~24Gb/s, 253 CP|J hrs
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[HPDCO09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”, under review
[DIDCO09] “Towards Data Intensive Many-Task Computing”, under review



All-Pairs Workload

» 500x500 « All-Pairs( set A, set B, function F)
— 250K tasks - i
 oAMB reads returns matrix M:
- 100ms compute  * Compare all elements of set A to
— 200 CPUs all elements of set B via function F,
» 1000x1000 yielding matrix M, such that
« 1M tasks o . :
« 24MB reads MIi,j] = F(A[i],B[]])
* 4sec compute 1 foreach $iin A
* 4096 CPUs 2 foreach $jin B
* |deal case: 3 submit_job F $i $;
— 6505 sec 4 end
— 80Gb/s peak 5 end
throughput
[HPDCO09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”, under review 31

[DIDCO09] “Towards Data Intensive Many-Task Computing”, under review
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[HPDCO09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”, under review
[DIDCO09] “Towards Data Intensive Many-Task Computing”, under review
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All-Pairs Workload

Data Diffusion vs. Active Storage

Pull vs. Push

— Data Diffusion
 Pulls task working set
 Incremental spanning
forest
— Active Storage:

 Pushes workload
working set to all nodes

o Static spanning tree

Christopher Moretti, Douglas Thain,
University of Notre Dame

[HPDCO09] “The Quest for Scalable Support of Data Intensive Applications in Distributed
[DIDCO09] “Towards Data Intensive Many-Task Computing”, under review
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All-Pairs Workload
Data Difrfusion vs. Aciive Storage

« Best to use active storage if
— Slow data source
— Workload working set fits on local node storage
« Best to use data diffusion if
— Medium to fast data source
— Task working set << workload working set
— Task working set fits on local node storage
* |f task working set does not fit on local node storage
— Use parallel file system (i.e. GPFS, Lustre, PVFS, etc)

[HPDCO09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”, under review 35
[DIDCO09] “Towards Data Intensive Many-Task Computing”, under review



Data Diifusion vs. Others

‘Ghemawat03,Dean04]: MapReduce+GFS
Bialecki05]: Hadoop+HDFS

‘Gu06]: Sphere+Sector

‘Tatebe04]: Gfarm

Chervenak04]: RLS, DRS

Kosar06]: Stork

Conclusions

— None focused on the co-location of storage and generic
black box computations with data-aware scheduling while
operating in a dynamic elastic environment

— Swift + Falkon + Data Diffusion is arguably a more generic
and powerful solution than MapReduce
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Image Stacking Workload
Astronomy Appllcatlon

« Purpose

— On-demand “stacks” of
random locations within
~10TB dataset

Challenge
— Processing Costs:

@II [ Bl Bo ool Bol By oo B |

« O(100ms) per object YooY Y ;
1
: . 1 !
— Data Intensive: " | %
o * 1
AN | Locality | Number of Objects | Number of Files
* 4OMB1seC ‘.” 1 111700 111700
: 1.38 154345 111699
— Rapld access to 10-10K 2 97999 49000
B y o 3 88857 29620
random?” files 4 76575 19145
5 60590 12120
— T - 10 46480 4650
[DADCO08] “Acc;le-lf!at';rrg] Igrge\-ég! ata Egor!at(gr%rough Data Diffusion” 20 40460 2025 i
[TGO6] “AstroPortal: A Science Gateway for Large-scale Astronomy Data Analysis” 30 23695 790




lmage Stacking Workload
Profiling

450 M open
radec2xy
400 - B readHDU+getTile+curl+convertArray
M calibration+interpolation+doStacking
350 B writeStacking

300
. —
250 -

Time (ms)

GPFS GZ LOCAL GZ GPFS FIT LOCAL FIT
Filesystem and Image Format

[DADCO08] “Accelerating Large-scale Data Exploration through Data Diffusion”
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lmage Stacking Workload
Varying Scale
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[DADCO08] “Accelerating Large-scale Data Exploration through Data Diffusion”

—e— Data Diffusion (GZ)

Data Diffusion (FIT)
—=—GPFS (G2)
-®= GPFS (FIT)
|
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— —/—.
I c— o —
:---l-----l- "l
2 4 8 16 32 64 128
Number of CPUs

€High data locality

— Near perfect scalability
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3 Data Diffusion Throughput Local

. 50 PP
* Aggregate throughput: [ Sgaegien oot zame wcue
— 39Gb/s §4o "= GPFS Thioughout GZ))
: =35
— 10X higher than GPFS 2,
- Reduced load on GPFS g2
— 0.49Gb/s %20
— 1/10 of the original load g%
2000 - = Data Diffusion (G2) | 10
_—:— Data Diffusion (FIT) | <
So——E
g 1400 N 1 138 2 3 4 5 10 20 30
S 1200 Locality
?,1000— . .
T, « Big performance gains
o :as locality increases
0

1 138 2 3

4

5
Locality

10

20

30

Ideal

40

[DADCO08] “Accelerating Large-scale Data Exploration through Data Diffusion”



Image Stacking Workload
Abstract Model Validation

« Stacking service (large scale astronomy application)

« 92 experiments, 558K files
— Compressed: 2MB each = 1.1TB
— Un-compressed: 6MB each = 3.3TB
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[HPDCO09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”, under review
[DIDCO09] “Towards Data Intensive Many-Task Computing”, under review
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Limitations of Daita Difiusion

« Data access patterns: write once, read many

» Task definition must include input/output files
metadata

* Per task working set must fit in local storage
* Needs IP connectivity between hosts

* Needs local storage (disk, memory, etc)

* Needs Java 1.4+
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Contributions

* |dentified that data locality is crucial to the
efficient use of large scale distributed systems
for data-intensive applications =» Data Diffusion

— Integrated streamlined task dispatching with data
aware scheduling policies

— Heuristics to maximize real world performance
— Suitable for varying, data-intensive workloads
— Proof of O(NM) Competitive Caching
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Contributions

* There is more to HPC than tightly coupled MPI,
and more to HTC than embarrassingly parallel
long jobs

— MTC: Many-Task Computing

— Addressed real challenges in resource
management in large scale distributed systems to
enable MTC

— Covered many domains (via Swift and Falkon):
astronomy, medicine, chemistry, molecular
dynamics, economic modelling, and data analytics
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Falkon Project

« Falkon is a real system
— Late 2005: Initial prototype, AstroPortal
— January 2007: Falkon vO

— November 2007: Globus incubator project v0.1
» htip://dev.qglobus.org/wiki/Incubator/Falkon

— February 2009: Globus incubator project v0.9

« Implemented in Java (~20K lines of code) and C
(~1K lines of code)
— Open source: svn co https://svn.globus.org/repos/falkon

« Source code contributors (beside myself)
— Yong Zhao, Zhao Zhang, Ben Clifford, Mihael Hategan

[Globus07] “Falkon: A Proposal for Project Globus Incubation”




Falkon Activity History (10 monihs)
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Falkon Monitoring

uchicago.edu (1) - SecureCRT
M File Edit Wiew Options Transfer Script Tools  Help
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451,331 tasks+ 1048576 tasks— O tasks-> 1048576 completed 100,00 tasks_tp 2354,17 aver_tp 2685,29 stdev_tp 2987 766 ETA
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Overall Throughput Standard Deviation: 2986,253

waiting to destroy sll resources...
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More Information

More information: hittp://people.cs.uchicago.edu/~iraicu/

Related Projects:
— Falkon: http://dev.globus.org/wiki/Incubator/Falkon
— Swift; http://www.ci.uchicago.edu/swift/index.php

Dissertation Committee:
— lan Foster, The University of Chicago & Argonne National Laboratory
— Rick Stevens, The University of Chicago & Argonne National Laboratory
— Alex Szalay, The Johns Hopkins University
Funding:
— NASA: Ames Research Center, Graduate Student Research Program
« Jerry C. Yan, NASA GSRP Research Advisor

— DOE: Mathematical, Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Dept. of Energy

— NSF: TeraGrid
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