

• Overview

• Past Work

• Future Work

– Motivation

– Proposal

• Work-in-Progress

2

• HPC: High-Performance Computing

– Synonymous with supercomputing

– Tightly-coupled applications

– Implemented using Message Passing Interface (MPI), needs low latency networks

– Measured in FLOPS

• HTC: High-Throughput Computing

– Typically applied in clusters and grids

– Loosely-coupled applications with sequential jobs

– Measured in operations per month or years

• MTC: Many-Task Computing

– Bridge the gap between HPC and HTC

– Applied in clusters, grids, and supercomputers

– Loosely coupled apps with HPC orientations

– Many activities coupled by file system ops

– Many resources over short time periods

Number of Tasks

Input
Data
Size

Hi

Med

Low

1 1K 1M

HPC
(Heroic

MPI
Tasks)

HTC/MTC
(Many Loosely
Coupled Tasks)

MapReduce/MTC
(Data Analysis,

Mining)

MTC
(Big Data and
Many Tasks)

[MTAGS08] “Many-Task Computing for Grids and Supercomputers”

3

• Overview

• Past Work

• Future Work

– Motivation

– Proposal

• Work-in-Progress

4

5

• Real systems

– Swift

– Falkon

• Scalability

– Gigascale: multi-core nodes

– Terascale: clusters with 10s~1000s of nodes, TeraGrid,

Open Science Grid

– Petascale: BlueGene/P at 160K-cores, Sun

Constelation, Cray XT5

• Data intensive applications

– Data diffusion

– Collective data management

6

• Astronomy

• Astrophysics

• Economic Modeling

• Pharmaceutical Domain

• Chemistry

• Bioinformatics

• Neuroscience Domain

• Cognitive Neuroscience

• Data Analytics

• Data Mining

• Biometrics

• Molecular docking

• Uncertainty in economic

models

• Structural equation

modeling

• Posttranslational protein

modification

• Climate modeling

• Publications

– 30+ articles over 5 years, 800+ citations, 30+ collaborators

– 2 dissertations (Zhao 2007, Raicu 2009)

• Building a community

– 2008-2009: 102 abstracts, 78 papers, 3 venues

– ACM MTAGS 2008, at SC08 (6 papers)

– IEEE MTAGS 2009, at SC09 (14 papers)

– IEEE TPDS, SI on MTC, 2010 (~13 papers)

• Other related activities

– ACM ScienceCloud2010 at HPDC2010

– Courses: Big Data, Data-Intensive Distributed Computing
7

• Overview

• Past Work

• Future Work

– Motivation

– Proposal

• Work-in-Progress

8

Pat Helland, Microsoft, The Irresistible Forces Meet the Movable

Objects, November 9th, 2007

0

50

100

150

200

250

300

2004 2006 2008 2010 2012 2014 2016 2018

N
u

m
b

e
r

o
f

C
o

re
s

0

10

20

30

40

50

60

70

80

90

100

M
a
n

u
fa

c
tu

ri
n

g
 P

ro
c
e
s
s

Number of Cores

Processing

Top500 Projected Development,

http://www.top500.org/lists/2009/11/performance_development 0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

0

50,000

100,000

150,000

200,000

250,000

300,000

To
p

5
0

0
 C

o
re

-S
u

m
 (

#
 o

f
co

re
s)

To
p

5
0

0
 C

o
re

-M
a

x
(#

 o
f

co
re

s)

Top500 Core-Max

Top500 Core-Sum

http://www.top500.org/

• Today (2010): Petascale Computing

– 5K~50K nodes

– 50K~200K processor-cores

• Near future (~2018): Exascale Computing

– ~100K nodes (2X~20X)

– ~100M processor-cores/threads (500X~2000X)

http://www.top500.org/lists/2009/11/performance_development
http://www.top500.org/

• Single Node Disk Performance

– 2002 (2-cores): 70GB SCSI, 100MB/s (~50MB/core)

– 2010 (8-cores)

• 2TB SATA, 140MB/s (~18MB/core)

• 256GB SSD, 260MB/s (~33MB/core)

• 1TB SSD (RAID), 870MB/s (~109MB/core)

• 10TB SATA (RAID), 1424MB/s (~178MB/core)

• Network Attached Storage

– 2002 (2K-cores): BG/L, GPFS, 1GB/s (~0.5MB/core, 100X reduction)

– 2010 (160K-cores): BG/P, GPFS, 65GB/s (~0.4MB/core, 438X reduction)

– 2011 (1.2M-threads): Bluewaters needs ~480GB/s to sustain

~0.4MB/thread

– 2018 (100M-threads): Exascale needs ~40TB/s to sustain ~0.4MB/thread

• Segregated storage and compute

– NFS, GPFS, PVFS, Lustre

– Batch-scheduled systems: Clusters, Grids, and

Supercomputers

– Programming paradigm: HPC, MTC, and HTC

• Co-located storage and compute

– HDFS, GFS

– Data centers at Google, Yahoo, and others

– Programming paradigm: MapReduce

– Others from academia: Sector, MosaStore, Chirp

11 Many-Task

Computing

on Grids,

Network Link(s)

NAS

Network

Fabric

Compute

Resources

• Segregated storage and compute

– NFS, GPFS, PVFS, Lustre

– Batch-scheduled systems: Clusters, Grids, and

Supercomputers

– Programming paradigm: HPC, MTC, and HTC

• Co-located storage and compute

– HDFS, GFS

– Data centers at Google, Yahoo, and others

– Programming paradigm: MapReduce

– Others from academia: Sector, MosaStore, Chirp, …

Compute & Storage

Resources

Network

Fabric

12

What if we could combine the

scientific community’s existing

programming paradigms, but yet

still exploit the data locality that

naturally occurs in scientific

workloads?

Network Link(s)

NAS

Network

Fabric

Compute & Storage

Resources

13 Many-Task

Computing

on Grids,

• MTTF is likely to decrease with system size

– Loosely coupled asynchronous programming models

(MTC as opposed to HPC) are more realistic to scale

to exascales with high parallelism and concurrency

• Support for data intensive applications/operations

– Fueled by more complex questions, larger datasets,

and the many-core computing era

– HPC: OS booting, application loading, check-pointing

– HTC: Inter-process communication

– MTC: Metadata intensive workloads, inter-process

communication
14

• Overview

• Past Work

• Future Work

– Motivation

– Proposal

• Work-in-Progress

15

• Compute

– 100K nodes, with ~1K threads/cores per node

– ~10GF per thread/core

• Networking

– N-dimensional torus

– Meshes

• Storage

– SANs with spinning disks will replace today’s tape

– SANs with SSDs might exist, replacing today’s

spinning disk SANs

– SSDs will exist at every node
16

• Programming paradigms

– HPC is dominated by MPI today

– Will MPI scale another 4 orders of magnitude?

– MTC has better scaling properties (due to its

asynchronous nature)

• Network topology must be used in job

management, data management, compilers, etc

• Storage systems will need to become more

distributed to scale

17

• Decentralization is critical

– Computational resource management (e.g. LRMs)

– Storage systems (e.g. parallel file systems)

• Data locality must be maximized, while

preserving I/O interfaces

– POSIX I/O on shared/parallel file systems ignore locality

– Data-aware scheduling coupled with distributed file

systems that expose locality is the key to scalability over

the next decade

18

• Develop theoretical and practical aspects of

building efficient and scalable support for MTC

• Build a new distributed data-aware execution

fabric that will support HPC, MTC, and HTC

– Scale to at least millions of processors with 1-core

granularity

– Scale to petabytes of storage with billions of files

– Verify through simulations scalability to a exascale

levels (billions of processors, exabytes of storage)

19

• Building on research results of Swift and Falkon

• Library-based APIs to support a variety of languages

• Clients submit computational jobs into the execution

fabric to any compute node

• The fabric will:

– Guarantee jobs will execute at least once

– Optimize data movement

– Be elastic

– Support job dependencies

– Load-balance via work stealing

20

• Building on research results of data-diffusion

• Data will be automatically replicated

• Data access semantic

– POSIX-like compliance for generality

– Relaxed semantics to increase scalability

• Eventual consistency on data modifications

• Write-once read-many data access patterns

• Distributed metadata management

– Employ structured distributed hash tables

– Should scale logarithmically with system size

– Can leverage network-aware topology overlays
21

• Overview

• Past Work

• Future Work

– Motivation

– Proposal

• Work-in-Progress

22

• Distributed execution fabric

– In the design phase

• Linux, library-based APIs, C/C++, ysSSL, work stealing for load-

balancing, support for simple workflow specification

• Distributed file system

– Functional prototype

• Implementation in C/C++

• Supports open, read, write, close, and stat (FUSE support soon)

• Distributed meta-data management via a structured DHT (Chord)

• Prototype ETA: ~July 2010

23

• More information: http://www.eecs.northwestern.edu/~iraicu/

• Related Projects:
– Falkon: http://dev.globus.org/wiki/Incubator/Falkon

– Swift: http://www.ci.uchicago.edu/swift/index.php

• People contributing ideas, slides, source code, applications, results, etc
– Ian Foster, Alex Szalay, Rick Stevens, Mike Wilde, Jim Gray, Catalin Dumitrescu,

Yong Zhao, Zhao Zhang, Gabriela Turcu, Ben Clifford, Mihael Hategan, Allan
Espinosa, Kamil Iskra, Pete Beckman, Philip Little, Christopher Moretti, Amitabh
Chaudhary, Douglas Thain, Quan Pham, Atilla Balkir, Jing Tie, Veronika
Nefedova, Sarah Kenny, Gregor von Laszewski, Tiberiu Stef-Praun, Julian Bunn,
Andrew Binkowski , Glen Hocky, Donald Hanson, Matthew Cohoon, Fangfang
Xia, Mike Kubal, Alok Choudhary…

• Funding:
– NASA: Ames Research Center, Graduate Student Research Program

– DOE: Office of Advanced Scientific Computing Research

– NSF: TeragGrid and Computing Research Innovation Fellow Program

24

http://www.eecs.northwestern.edu/~iraicu/
http://dev.globus.org/wiki/Incubator/Falkon
http://www.ci.uchicago.edu/swift/index.php

