Grid, cloud, and science: Accelerating discovery

A View and Practice from University of Chicago

Ian Foster

Presented by Ioan Raicu

Computation Institute

Argonne National Lab & University of Chicago

April 28th, 2010

The Forum on Cloud in Academia at Illinois Institute of Technology

On-demand access to information and computation spurs creativity

- "By combining Google maps and Twitter restaurant reviews, I can help people find the best new restaurants"
- "By combining insurance records with flood predictions, I can calculate my company's exposure to a Katrina-class storm"
- "By integrating all new genome sequences, as they are produced, I can accelerate research on genetic diseases"

Reducing cycle time accelerates discovery

"Computation may someday be organized as a public utility ... The computing utility could become the basis for a new and important

industry."

John McCarthy (1961)

"I've been doing cloud computing since before it was called grid."

THE REPORT OF A DESCRIPTION

Grid = federation

Cloud = hosting

How data analysis happens at data-intensive computing workshops

How data analysis really happens in scientific laboratories

- % foo file1 > file2
- % bar file2 > file3
- % foo file1 | bar > file3
- % foreach f (f1 f2 f3 f4 f5 f6 f7 ... f100)
- foreach? foo \$f.in | bar > \$f.out
- foreach? end
- %
- % Now where on earth is f98.out, and how did I generate it again?

Now: command not found.

Ioan Zhao Mike Raicu Zhang Wilde

Many activities Numerous files Complex data Data dependencies Many programs

Parallel scripting

Preserving file system semantics, ability to call arbitrary executables

AIRSN program definition

(Run snr) functional (Run r, NormAnat a, Air shrink) {

Run <u>yroRun</u> = reorientRun(r , "y");

```
Run roRun = reorientRun( <u>yroRun</u> , "x" );
```

```
Volume std = roRun[0];
```

```
Run rndr = random_select( roRun, 0.1 );
AirVector rndAirVec = align_linearRun( rndr, s
);
```

```
Run reslicedRndr = resliceRun( rndr, rndAirVe
Volume meanRand = softmean( reslicedRndr,
Air mnQAAir = alignlinear( a.nHires, meanRa
Warp boldNormWarp = combinewarp( shrink,
Run nr = reslice_warp_run( boldNormWarp, r
Volume meanAll = strictmean( nr, "y", "null"
Volume boldMask = binarize( meanAll, "y" );
snr = gsmoothRun( nr, boldMask, "6 6 6" );
```


UNLILLI	0	RE	EIL	LY"	
---------	---	----	-----	-----	--

James Murty

Managing 160,000 cores

DOCK on BG/P: ~1M tasks on 119,000 CPUs

Relative efficiency 99.7% (from 16 to 32 racks) Utilization: 99.6% sustained, 78.3% overall

Efficiency for 4 second tasks and varying data size (1KB to 1MB) for CIO and GPFS up to 32K processors

Provisioning for data-intensive workloads

- Example: on-demand "stacking" of arbitrary locations within ~10TB sky survey
- Challenges
 - Random data access
 - Much computing
 - Time-varying load
- Solution
 - Dynamic acquisition of compute & storage

Data diffusion

Data diffusion sine-wave workload: Summary

- GPFS → 5.70 hrs, ~8Gb/s, 1138 CPU hrs
- DD+SRP → 1.80 hrs, ~25Gb/s, 361 CPU hrs
- DD+DRP → 1.86 hrs, ~24Gb/s, 253 CPU hrs

Yi Zhu

Teraport:

2 X AMD Opteron 248 2.2GB 4GB Memory

OOPS Performance Comparison

50 jobs to Run

Number of Workers Nodes

Amazon Standard Small: 1 EC2 Compute Unit* 1.7GB Memory

\$0.10 per hour

Amazon High-CPU Medium:

2 X 2.5 EC2 CU

1.7GB Memory

\$0.20 per hour

* One EC2 Compute Unit equals 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor

Jérôme Lauret, Kate Keahey et al.

ratio: h-recoil jet Au+Au/p+p

Turnkey Virtual Clusters

- Turnkey, tightly-coupled cluster
 - Shared trust/security context
 - Shared configuration/context information

Examples of Nimbus Applications

- Jerome Lauret et al.
- Are Science Clouds for me?

- Harutyunyan et al.
- Can we elastically extend a production testbed?

 Ron Price et al.
 What is the efficiency of our simulations in the cloud?

• How reactive are such extensions going to be?

Marshall et a

more at www.nimbusproject.org

Data-intensive computing @ Computation Institute: Example applications

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

NMPDR Home

- Q- BRC Central

MacZealots ... ss on Tiger

Nullriver So...e ~ Products Scopus

Zimbra UC Proxy The SEED: Entry Page

MCS Mac Software Google Radio-Locator

© »

) + +

National Microbial Pathogen Data Resource

Search About Us

How to Use NMPDR

FAQs

Searching NMPDR

Navigating NMPDR

Teaching with NMPDR New

Citing NMPDR

Database Design

Organism Data Summaries

Campylobacter

Listeria

Staphylococcus

Streptococcus

Vibrio

Subsytem Summaries Subsystem-Based Genome Annotation Service New Signature Genes Tool Essential Genes Drug, Antitoxin, Vaccine Targets

Publications

Events

News and Journals

Links

Cells, Reagents, Databases, Images

Bioinformatic Resource Centers

Regional Centers of Excellence

The SEED

Downloads

Contact Us

Cubmit hus sanast

Welcome to NMPDR — an environment for the comparative functional analysis of genomes and biological subsystems, with an emphasis on pathogenic species of <u>Campylobacter</u>, <u>Listeria</u>, <u>Staphylococcus</u>, <u>Streptococcus</u>, and <u>Vibrio</u>.

Announcing <u>Summer workshop</u> for undergraduate educators. NMPDR is hosting a collaborative workshop for the development of <u>teaching materials</u> that make use of NMPDR resources for teaching undergraduate microbiology, July 9 - 12. <u>More info >></u>

Version of October 8, 2008

Includes 45 archaeal, 660 bacterial, and 29 eukaryal genomes.

612 active subsystems, 809925 new annotations, 384028 new features.

Using a strategy of <u>subsystems annotation</u>, NMPDR provides researchers with corrected functional annotations in a structured biological context. Hundreds of <u>distinct subsystems</u> have been developed to describe central and secondary metabolism, complex structures, and virulence or other phenotypes.

Find gene or protein keyword(s) or numerical id

Go

BLAST Genes Subsystems Organisms

Quick-start guide to using NMPDR

Sequencing outpaces Moore's law

Data-intensive computing @ Computation Institute: Hardware

PADS: Petascale Active Data Store (NSF MRI) 26

Data-intensive computing @ Computation Institute: Software

- HPC systems software (MPICH, PVFS, ZeptOS)
- Collaborative data tagging (GLOSS)
- Data integration (XDTM)
- HPC data analytics and visualization
- Loosely coupled parallelism (Swift, Hadoop)
- Dynamic provisioning (Falkon)
- Service authoring (Introduce, caGrid, gRAVI)
- Provenance recording and query (Swift)
- Service composition and workflow (Taverna)
- Virtualization management (Workspace Service)
- Distributed data management (GridFTP, etc.)

The Grid paradigm

- Principles and mechanisms for dynamic virtual organizations
- Leverage service oriented architecture
- Loose coupling of data and services

As of O 122 participants 70 data 19, 2008: 105 ser

Multi-center clinical cancer trials image capture and review

What is FutureGrid?

- An HPC experimental infrastructure to support the research on the future of distributed, grid, and cloud computing.
- NSF-funded project (2009)
 - ♦ 4 years @ ~\$15M (\$10M+\$5M)

• Proposal team:

- PIs: Geoffrey Fox (IU), Jose Fortes (UFL), Andrew Grimshaw (UV), Kate Keahey (UC/ANL), Warren Smith (TACC)
- Funded partners: SDSC, University of Southern California, University of Tennessee, University of Virginia
- Unfunded partners: Purdue, Technische Universtität Dresden

FutureGrid Hardware

Magellan + DOE's Advanced Network Initiative

Globus.Org services: Data replication

Summary

- Grid = federation, cloud = hosting
- Globus.org: hosting grid services on cloud
- Parallel scripting as a tool for rapid creation of computationally demanding applications
- Intrepid + PADS + Magellan + cloud ...

Thank you!

Computation Institute www.ci.uchicago.edu