

0

50

100

150

200

250

300

2004 2006 2008 2010 2012 2014 2016 2018

N
u

m
b

e
r

o
f

C
o

re
s

0

10

20

30

40

50

60

70

80

90

100

M
a
n

u
fa

c
tu

ri
n

g
 P

ro
c
e
s
s

Number of Cores

Processing

Pat Helland, Microsoft, The Irresistible Forces Meet the Movable

Objects, November 9th, 2007

• Today (2010): Multicore Computing

– 1~12 cores commodity architectures

– 80 cores proprietary architectures

– 480 GPU cores

• Near future (~2018): Manycore Computing

– ~1000 cores commodity architectures

2

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

0

50,000

100,000

150,000

200,000

250,000

300,000

To
p

5
0

0
 C

o
re

-S
u

m
 (

#
 o

f
co

re
s)

To
p

5
0

0
 C

o
re

-M
a

x
(#

 o
f

co
re

s)

Top500 Core-Max

Top500 Core-Sum

Top500 Projected Development,

http://www.top500.org/lists/2009/11/performance_development

http://www.top500.org/

• Today (2010): Petascale Computing

– 5K~50K nodes

– 50K~200K processor-cores

• Near future (~2018): Exascale Computing

– ~1M nodes (20X~200X)

– ~1B processor-cores/threads (5000X~20000X)

3

http://www.top500.org/lists/2009/11/performance_development
http://www.top500.org/

• Relatively new paradigm… 3 years old

• Amazon in 2009
– 40K servers split over 6 zones

• 320K-cores, 320K disks

• $100M costs + $12M/year in energy costs

• Revenues about $250M/year

• Amazon in 2018
– Will likely look similar to exascale computing

• 100K~1M nodes, ~1B-cores, ~1M disks

• $100M~$200M costs + $10M~$20M/year in energy

• Revenues 100X~1000X of what they are today
Avoiding Achilles’ Heel in Exascale Computing with Distributed File Systems 4

• Power efficiency
– Will limit the number of cores on a chip (Manycore)

– Will limit the number of nodes in cluster (Exascale and

Cloud)

– Will dictate a significant part of the cost of ownership

• Programming models/languages
– Automatic parallelization

– Threads, MPI, workflow systems, etc

– Functional, imperative

– Languages vs. Middlewares

Avoiding Achilles’ Heel in Exascale Computing with Distributed File Systems 5

• Bottlenecks in scarce resources
– Storage (Exascale and Clouds)

– Memory (Manycore)

• Reliability
– How to keep systems operational in face of failures

– Checkpointing (Exascale)

– Node-level replication enabled by virtualization

(Exascale and Clouds)

– Hardware redundancy and hardware error correction

(Manycore)

Avoiding Achilles’ Heel in Exascale Computing with Distributed File Systems 6

• Decentralization is critical

– Computational resource management (e.g. LRMs)

– Storage systems (e.g. parallel file systems)

• Data locality must be maximized, while

preserving I/O interfaces

– POSIX I/O on shared/parallel file systems ignore locality

– Data-aware scheduling coupled with distributed file

systems that expose locality is the key to scalability over

the next decade

Avoiding Achilles’ Heel in Exascale Computing with Distributed File Systems 7

What if we could combine the

scientific community’s existing

programming paradigms, but yet

still exploit the data locality that

naturally occurs in scientific

workloads?

Network Link(s)

NAS

Network

Fabric

Compute & Storage

Resources

Avoiding Achilles’ Heel in Exascale Computing with Distributed File Systems 8

• Building on my own research (e.g. data-diffusion), parallel

file systems (PVFS), and distributed file systems (e.g. GFS)

• Build a distributed file system for HEC

– It should complement parallel file systems, not replace them

• Critical issues:

– Must mimic parallel file systems interfaces and features in order to get

wide adoption

– Must handle some workloads currently run on parallel file systems

significantly better

Avoiding Achilles’ Heel in Exascale Computing with Distributed File Systems 9

• Access Interfaces and Semantics

– POSIX-like compliance for generality (e.g. via FUSE)

– Relaxed semantics to increase scalability

• Eventual consistency on data modifications

• Write-once read-many data access patterns

• Distributed metadata management

– Employ structured distributed hash tables like data-structures

– Must have O(1) put/get costs

– Can leverage network-aware topology overlays

• Distribute data across many nodes

– Must maintain and expose data locality in access patterns

Avoiding Achilles’ Heel in Exascale Computing with Distributed File Systems 10

• 1-many read (all processes read the same file

and are not modified)

• many-many read/write (each process

read/write to a unique file)

• write-once read-many (files are not modified

after it is written)

• append-only (files can only be modified by

appending at the end of files)

• metadata (metadata is created, modified, and/or

destroyed at a high rate).

Avoiding Achilles’ Heel in Exascale Computing with Distributed File Systems 11

• machine boot-up (e.g. reading OS image on all nodes)

• application loading (e.g. reading scripts, binaries, and

libraries on all nodes/processes)

• common user data loading (e.g. reading a common

read-only database on all nodes/processes)

• checkpointing (e.g. writing unique files per

node/process)

• log writing (writing unique files per node/process)

• many-task computing (each process reads some files,

unique or shared, and each process writes unique files)

Avoiding Achilles’ Heel in Exascale Computing with Distributed File Systems 12

• Mike Wilde

– Swift: allow Swift to scale better where parrallel file

systems pose a scalability bottleneck

• Matei Ripeanu (who is also working with Mike

Wilde)

– Integrate research results into MosaStore (e.g.

distributed meta-data)

• Rob Ross

– Guidance and comparison with PVFS

• Others: Ian Foster, Kamil Iskra, Pete Beckman

Avoiding Achilles’ Heel in Exascale Computing with Distributed File Systems 13

• More information:
– http://www.cs.iit.edu/~iraicu/

– iraicu@cs.iit.edu

Avoiding Achilles’ Heel in Exascale Computing with Distributed File Systems 14

http://www.cs.iit.edu/~iraicu/
mailto:iraicu@cs.iit.edu

