(MARKED HARDNE ANDES

An Overview of Distributed Systems

Ioan Raicu

Computer Science Department, Illinois Institute of Technology Math and Computer Science Division, Argonne National Laboratory

September 13th, 2011

Famous Quotes

The advent of computation can be compared, in terms of the breadth and depth of its impact on research and scholarship, to the invention of writing and the development of modern mathematics.

Ian Foster, 2006

Science Paradigms

- Thousand years ago: science was empirical describing natural phenomena
- Last few hundred years: theoretical branch using models, generalizations
- Last few decades: a computational branch simulating complex phenomena
- Today: data exploration (eScience) unify theory, experiment, and simulation
 - Data captured by instruments or generated by simulator
 - Processed by software
 - Information/knowledge stored in computer
 - Scientist analyzes database/files using data management and statistics An Overview of Distributed Systems

 $\frac{4\pi Gp}{2} - K \frac{c^2}{d}$

Computational thinking will be a fundamental skill used by everyone in the world by the middle of the 21st Century.

Jeanette Wing, 2006

X-Info

- The evolution of X-Info and Comp-X for each discipline X
- · How to codify and represent our knowledge

The Generic Problems

- Data ingest
- Managing a petabyte
- Common schema
- How to organize it
- How to reorganize it
- How to share it with others

- Query and Vis tools
- · Building and executing models
- Integrating data and literature
- Documenting experiments
- Curation and long-term preservation

An Overview of Distributed Systems

All Scientific Data Online

Literature

Derived and

Recombined Data

Raw Data

- Many disciplines overlap and use data from other sciences
- Internet can unify all literature and data
- Go from literature to computation to data back to literature
- Information at your fingertips for everyone-everywhere
- Increase Scientific Information Velocity
- Huge increase in Science Productivity

Distributed Systems

- What is a distributed system?
 - "A collection of independent computers that appears to its users as a single coherent system"
 - -A. Tanenbaum

Distributed Systems

A distributed system organized as middleware. The middleware layer extends over multiple machines, and offers each application the same interface.

Distributed Systems: Clusters, Grids, Clouds, and Supercomputers

An Overview of Distributed Systems

[GCE08] "Cloud Computing and Grid Computing 360-Degree Compared"

Cluster Computing

Computer clusters using commodity processors, network interconnects, and operating systems.

Supercomputing

Grid Computing

Grids tend to be composed of multiple clusters, and are typically loosely coupled, heterogeneous, and geographically dispersed

Cloud Computing

- A large-scale distributed computing paradigm driven by:
 - 1. economies of scale
 - 2. virtualization
 - 3. dynamically-scalable resources
 - 4. delivered on demand over the Internet

Windows Azure

Elastic IP

Distributed Pervasive Systems

Electronic health care systems

Monitoring a person in a pervasive electronic health care system, using (a) a local hub or (b) a continuous wireless connection.

Distributed Pervasive Systems

Sensor systems

Organizing a sensor network database, while storing and processing data (a) only at the operator's site or

Distributed vs. Centralized Systems

- Economics
 - Microprocessors have better price/performance than mainframes
- Speed
 - Collective power of large number of systems
- Geographic and responsibility distribution
- Reliability
 - One machine's failure need not bring down the system
- Extensibility
 - Computers and software can be added incrementally

Disadvantages of Distributed Systems

- Software
 - Little software exists compared to PCs
- Networking
 - Still slow and can cause other problems (e.g. when disconnected)
- Security
 - Data may be accessed by unauthorized users

Applications **Economic Modeling: MARS**

- CPU Cores: 130816
- Tasks: 1048576
- Elapsed time: 2483 secso
- CPU Years: 9.3

Overview

[SC08] "Towards Loosely-Coupled Programming on Petascale Systems"

Overview

[SC08] "Towards Loosely-Coupled Programming on Petascale Systems"

Applications Pharmaceuticals: DOCK

Overview

[SC08] "Towards Loosely-Coupled Programming on Petascale Systems"

Applications Astronomy: AstroPortal

- Purpose
 - On-demand "stacks" of random locations within ~10TB dataset
- Challenge
 - Processing Costs:
 - O(100ms) per object
 - Data Intensive:
 - 40MB:1sec
 - Rapid access to 10-10K "random" files

Time-varying load
[DADC08] "Accelerating Large-scale Data Exploration through Data Obieffusion of Distributed
[TG06] "AstroPortal: A Science Gateway for Large-scale Astronomy Data Analysis"
30

DataSys: Data-Intensive Distributed Systems Laboratory

- Research Focus
 - Emphasize designing, implementing, and evaluating systems, protocols, and middleware with the goal of supporting data-intensive applications on extreme scale distributed systems, from many-core systems, clusters, grids, clouds, and supercomputers
- People
 - 1 Faculty member
 - 5 PhD students
 - 3 MS students
 - 1 UG student
- More information
 - http://datasvs.cs.iit.edu/

Future of Distributed Systems Manycore Computing

Future of Distributed Systems Exascale Computing

http://www.top500.org/lists/2009/11/performance_development

Future of Distributed Systems Cloud Computing

- Relatively new paradigm... 3 years old
- Amazon in 2009
 - 40K servers split over 6 zones
 - 320K-cores, 320K disks
 - \$100M costs + \$12M/year in energy costs
 - Revenues about \$250M/year
- Amazon in 2018
 - Will likely look similar to exascale computing
 - 100K~1M nodes, ~1B-cores, ~1M disks
 - \$100M~\$200M costs + \$10M~\$20M/year in energy
 - Revenues 100X~1000X of what they are today

Future of Distributed Systems Common Challenges

- Power efficiency
 - Will limit the number of cores on a chip (Manycore)
 - Will limit the number of nodes in cluster (Exascale and Cloud)
 - Will dictate a significant part of the cost of ownership
- Programming models/languages
 - Automatic parallelization
 - Threads, MPI, workflow systems, etc
 - Functional, imperative
 - Languages vs. Middlewares

Future of Distributed Systems Common Challenges

- Bottlenecks in scarce resources
 - Storage (Exascale and Clouds)
 - Memory (Manycore)
- Reliability
 - How to keep systems operational in face of failures
 - Checkpointing (Exascale)
 - Node-level replication enabled by virtualization (Exascale and Clouds)
 - Hardware redundancy and hardware error correction (Manycore)

Summary

- Everything about science is changing because of the impact of information technology
- Experimental, theoretical, and computational science are all being affected by the data deluge, and a fourth, "data-intensive" science paradigm is emerging.
- Goal
 - A world in which all of the science literature is online
 - all of the science data is online
 - They interoperate with each other
- Computing and storage will increase in scale exponentially over the next decade
- Data will play central role in future computing systems
- Lots of new tools are needed to make this happen!

More Information

- More information:
 - -http://www.cs.iit.edu/~iraicu/
 - -http://datasys.cs.iit.edu/
- Contact:
 - -iraicu@cs.iit.edu
- Questions?