
GeMTC: GPU Enabled 
Many Task Computing

Scott Krieder, Ben Grimmer, Ioan Raicu
DataSys Laboratory



Motivation

Why do we need a framework?

● Default CUDA not efficient for MTC

○ High overheads per CUDA application (100 msec)

○ Multiple applications must timeshare, not concurrent

○ disadvantages with cudaMalloc()



Framework Design/Contributions

● Designed to support MTC workloads

● Manage device on a warp level

● Communicate between CPU and GPU through 

GPU memory



Framework Design/Contributions

● Much higher granularity

○ 32 thread warps (SIMD worker)

● Improved Dynamic Memory Management

○ CUDA: 110 usec to cudaMalloc() and cudaFree(), 

not constant cudaMalloc()

○ GEMTC:14 usec to gemtcMalloc() and gemtcFree(), 

O(1) malloc



Evaluation

Hardware
● Single Node

○ AMD 6-core CPU

○ 16 GB of RAM

● NVIDIA GTX-670

○ 2GB GDDR5

○ 84 warps

Micro-Kernels

● Sleep()

○ busy wait

● Matrix-Square()



Results



Results



Future Work

● Integrate with Swift/T

● Coalescing memory copy for Tasks

● Run MTC workloads on Intel MIC

● Evaluate GEMTC on GPU Simulators

● Port GEMTC to OpenCL



Questions

Scott Krieder
skrieder@iit.edu

Benjamin Grimmer
bgrimmer@hawk.iit.edu

Ioan Raicu
iraicu@cs.iit.edu



cudaMalloc() Performance



gemtcMalloc() Performance


