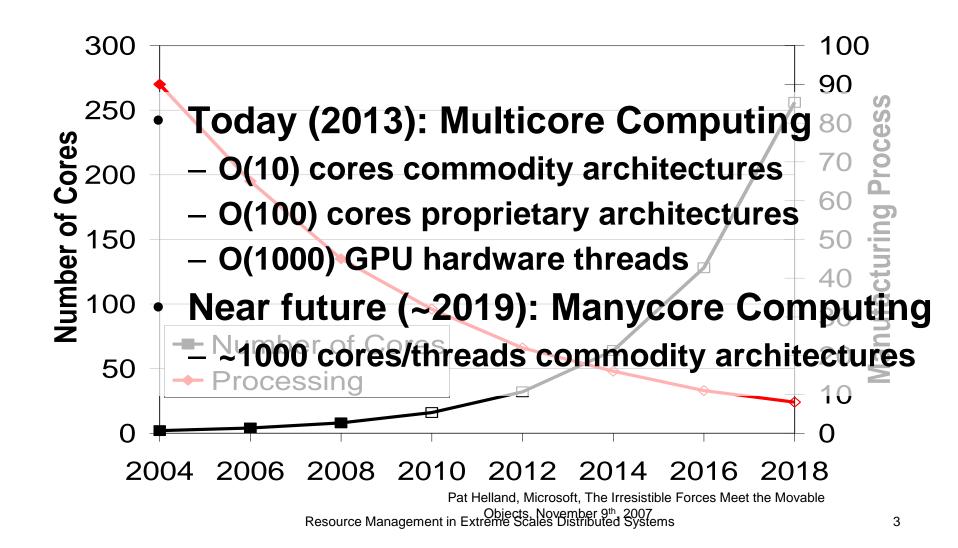
Distributed Storage Systems for Extreme-Scale Data-Intensive Computing

Ioan Raicu

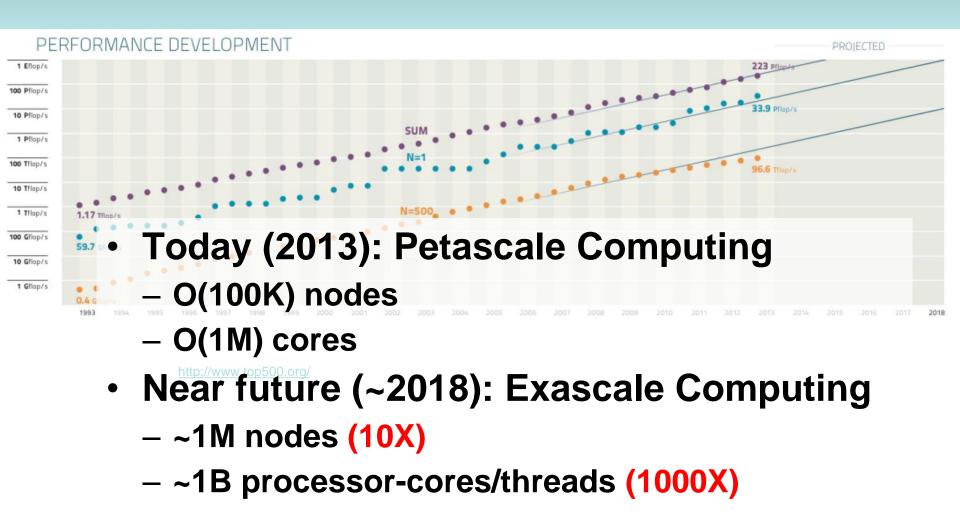
Computer Science Department, Illinois Institute of Technology Math and Computer Science Division, Argonne National Laboratory

> September 10th, 2013 2nd Annual CHANGES Workshop 2013

DataSys: Data-Intensive Distributed Systems Laboratory


- Research Focus
 - Emphasize designing, implementing, and evaluating systems, protocols, and middleware with the goal of supporting data-intensive applications on extreme scale distributed systems, from many-core systems, clusters, grids, clouds, and supercomputers

People


- Dr. Ioan Raicu (Director)
- 6 PhD Students
- 2 MS Students
- 4 UG Students
- Contact
 - <u>http://datasys.cs.iit.edu/</u>
 - <u>iraicu@cs.iit.edu</u>

Manycore Computing

Exascale Computing

Exascale Computing Architecture

- Compute
 - 1M nodes, with ~1K threads/cores per node
- Networking
 - N-dimensional torus
 - Meshes
 - Dragonfly
- Storage
 - SANs with spinning disks will replace today's tape
 - SANs with SSD acceleration/caching
 - SSDs likely to exist at every node (e.g. burst buffer moves storage closer to compute nodes)

Resource Management in Extreme Scales Distributed Systems

Some Challenges to Overcome at Exascale Computing

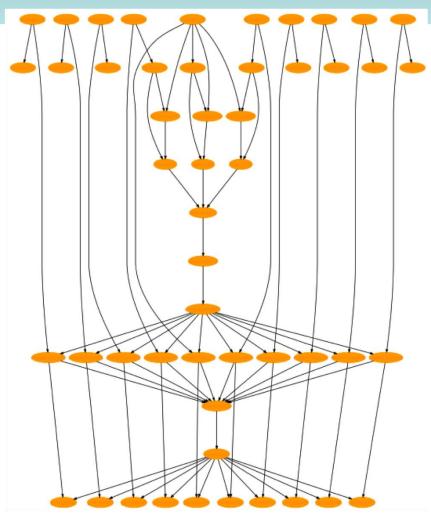
- Programming paradigms
 - HPC is dominated by MPI today
 - Will MPI scale another 3 orders of magnitude?
 - Other paradigms (including loosely coupled ones) might emerge to be more flexible, resilient, and scalable
- Storage systems will need to become more distributed to scale → Critical for resilience of HPC
- Network topology must be used in job management, data management, compilers, etc
- Power efficient compilers and run-time systems

Critical Technologies Needed to achieve Extreme Scales

- Fundamental Building Blocks (with a variety of resilience and consistency models)
 - Distributed hash tables (DHT)
 - Also known as NoSQL data stores or key/value stores
 - Examples: Chord, Tapestry, memcached, Dynamo, MangoDB, Kademlia, CAN, Tapestry, Memcached, Cycloid, Ketama, RIAK, Maidsafe-dht, Cassandra and C-MPI, BigTable, HBase

– Distributed message queues (DMQ)

 Example: SQS, RabitMQ, Couch RQS, ActiveMQ, KAFKA, Hedwig


DHT and DMQ > Future generation distributed systems

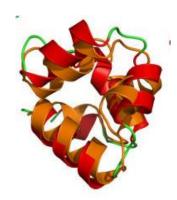
- Global File Systems, Metadata, and Storage
 - Data-diffusion, FusionFS, ZHT
- Job Management Systems
 - Falkon, MATRIX, CloudKon, GeMTC
- Workflow Systems
 - Swift
- Monitoring Systems
 - Built on top of ZHT
- Provenance Systems
 - Built on top of ZHT and FusionFS
- Data Indexing
 - Future work on top of ZHT/FusionFS
- Relational Databases
 - Future work on top of ZHT

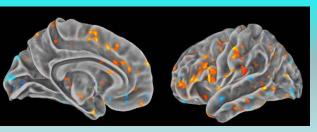
Many-Task Computing (MTC)

MTC emphasizes:

- bridging HPC/HTC
- many resources
 - \circ short period of time
- many computational tasks
- dependent/independent tasks
- tasks organized as DAGs
- primary metrics are seconds
 Advantages:
- Improve fault tolerant
- Maintain efficiency
- Programmability & Portability
- support embarrassingly parallel and parallel applications

Swift/T and Applications


Swift/T


- <u>Active research project</u> (CI UChicago & ANL)
- Parallel Programming Framework
- Throughput ~25k tasks/sec per process
- Shown to scale to 128k cores
- Application Domains Supported
 - Astronomy, Biochemistry, Bioinformatics, Economics, Climate

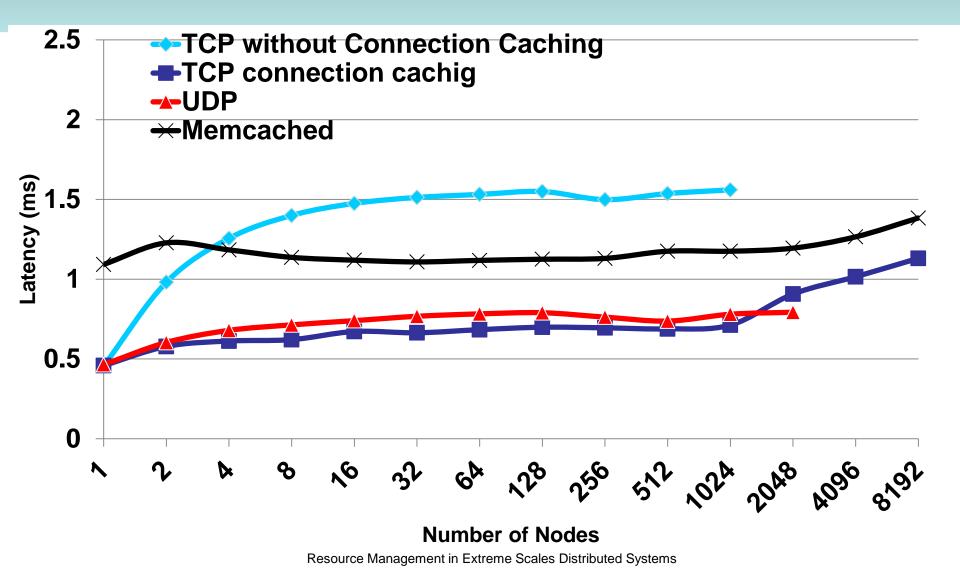
Swift lets you write parallel scripts that run many copies of ordinary programs concurrently, using statements like this:

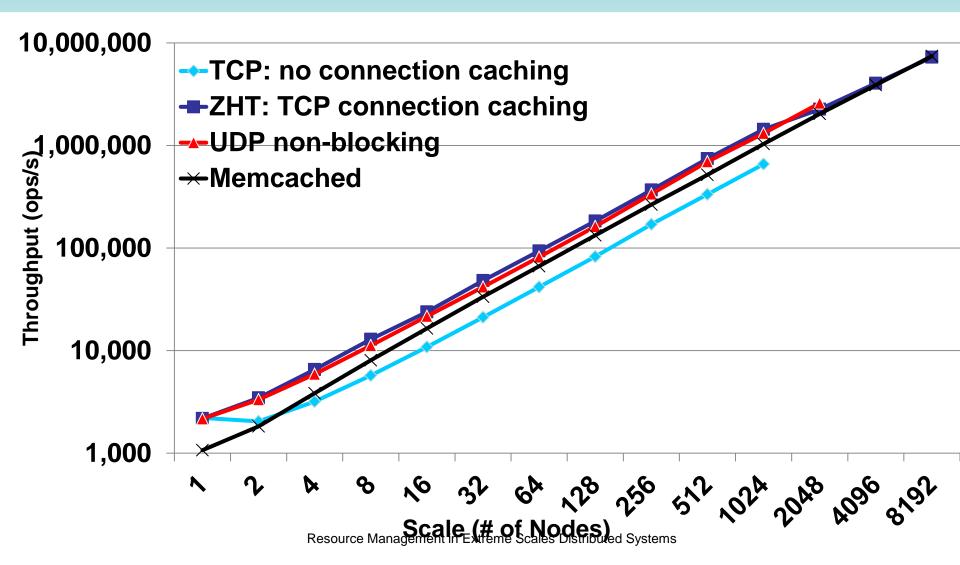
foreach protein in proteinList { runBLAST(protein);

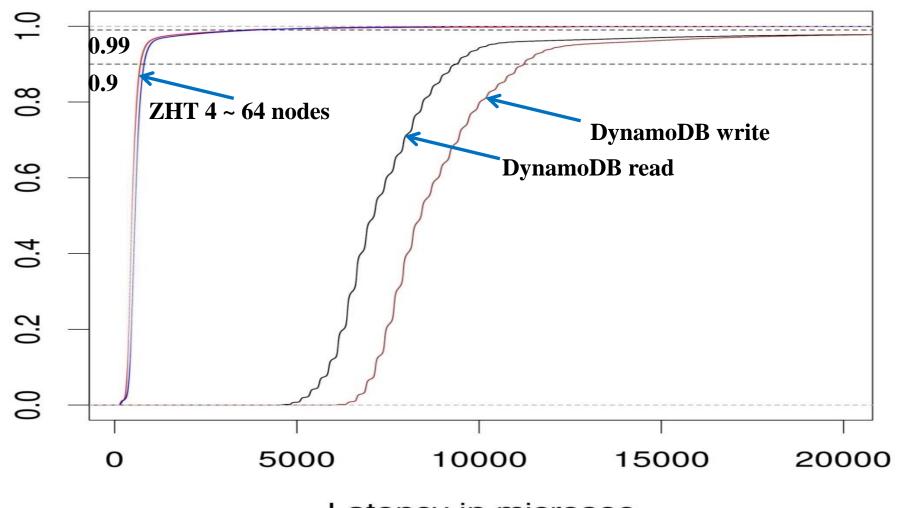
Images from Swift Case Studies http://www.ci.uchicago.edu/swift/case_studies/

Swift Applications

Field	Description	Characteristics	Status
Astronomy	Creation of montages from many digital images	Many 1-core tasks, much communication, complex dependencies	E
Astronomy	Stacking of cutouts from digital sky surveys	Many 1-core tasks, much communication	E (Falkon)
Biochemistry	Analysis of mass-spec data for post-translational protein modifications	10,000 – 100,000 K jobs for proteomic searches using custom serial codes	D
Biochemistry	Protein folding using iterative fixing algorithm, also exploring other biomolecule interactions	100s to 1000s of 1-1000 core simulations & data analysis	0
Biochemistry	Identification of drug targets via computational screening	Up to 1M x 1 core	O (Falkon)
Bioinformatics	Metagenome modeling	1000's of 1-core integer programming problems	D
Business economics	Mining of large text corpora to study media bias	Analysis and comparison of 70M+ text files of news articles	D
Climate	Ensemble climate model runs and analysis of output data	10s to 100s of 100-1000 core simulations	E
Economics	Generation of response surfaces for various economic models	1K to 1M 1-core runs (10K typical), then data analysis	0
Neuroscience	Analysis of functional MRI datasets	Comparison of images; connectivity analysis with SEM, many tasks (100K+)	0
Radiology	Training of computer aided diagnosis algorithms	Comparison of images; many tasks, much communication	D
Radiology	Image processing and brain mapping for neurosurgical planning research	1000's of MPI application executions	0

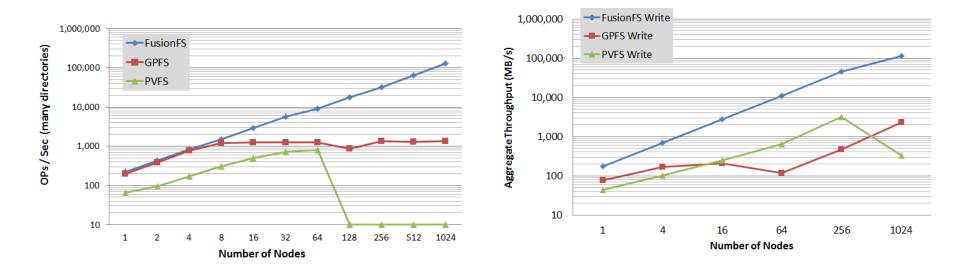

Proposed Software Stack in Large-Scale Distributed Systems


	Applications						
	Many-Task Computing			High-Performance Computing			
	(Swift)			(MPI)			
Provenance (FusionProv)		Distributed Execution Fabric		Execution Fabric	Resource Manager		
	Simulator	(MATRIX, CloudKon, Falkon)		(GeMTC)	(Cobalt, SLURM)		
		Distributed Hash Tables			Parallel File Systems		
	(SimMatrix)	(ZHT)	Syst	ems (FusionFS)	(GPFS, PVFS, Lustre)		
		Operating Systems					
		(ZeptOS, IBM CNK)					
	Harware	High-End Computing Hardware					
	(Terascale) (Petascale to Exascale Systems						


- ZHT: A distributed Key-Value store
 - Light-weighted
 - High performance
 - Scalable
 - Dynamic
 - Fault tolerant
 - Strong Consistency
 - Persistent
 - Versatile: works from clusters, to clouds, to supercomputers

- Many DHTs: Chord, Kademlia, Pastry, Cassandra, C-MPI, Memcached, Dynamo
- Why another?

Name	Impl.	Routing Time	Persistenc e	membershi	
Cassandra	Java	Log(N)	Yes	Yes	No
C-MPI	С	Log(N)	No	No	No
Dynamo	Java	0 to Log(N)	Yes	Yes	No
Memcached	С	0	No	No	No
ZHT	C++	0 to 2	Yes	Yes	Yes



Resource Management in Extreme Scales Distributed Systems

FusionFS Distributed Fil /stem e Network Fabric A distributed file system co-NAS locating storage and computations, while Network Link supporting POSIX Everything is decentralized and distributed Aims for millions of servers and clients scales **Compute & Storage Resources** Aims at orders of magnitude NAS higher performance than Paralle Network Link(s) File current state of the art vstem parallel file systems

FusionFS Distributed File System

^ ~2 order This gap will grow even larger magnitude This gap will grow even larger metadata as parallel filesystems saturate external network – expected gap will be ~4 orders of magnitude faster performance Resource Management in Extreme Scales Distributed Systems

FusionFS Distributed File System

—512-Node —1K-Node —2K-Node

—4K-Node —8K-Node —16K-Node

- 16K-node scales
 - **FusionFS 2500GB/s** (measured) vs. GPFS 64GB/s (theoretical) 39X higher sustained throughput
- Full system 40K-node scales

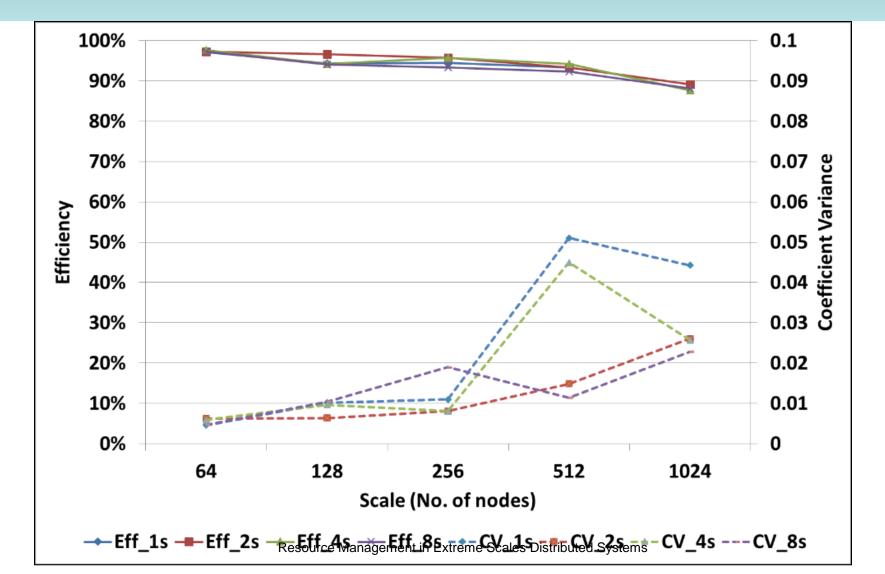
Expected Performance: 100X higher I/O throughput

Expected Performance: 4000X higher metadata ops/sec

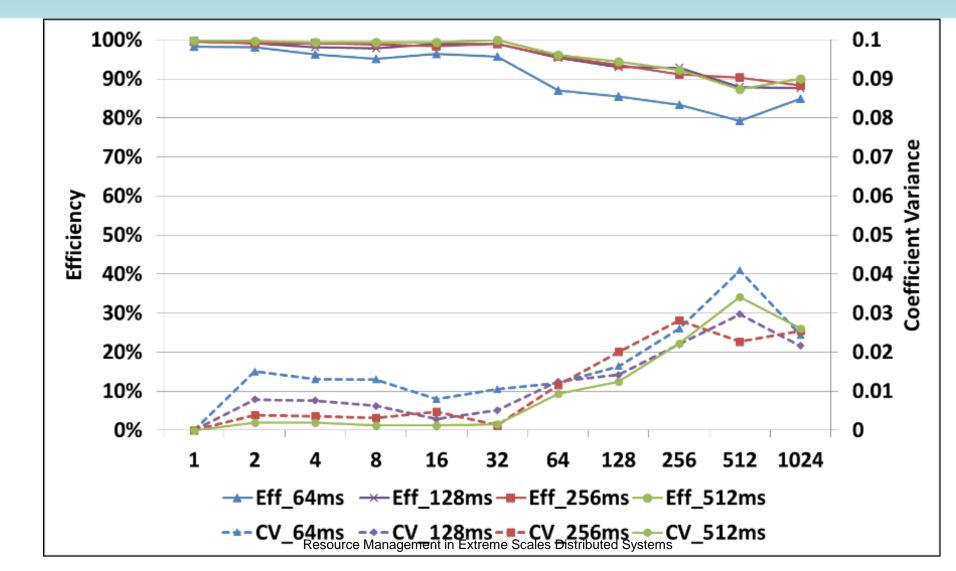
0 10 20 30 40 50 60 70 80 90 100 110 120

Time (second)

Resource Management in Extreme Scales Distributed Systems

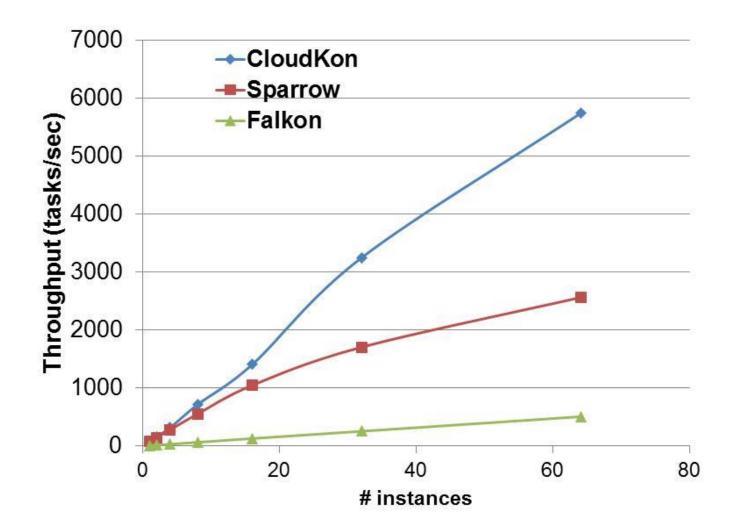

FusionFS Distributed File System

- Many hot topics related to distributed storage
 - Provenance (FusionProv) uses ZHT
 - Information Dispersal Algorithms (IStore) uses GPUs
 - SSD+HHD hybrid caching (HyCache)
 - Data Compression
- Improvements on the horizon
 - Non-POSIX interfaces (e.g. Amazon S3)
 - Explore viability of supporting HPC checkpointing
 - Deep indexing and search


MATRIX MTC execution Framework at Extreme Scales

- •MATRIX distributed MTC execution framework for distributed load balancing using Work Stealing algorithm
 - Distributed scheduling is an efficient way to achieve load balancing, leading to high job throughput and system utilization
 - Dynamic job scheduling system at the granularity of node/core levels for extreme scale applications

MATRIX MTC execution Framework at Extreme Scales


MATRIX MTC execution Framework at Extreme Scales

CloudKon: Cloud-Enbled Distributed Task Execution Framework

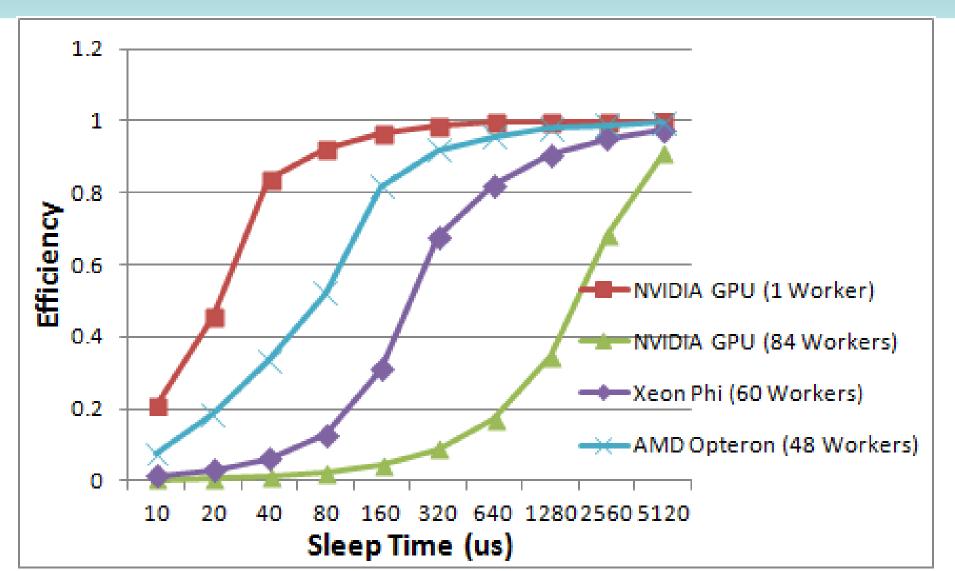
- Use Amazon services as building blocks – SQS, DynamoDB, and EC2
- Distributed load balancing
- Dynamic and Elastic
- Light-weight and Fast (2X+)
- Small codebase (1K-LOC, 5%)

CloudKon: Cloud-Enbled Distributed Task Execution Framework

GeMTC: GPU-Enabled Many-Task Computing

GPU

- Streaming Multiprocessors (15 SMXs on Kepler K20)
- 192 warps * 32 threads
- Coprocessors
 - Intel Xeon Phi
 - 60 cores * 4 threads per core = 240 hardware threads


GeMTC

 Efficient support for MTC on accelrators

GeMTC: GPU-Enabled Many-Task Computing

Main Message

- Decentralization is critical
 - Computational resource management
 - Storage systems

• Preserving locality is critical!

- POSIX I/O on shared/parallel file systems ignore locality
- Data-aware scheduling coupled with distributed file systems that expose locality is the key to scalability over the next decade
- Co-locating storage and compute is **GOOD**
 - Leverage the abundance of processing power, bisection bandwidth, and local I/O

Active Funding (\$)

- NSF CAREER 2011 2015: \$486K
 - "Avoiding Achilles' Heel in Exascale Computing with Distributed File Systems", NSF CAREER
- DOE Fermi 2011 2013: \$84K
 - "Networking and Distributed Systems in High-Energy Physics", DOE FNAL
- DOE LANL 2013: \$75K
 - "Investigation of Distributed Systems for HPC System Services", DOE LANL
- IIT STARR 2013: \$15K
 - "Towards the Support for Many-Task Computing on Many-Core Computing Platforms", IIT STARR Fellowship
- Amazon 2011 2013: \$18K
 - "Distributed Systems Research on the Amazon Cloud Infrastructure", Amazon
- NVIDIA 2013 2014: \$12K
 - "CUDA Teaching Center", NVIDIA

Funding (Time)

DOE 2011 – 2013: 450K hours

"FusionFS: Distributed File Systems for Exascale Computing", DOE ANL ALCF; 450,000 hours on the IBM BlueGene/P

• XSEDE 2013: 200K hours

 "Many-Task Computing with Many-Core Accelerators on XSEDE", NSF XSEDE; 200K hours on XSEDE

• GLCPC 2013: 6M hours

"Implicitly-parallel functional dataflow for productive hybrid programming on Blue Waters", Great Lakes Consortium for Petascale Computation (GLCPC); 6M hours on the Blue Waters Supercomputer

• NICS 2013: 320K hours

 "Many-Task Computing with Many-Core Accelerators on Beacon", National Institute for Computational Sciences (NICS); 320K hours on the Beacon system

Service Activities

- IEEE Transactions on Cloud Computing
 - Special Issue on Scientific Cloud Computing
- Springer's Journal of Cloud Computing: Advances, Systems and Applications
- IEEE/ACM MTAGS 2013 @ SC13
- IEEE/ACM DataCloud 2013 @ SC13
- ACM ScienceCloud 2014 @ HPDC14
- IEEE CCGrid 2014 in Chicago
- GCASR 2014 in Chicago
- Others:
 - IEEE/ACM SC 2013, ACM HPDC 2014, IEEE IPDPS 2014, IEEE ICDCS 2014, IEEE eScience 2014

More Information

- More information:
 - -http://www.cs.iit.edu/~iraicu/
 - -http://datasys.cs.iit.edu/
- Contact:
 - -iraicu@cs.iit.edu
- Questions?