(A DESERVE AND A DESERVE AND A

Supporting Data-Intensive Distributed Computing

Ioan Raicu

Computer Science Department, Illinois Institute of Technology Math and Computer Science Division, Argonne National Laboratory

> July 18th, 2013 DePaul University

DataSys: Data-Intensive Distributed Systems Laboratory

- Research Focus
 - Emphasize designing, implementing, and evaluating systems, protocols, and middleware with the goal of supporting data-intensive applications on extreme scale distributed systems, from many-core systems, clusters, grids, clouds, and supercomputers

People

- Dr. Ioan Raicu (Director)
- 6 PhD Students
- 2 MS Students
- 4 UG Students
- Contact
 - <u>http://datasys.cs.iit.edu/</u>
 - <u>iraicu@cs.iit.edu</u>

Manycore Computing

Exascale Computing

Proposed Software Stack in Large-Scale Distributed Systems

Applications							
Many-Task Computing			High-Performance Computing				
(SwiftScrip	t, Charm++, MapReduce)		(MPI)				
	Distributed Execut		tion Fabric		Resource Manager		
Simulator	(MATRIX) & (GeMTC			;)	(Cobalt, SLURM)		
(SimMatrix)	Persistent Distributed	Di	istributed File	F	Parallel File Systems		
	Hash Tables (ZHT)	Syst	ems (FusionFS)		(GPFS, PVFS)		
Harware	High-End Computing Hardware						
(Terascale)	(Petascale to Exascale Systems)						

Many-Task Computing (MTC)

MTC emphasizes:

- bridging HPC/HTC
- many resources
 - \circ short period of time
- many computational tasks
- dependent/independent tasks
- tasks organized as DAGs
- primary metrics are seconds
 Advantages:
- Improve fault tolerant
- Maintain efficiency
- Programmability & Portability
- support embarrassingly parallel and parallel applications

Swift/T and Applications

Swift/T

- <u>Active research project</u> (CI UChicago & ANL)
- Parallel Programming Framework
- Throughput ~25k tasks/sec per process
- Shown to scale to 128k cores
- Application Domains Supported
 - Astronomy, Biochemistry, Bioinformatics, Economics, Climate

Swift lets you write parallel scripts that run many copies of ordinary programs concurrently, using statements like this:

foreach protein in proteinList { runBLAST(protein);

Images from Swift Case Studies http://www.ci.uchicago.edu/swift/case_studies/

Swift Applications

Field	Description	Characteristics	Status
Astronomy	Creation of montages from many digital images	Many 1-core tasks, much communication, complex dependencies	E
Astronomy	Stacking of cutouts from digital sky surveys	Many 1-core tasks, much communication	E (Falkon)
Biochemistry	Analysis of mass-spec data for post-translational protein modifications	10,000 – 100,000 K jobs for proteomic searches using custom serial codes	D
Biochemistry	Protein folding using iterative fixing algorithm, also exploring other biomolecule interactions	100s to 1000s of 1-1000 core simulations & data analysis	0
Biochemistry	Identification of drug targets via computational screening	Up to 1M x 1 core	O (Falkon)
Bioinformatics	Metagenome modeling	1000's of 1-core integer programming problems	D
Business economics	Mining of large text corpora to study media bias	Analysis and comparison of 70M+ text files of news articles	D
Climate	Ensemble climate model runs and analysis of output data	10s to 100s of 100-1000 core simulations	E
Economics	Generation of response surfaces for various economic models	1K to 1M 1-core runs (10K typical), then data analysis	0
Neuroscience	Analysis of functional MRI datasets	Comparison of images; connectivity analysis with SEM, many tasks (100K+)	0
Radiology	Training of computer aided diagnosis algorithms	Comparison of images; many tasks, much communication	D
Radiology	Image processing and brain mapping for neurosurgical planning research	1000's of MPI application executions	0

Accelerator Architecture

GPU

- Streaming Multiprocessors (15 SMXs on Kepler K20)
- Warps
 - 32 threads in a warp
 - 192 warps
 - i. hardware available
 - ii. ind. compute

Coprocessors

- Intel Xeon Phi
 - 60 cores * 4 threads per core
 = 240 hardware threads

GPU Block Diagram - Highlighting SMX

Highlighting SMX and Warps

Operating System / Device Driver

NVIDIA Graphics Processing Unit

Interested

- Collaborations with groups seeking interesting applications
- Collaborative proposals to NSF or NIH combining Medical Imaging and Distributed Systems (Clouds, Big Data, and/or parallelism)

More Information

- More information:
 - -http://www.cs.iit.edu/~iraicu/
 - -http://datasys.cs.iit.edu/
- Contact:
 - -iraicu@cs.iit.edu
- Questions?