
Many-Task Computing for Grids and Supercomputers

Ioan Raicu
1
, Ian T. Foster

1,2,3
, Yong Zhao

4

1
Department of Computer Science, University of Chicago, Chicago IL, USA

2
Computation Institute, University of Chicago, Chicago IL, USA

3
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne IL, USA

4
Microsoft Corporation, Redmond, WA, USA

iraicu@cs.uchicago.edu, foster@anl.gov, yozha@microsoft.com

Abstract

Many-task computing aims to bridge the gap between

two computing paradigms, high throughput computing

and high performance computing. Many task computing

differs from high throughput computing in the emphasis

of using large number of computing resources over

short periods of time to accomplish many

computational tasks (i.e. including both dependent and

independent tasks), where primary metrics are

measured in seconds (e.g. FLOPS, tasks/sec, MB/s I/O

rates), as opposed to operations (e.g. jobs) per month.

Many task computing denotes high-performance

computations comprising multiple distinct activities,

coupled via file system operations. Tasks may be small

or large, uniprocessor or multiprocessor, compute-

intensive or data-intensive. The set of tasks may be

static or dynamic, homogeneous or heterogeneous,

loosely coupled or tightly coupled. The aggregate

number of tasks, quantity of computing, and volumes of

data may be extremely large. Many task computing

includes loosely coupled applications that are generally

communication-intensive but not naturally expressed

using standard message passing interface commonly

found in high performance computing, drawing

attention to the many computations that are

heterogeneous but not “happily” parallel.

Keywords: many-task computing, MTC, high-

throughput computing, HTC, high performance

computing, HPC

1. Defining Many Task Computing

We want to enable the use of large-scale distributed

systems for task-parallel applications, which are linked

into useful workflows through the looser task-coupling

model of passing data via files between dependent

tasks. This potentially larger class of task-parallel

applications is precluded from leveraging the increasing

power of modern parallel systems such as

supercomputers (e.g. IBM Blue Gene/L [1] and Blue

Gene/P [2]) because the lack of efficient support in

those systems for the “scripting” programming model

[3]. With advances in e-Science and the growing

complexity of scientific analyses, more scientists and

researchers rely on various forms of scripting to

automate end-to-end application processes involving

task coordination, provenance tracking, and

bookkeeping. Their approaches are typically based on a

model of loosely coupled computation, in which data is

exchanged among tasks via files, databases or XML

documents, or a combination of these. Vast increases in

data volume combined with the growing complexity of

data analysis procedures and algorithms have rendered

traditional manual processing and exploration

unfavorable as compared with modern high

performance computing processes automated by

scientific workflow systems. [4]

The problem space can be partitioned into four main

categories (Figure 1 and Figure 2). 1) At the low end of

the spectrum (low number of tasks and small input

size), we have tightly coupled Message Passing

Interface (MPI) applications (white). 2) As the data

size increases, we move into the analytics category,

such as data mining and analysis (blue); MapReduce [5]

is an example for this category. 3) Keeping data size

modest, but increasing the number of tasks moves us

into the loosely coupled applications involving many

tasks (yellow); Swift/Falkon [6, 7] and

Pegasus/DAGMan [8] are examples of this category. 4)

Finally, the combination of both many tasks and large

datasets moves us into the data-intensive many-task

computing category (green); examples of this category

978-1-4244-2872-4/08/$25.00 ©2008 IEEE

are Swift/Falkon and data diffusion [9], Dryad [

Sawzall [11].

Figure 1: Problem types with respect to data s

number of tasks

High performance computing can be considered to be

part of the first category (denoted by the white a

High throughput computing [12] can be considered to

be a subset of the third category (denoted by the yellow

area). Many-Task Computing can be considered as part

of categories three and four (denoted by the yello

green areas). This paper focuses on defining many

computing, and the challenges that arise as datase

computing systems are growing exponentially.

Figure 2: An incomplete and simplistic view of

programming models and tools

Clusters and Grids have been the preferred platfor

loosely coupled applications that have been

traditionally part of the high throughput computing

class of applications, which are managed and execu

through workflow systems or parallel programming

systems. Various properties of a new emerging

], Dryad [10], and

roblem types with respect to data size and

High performance computing can be considered to be

part of the first category (denoted by the white area).

] can be considered to

y (denoted by the yellow

Task Computing can be considered as part

of categories three and four (denoted by the yellow and

focuses on defining many-task

computing, and the challenges that arise as datasets and

systems are growing exponentially.

n incomplete and simplistic view of

programming models and tools

Clusters and Grids have been the preferred platform for

loosely coupled applications that have been

t of the high throughput computing

class of applications, which are managed and executed

through workflow systems or parallel programming

systems. Various properties of a new emerging

applications, such as large number of tasks (i.e.

or more), relatively short per task execution times (i.e.

seconds to minutes long), and data intensive tasks

tens of MB of I/O per CPU second of compute) have

lead to the definition of a new class of applicati

called Many-Task Computing. MTC emphasizes on

using much large numbers of computing resources over

short periods of time to accomplish many

computational tasks, where the primary metrics are

seconds (e.g., FLOPS, tasks/sec, MB/sec I/O rates)

while HTC requires large amounts of computing for

long periods of time with the primary metrics being

operations per month [12]. MTC applications are

composed of many tasks (both independent and

dependent tasks) that can be individually schedule

many different computing resources across multiple

administrative boundaries to achieve some larger

application goal.

MTC denotes high-performance computations

comprising multiple distinct activities, coupled v

system operations or message passing. Tasks may be

small or large, uniprocessor or multiprocessor,

compute-intensive or data-intensive. The set of tasks

may be static or dynamic, homogeneous or

heterogeneous, loosely coupled or tightly coupled.

aggregate number of tasks, quantity of computing,

volumes of data may be extremely large. Is MTC really

different enough to justify coining a new term? Th

are certainly other choices we could have used ins

such as multiple program multiple data (MPMD), hig

throughput computing, workflows, capacity computin

or embarrassingly parallel.

MPMD is a variant of Flynn’s original taxonomy [

used to denote computations in which several progr

each operate on different data at the same time. M

can be contrasted with Single Program Multiple Data

(SPMD), in which multiple instances of the same

program each execute on different processors, oper

on different data. MPMD lacks the emphasis that a

of tasks can vary dynamically. High throughput

computing [12], a term coined by Miron Livny within

the Condor project [14], to contrast workloads for

which the key metric is not floating

per second (as in high performance computi

month or year.” MTC applications are often just as

concerned with performance as is the most demandin

HPC application; they just don't happen to be SPMD

programs. The term “workflow” was first used to

denote sequences of tasks in business pro

term is sometimes used to denote any computation i

which control and data passes from one “task” to

another. We find it often used to describe many

computations (or MPMD, HTC, MTC, etc.), making its

use too general. “Embarrassingly pa

applications, such as large number of tasks (i.e. millions

atively short per task execution times (i.e.

seconds to minutes long), and data intensive tasks (i.e.

tens of MB of I/O per CPU second of compute) have

lead to the definition of a new class of applications

Task Computing. MTC emphasizes on

g much large numbers of computing resources over

short periods of time to accomplish many

computational tasks, where the primary metrics are in

seconds (e.g., FLOPS, tasks/sec, MB/sec I/O rates),

while HTC requires large amounts of computing for

ds of time with the primary metrics being

]. MTC applications are

composed of many tasks (both independent and

dependent tasks) that can be individually scheduled on

resources across multiple

administrative boundaries to achieve some larger

performance computations

comprising multiple distinct activities, coupled via file

system operations or message passing. Tasks may be

rge, uniprocessor or multiprocessor,

intensive. The set of tasks

may be static or dynamic, homogeneous or

heterogeneous, loosely coupled or tightly coupled. The

aggregate number of tasks, quantity of computing, and

may be extremely large. Is MTC really

different enough to justify coining a new term? There

are certainly other choices we could have used instead,

such as multiple program multiple data (MPMD), high

throughput computing, workflows, capacity computing,

MPMD is a variant of Flynn’s original taxonomy [13],

used to denote computations in which several programs

each operate on different data at the same time. MPMD

Single Program Multiple Data

, in which multiple instances of the same

program each execute on different processors, operating

on different data. MPMD lacks the emphasis that a set

of tasks can vary dynamically. High throughput

], a term coined by Miron Livny within

], to contrast workloads for

which the key metric is not floating-point operations

per second (as in high performance computing) but “per

month or year.” MTC applications are often just as

concerned with performance as is the most demanding

HPC application; they just don't happen to be SPMD

programs. The term “workflow” was first used to

denote sequences of tasks in business processes, but the

term is sometimes used to denote any computation in

which control and data passes from one “task” to

another. We find it often used to describe many-task

computations (or MPMD, HTC, MTC, etc.), making its

use too general. “Embarrassingly parallel computing” is

used to denote parallel computations in which each

individual (often identical) task can execute without

any significant communication with other tasks or with

a file system. Some MTC applications will be simple

and embarrassingly parallel, but others will be

extremely complex and communication-intensive,

interacting with other tasks and shared file-systems.

Is “many task computing” a useful distinction? Perhaps

we could simply have said “applications that are

communication-intensive but are not naturally

expressed in MPI”, but there are also loosely coupled,

and independent many tasks. Through the new term

MTC, we are drawing attention to the many

computations that are heterogeneous but not “happily”

parallel.

2. MTC for Clusters, Grids, and

Supercomputers

We claim that MTC applies to not only traditional HTC

environments such as clusters and Grids, assuming

appropriate support in the middleware, but also

supercomputers. Emerging petascale computing

systems, such as IBM’s Blue Gene/P [2], incorporate

high-speed, low-latency interconnects and other

features designed to support tightly coupled parallel

computations. Most of the applications run on these

computers have a SMPD structure, and are commonly

implemented by using MPI to achieve the needed inter-

process communication. We believe MTC to be a

viable paradigm for supercomputers. As the computing

and storage scale increases, the set of problems that

must be overcome to make MTC practical (ensuring

good efficiency and utilization at large-scale)

exacerbate. The challenges include local resource

manager scalability and granularity, efficient utilization

of the raw hardware, shared file system contention and

scalability, reliability at scale, application scalability,

and understanding the limitations of the HPC systems

in order to identify promising and scientifically

valuable MTC applications.

One could ask, why use petascale systems for problems

that might work well on terascale systems? We point

out that petascale systems are more than just many

processors with large peak petaflop ratings. They

normally come well balanced, with proprietary, high-

speed, and low-latency network interconnects to give

tightly-coupled applications good opportunities to scale

well at full system scales. Even IBM has proposed in

their internal project Kittyhawk [15] that Blue Gene/P

can be used to run non-traditional workloads (e.g.

HTC). We identify four factors that motivate the

support of MTC applications on petascale HPC

systems:

1) The I/O subsystems of petascale systems offer unique

capabilities needed by MTC applications. For example,

collective I/O operations [16] could be implemented to

use the specialized high-bandwidth and low-latency

interconnects. MTC applications could be composed of

individual tasks that are themselves parallel programs,

many tasks operating on the same input data, and tasks

that need considerable communication among them.

Furthermore, the aggregate shared file system

performance of a supercomputer can be potentially

larger than that found in a distributed infrastructure

(i.e., Grid), with data rates in the 10GB+/s range, rather

than the more typical 0.1GB/s to 1GB/s range at most

Grid sites.

2) The cost to manage and run on petascale systems

like the Blue Gene/P is less than that of conventional

clusters or Grids[15]. For example, a single 13.9 TF

Blue Gene/P rack draws 40 kilowatts, for 0.35 GF/watt.

Two other systems that get good compute power per

watt consumed are the SiCortex with 0.32 GF/watt and

the Blue Gene/L with 0.23 GF/watt. In contrast, the

average power consumption of the Top500 systems is

0.12 GF/watt [17]. Furthermore, we also argue that it is

more cost effective to manage one large system in one

physical location, rather than many smaller systems in

geographically distributed locations.

3) Large-scale systems inevitably have utilization

issues. Hence it is desirable to have a community of

users who can leverage traditional back-filling

strategies to run loosely coupled applications on idle

portions of petascale systems.

4) Perhaps most importantly, some applications are so

demanding that only petascale systems have enough

compute power to get results in a reasonable

timeframe, or to exploit new opportunities in such

applications. With petascale processing capabilities on

ordinary applications, it becomes possible to perform

vast computations with quick turn-around, thus

answering questions in a timeframe that can make a

quantitative difference in addressing significant

scientific challenges or responding to emergencies.

3. The Data Deluge Challenge and the

Growing Storage/Compute Gap

Within the science domain, the data that needs to be

processed generally grows faster than computational

resources and their speed. The scientific community is

facing an imminent flood of data expected from the

next generation of experiments, simulations, sensors

and satellites. Scientists are now attempting

calculations requiring orders of magnitude more

computing and communication than was possible only a

few years ago. Moreover, in many currently planned

and future experiments, they are also planning to

generate several orders of magnitude more data than

has been collected in the entire human history [18].

For instance, in the astronomy domain the Sloan Digital

Sky Survey [19] has datasets that exceed 10 terabytes in

size. They can reach up to 100 terabytes or even

petabytes if we consider multiple surveys and the time

dimension. In physics, the CMS detector being built to

run at CERN’s Large Hadron Collider [20] is expected

to generate over a petabyte of data per year. In the

bioinformatics domain, the rate of growth of DNA

databases such as GenBank [21] and European

Molecular Biology Laboratory (EMBL) [22] has been

following an exponential trend, with a doubling time

estimated to be 9-12 months. A large class of

applications in Many-Task Computing will be

applications that analyze large quantities of data, which

in turn would require that data and computations be

distributed over many hundreds and thousands of nodes

in order to achieve rapid turnaround times.

Many applications in the scientific computing generally

use a shared infrastructure such as TeraGrid [23] and

Open Science Grid [24], where data movement relies

on shared or parallel file systems. The rate of increase

in the number of processors per system is outgrowing

the rate of performance increase of parallel file systems,

which requires rethinking existing data management

techniques. For example, a cluster that was placed in

service in 2002 with 316 processors has a parallel file

system (i.e. GPFS [25]) rated at 1GB/s, yielding

3.2MB/s per processor of bandwidth. The second

largest open science supercomputer, the IBM Blue

Gene/P from Argonne National Laboratory, has 160K

processors, and a parallel file system (i.e. also GPFS)

rated at 8GB/s, yielding a mere 0.05MB/s per

processor. That is a 65X reduction in bandwidth

between a system from 2002 and one from 2008.

Unfortunately, this trend is not bound to stop, as

advances multi-core and many-core processors will

increase the number of processor cores one to two

orders of magnitude over the next decade. [4]

We believe that data locality is critical to the successful

and efficient use of large distributed systems for data-

intensive applications [26, 27] in the face of a growing

gap between compute power and storage performance.

Large scale data management needs to be a primary

objective for any middleware targeting to support MTC

workloads, to ensure data movement is minimized by

intelligent data-aware scheduling both among

distributed computing sites (assuming that each site has

a local area network shared storage infrastructure), and

among compute nodes (assuming that data can be

stored on compute nodes’ local disk and/or memory).

4. Middleware Support for MTC

As high throughput computing (HTC) is a subset of

MTC, it is worth mentioning the various efforts in

enabling HTC on large scale systems. Some of these

systems are Condor [14], MapReduce [5], Hadoop [28],

and BOINC [29]. MapReduce (including Hadoop) is

typically applied to a data model consisting of

name/value pairs, processed at the programming

language level. Its strengths are in its ability to spread

the processing of a large dataset to thousands of

processors with minimal expertise in distributed

systems; however it often involves the development of

custom filtering scripts and does not support “black

box” application execution as is commonly found in

MTC or HTC applications. BOINC is known to scale

well to large number of compute resources, but lacks

support for data intensive applications due to the nature

of the wide area network deployment BOINC typically

has, as well as support for “black box” applications.

On the IBM Blue Gene supercomputer, various works

[30, 31] have leveraged the HTC-mode [32] support in

Cobalt [33] scheduling system. These works have

aimed at integrating their solutions as much as possible

in Cobalt; however, it is not clear that the current

implementations will be able to support the largest and

most demanding MTC applications at full system

scales. Furthermore, these works focus on compute

resource management, and ignore data management

altogether.

Condor and glide-ins [34] are the original tools to

enable HTC, but their emphasis on robustness and

recoverability limits their efficiency for MTC

applications in large-scale systems. We found that

relaxing some constraints from the middleware and

encouraging the end applications to implement these

constraints have enabled significant improvements in

middleware performance and efficiency at large scale.

[7]

For example, some of our work with the Falkon light-

weight task execution framework has shown that task

granularity can be efficiently handled at scales of

seconds on modest size clusters of thousands of

processing cores, while prior resource management

techniques would have required task granularity to be in

minutes, or even hours, to allow good utilization of the

raw resources at the same scale. The task granularity

issues are exaggerated as system scales are increased to

levels of hundreds of thousands of processor cores.

Falkon is able to achieve these improvements by

streamlining the dispatching process, making the

scheduler run in constant time in relation to the number

of tasks queued and number of processors managed,

multi-threading the resource manager to leverage multi-

core nodes, moving recoverability from the resource

manager to the application, and leaving out many non-

essential features (i.e. accountability, support for multi-

node tasks such as MPI, etc) from production managers

that can be offloaded to other systems or the

application. [7]

Swift [6, 35] and Falkon [7] have been used to execute

MTC applications on clusters, multi-site Grids (e.g.,

Open Science Grid [24], TeraGrid [36]), specialized

large machines (SiCortex [37]), and supercomputers

(e.g., Blue Gene/P [2]). Swift enables scientific

workflows through a data-flow-based functional

parallel programming model. It is a parallel scripting

tool for rapid and reliable specification, execution, and

management of large-scale science and engineering

workflows. The runtime system in Swift relies on the

CoG Karajan [38] workflow engine for efficient

scheduling and load balancing, and it integrates with

the Falkon light-weight task execution dispatcher for

optimized task throughput and efficiency, as well as

improved data management capabilities to ensure good

scalability with increasing compute resources. Large-

scale applications from many domains (e.g., astronomy

[7, 39], medicine [7, 40, 41], chemistry [42], molecular

dynamics [43], and economics [44, 45]) have been run

at scales of up to millions of tasks on up to hundreds of

thousands of processors. While this paper strives to

define MTC, as well the theory and practice to enable

MTC on a wide range of systems from the average

cluster to the largest supercomputers, the Falkon

middleware represents the practical aspects of enabling

MTC workloads on these systems.

5. MTC Applications

We have found many applications that are a better fit

for MTC than HTC or HPC. Their characteristics

include having a large number of small parallel jobs, a

common pattern observed in many scientific

applications [6]. They also use files (instead of

messages, as in MPI) for intra-processor

communication, which tends to make these applications

data intensive.

While we can push hundreds or even thousands of such

small jobs via GRAM to a traditional local resource

manager (e.g. PBS [46], Condor [34], SGE [47]), the

achieved utilization of a modest to large resource set

will be poor due to high queuing and dispatching

overheads, which ultimately results in low job

throughput. A common technique to amortize the costs

of the local resource management is to “cluster”

multiple jobs into a single larger job. Although this

lowers the per job overhead, it is best suited when the

set of jobs to be executed are homogenous in execution

times, or accurate execution time information is

available prior to job execution; with heterogeneous job

execution times, it is hard to maintain good load

balancing of the underlying resource, causing low

resource utilization. We claim that “clustering” jobs is

not enough, and that the middleware that manages jobs

must be streamlined and made as light-weight as

possible to allow applications with heterogonous

execution times to execute without “clustering” with

high efficiency.

In addition to streamlined task dispatching, scalable

data management techniques are also required in order

to support MTC applications. MTC applications are

often data and/or meta-data intensive, as each job

requires at least one input file and one output file, and

can sometimes involve many files per job. These data

management techniques need to make good utilization

of the full network bandwidth of large scale systems,

which is a function of the number of nodes and

networking technology employed, as opposed to the

relatively small number of storage servers that are

behind a parallel file system or GridFTP server.

We have identified various applications (as detailed

below) from many disciplines that demonstrate

characteristics of MTC applications. These

applications cover a wide range of domains, from

astronomy, physics, astrophysics, pharmaceuticals,

bioinformatics, biometrics, neuroscience, medical

imaging, chemistry, climate modeling, economics, and

data analytics. They often involve many tasks, ranging

from tens of thousands to billions of tasks, and have a

large variance of task execution times ranging from

hundreds of milliseconds to hours. Furthermore, each

task is involved in multiple reads and writes to and

from files, which can range in size from kilobytes to

gigabytes. These characteristics made traditional

resource management techniques found in HTC

inefficient; also, although some of these applications

could be coded as HPC applications, due to the wide

variance of the arrival rate of tasks from many users, an

HPC implementation would also yield poor utilization.

Furthermore, the data intensive nature of these

applications can quickly saturate parallel file systems at

even modest computing scales.

Astronomy: One of the first applications that

motivated much of this work was called the

“AstroPortal” [48], which offered a stacking service of

astronomy images from the Sloan Digital Sky Survey

(SDSS) dataset using grid resources. Astronomical

image collections usually cover an area of sky several

times (in different wavebands, different times, etc). On

the other hand, there are large differences in the

sensitivities of different observations: objects detected

in one band are often too faint to be seen in another

survey. In such cases we still would like to see whether

these objects can be detected, even in a statistical

fashion. There has been a growing interest to re-project

each image to a common set of pixel planes, then

stacking images. The stacking improves the signal to

noise, and after coadding a large number of images,

there will be a detectable signal to measure the average

brightness/shape etc of these objects. This application

involved the SDSS dataset [19] (currently at 10TB with

over 300 million objects, but these datasets could be

petabytes in size if we consider multiple surveys in both

time and space) [4], many tasks ranging from 10K to

millions of tasks, each requiring 100ms to seconds of

compute and 100KB to MB of input and output data.

Another related application in astronomy is

MONTAGE [49, 50], a national virtual observatory

project [51] that stitches tiles of images of the sky from

various sky surveys (e.g. SDSS [19], etc) into a

photorealistic single image. Execution times per task

range in the 100ms to 10s of seconds, and each task

involves multiple input images and at least one image

output. This application is both compute intensive and

data intensive, and has been run as both a HTC (using

Pegasus/DAGMan [8], and Condor [14]) and a HPC

(using MPI) application, but we found its scalability to

be limited when run under HTC or HPC.

Astrophysics: Another application is from

astrophysics, which analyzes the Flash turbulence

dataset (simulation data) [52] from various

perspectives, using volume rendering and vector

visualization. The dataset is composed of 32 million

files (1000 time steps times 32K files) taking up about

15TB of storage resource, and contains both temporal

and spatial locality. In the physics domain, the CMS

detector being built to run at CERN’s Large Hadron

Collider [20] is expected to generate over a petabyte of

data per year. Supporting applications that can perform

a wide range of analysis of the LHC data will require

novel support for data intensive applications.

Economic Modeling: An application from the

economic modeling domain that we have investigated

as a good MTC candidate is Macro Analysis of

Refinery Systems (MARS) [44], which studies

economic model sensitivity to various parameters.

MARS models the economic and environmental

impacts of the consumption of natural gas, the

production and use of hydrogen, and coal-to-liquids co-

production, and seeks to provide insights into how

refineries can become more efficient through the

capture of waste energy. Other economic modeling

applications perform numerical optimization to

determine optimal resource assignment in energy

problems. This application is challenging as the

parameter space is extremely large, which can produce

millions, even billions of individual tasks, each with a

relatively short execution time of only seconds long.

Pharmaceutical Domain: In the pharmaceutical

domain, there are applications that screen KEGG [53]

compounds and drugs against important metabolic

protein targets using DOCK6 [43] to simulate the

“docking” of small molecules, or ligands, to the “active

sites” of large macromolecules of known structure

called “receptors”. A compound that interacts strongly

with a receptor (such as a protein molecule) associated

with a disease may inhibit its function and thus act as a

beneficial drug. The economic and health benefits of

speeding drug development by rapidly screening for

promising compounds and eliminating costly dead-ends

is significant in terms of both resources and human life.

The parameter space is quite large, totaling to more

than one billion computations that have a large variance

of execution times from seconds to hours, with an

average of 10 minutes. The entire parameter space

would require over 22,600 CPU years, or over 50 days

on a 160K processor Blue Gene/P supercomputer [2].

This application is challenging as there many tasks,

each task has a wide range of execution times with little

to no prior knowledge about its execution time, and

involves significant I/O for each computation as the

compounds are typically stored in a database (i.e. 10s to

100s of MB large) and must be read completely per

computation.

Chemistry: Another application in the same domain is

OOPS [54], which aims to predict protein structure and

recognize docking partners. In chemistry, specifically in

molecular dynamics, we have an application MolDyn

whose goal is to calculate the solvation free energy of

ligands and protein-ligand binding energy, with

structures obtained from the NIST Chemistry WebBook

database [55]. Solvation free energy is an important

quantity in Computational Chemistry with a variety of

applications, especially in drug discovery and design.

These applications have similar characteristics as the

DOCK application previously discussed.

Bioinformatics: In bioinformatics, Basic Local

Alignment Search Tool (BLAST), is a family of tools

for comparing primary biological sequence information

(e.g. amino-acid sequences of proteins, nucleotides of

DNA sequences). A BLAST search enables one to

compare a query sequence with a library or database of

sequences, and identify library sequences that resemble

the query sequence above a certain threshold. [56].

Although the BLAST codes have been implemented in

both HTC and HPC, they are often both data and

compute intensive, requiring multi-GB databases to be

read for each comparison (or kept in memory if

possible), and each comparison can be done within

minutes on a modern processor-core. MTC and its

support for data intensive applications are critical in

scaling BLAST on large scale resources with thousands

to hundreds of thousands of processors.

Neuroscience Domain: In the neuroscience domain,

we have the Computational Neuroscience Applications

Research Infrastructure (CNARI), which aims to

manage neuroscience tools and the heterogeneous

compute resources on which they can enable large-scale

computational projects in the neuroscience community.

The analysis includes the aphasia study, structural

equation modeling, and general use of R for various

data analysis. [57] The application workloads involve

many tasks, relatively short on the order of seconds,

and each task containing many small input and output

files making the application meta-data intensive at large

scale.

Cognitive Neuroscience: The fMRI application is a

workflow from the cognitive neuroscience domain with

a four-step pipeline, which includes Automated Image

Registration (AIR), Preprocessing and stats from NIH

and FMRIB (AFNI and FSL), and Statistical Parametric

Mapping (SPM2) [58]. An fMRI Run is a series of

brain scans called volumes, with a Volume containing a

3D image of a volumetric slice of a brain image, which

is represented by an Image and a Header. Each volume

can contain hundreds to thousands of images, and with

multiple patients, the number of individual analysis

tasks can quickly grow. Task execution times were only

seconds long, and the input and output files ranged

from kilobytes to megabytes in size. This application

could run as an HTC one at small scales, but needs

MTC support to scale up.

Data Analytics: Data analytics and data mining is a

large field that covers many different applications.

Here, we outline several applications that fit MTC well.

One example is the analysis of log data from millions

computations. Another set of applications are ones

commonly found in the MapReduce [59] paradigm,

namely “sort” and “word count”. Both of these

applications are essential to World Wide Web search

engines, and are challenging at medium to large scale

due to their data intensive nature. All three applications

involve many tasks, many input files (or many disjoint

sub-sections of few files), and are data intensive.

Data Mining: Another set of applications that perform

data analysis can be classified in the “All-Pairs” class

of applications [60]. These applications aim to

understand the behavior of a function on two sets, or to

learn the covariance of these sets on a standard inner

product. Two common applications in All-Pairs are data

mining and biometrics. Data mining is the study of

extracting meaning from large data sets; one phase of

knowledge discovery is reacting to bias or other noise

within a set. Different classifiers work better or worse

for varying data, and hence it is important to explore

many different classifiers in order to be able to

determine which classifier is best for that type of noise

on a particular distribution of the validation set.

Biometrics: Biometrics aims to identifying humans

from measurements of the body (e.g. photos of the face,

recordings of the voice, and measurements of body

structure). A recognition algorithm may be thought of

as a function that accepts two images (e.g. face) as

input and outputs a number between zero and one

indicating the similarity between the two input images.

The application would then compare all images of a

database and create a scoring matrix which can later be

easily searched to retrieve the most similar images.

These All-Pairs applications are extremely challenging

as the number of tasks can rapidly grow in the millions

and billions, with each task being hundreds of

milliseconds to tens of seconds, with multi-megabyte

input data per task.

MPI Ensembles: Finally, another class of applications

is managing an ensemble of MPI applications. One

example is from the climate modeling domain, which

has been studying climate trends and predicting global

warming [61], is already implemented as an HPC MPI

application. However, the current climate models could

be run as ensemble runs (many concurrent MPI

applications) to quantify climate model uncertainty.

This is challenging in large scale systems such as

supercomputers (a typical resource such models would

execute on), as the local resource managers (e.g.

Cobalt) favor large jobs and have policy against

running many jobs at the same time (i.e. where many is

more than single digit number of jobs per user).

All these applications pose significant challenges to

traditional resource management found in HPC and

HTC, from both job management and storage

management perspective, and are in critical need of

MTC support as the scale of these resources grows.

6. Conclusions

We have defined a new paradigm – MTC – which aims

to bridge the gap between two computing paradigms,

HTC and HPC. MTC applications are typically loosely

coupled that are communication-intensive but not

naturally expressed using standard message passing

interface commonly found in high performance

computing, drawing attention to the many computations

that are heterogeneous but not “happily” parallel. We

believe that today’s existing HPC systems are a viable

platform to host MTC applications. We also believe

MTC is a broader definition than HTC, allowing for

finer grained tasks, independent tasks as well as ones

with dependencies, and allowing tightly coupled

applications and loosely coupled applications to co-

exist on the same system.

Furthermore, having native support for data intensive

applications is central to MTC, as there is a growing

gap between storage performance of parallel file

systems and the amount of processing power. As the

size of scientific data sets and the resources required for

analysis increase, data locality becomes crucial to the

efficient use of large scale distributed systems for

scientific and data-intensive applications [62]. We

believe it is feasible to allocate large-scale

computational resources and caching storage resources

that are relatively remote from the original data

location, co-scheduled together to optimize the

performance of entire data analysis workloads which

are composed of many loosely coupled tasks.

We identified challenges in running these novel

workloads on large-scale systems, which can hamper

both efficiency and utilization. These challenges

include local resource manager scalability and

granularity, efficient utilization of the raw hardware,

shared file system contention and scalability, reliability

at scale, application scalability, and understanding the

limitations of HPC systems in order to identify

promising and scientifically valuable MTC

applications.

Clusters with 62K processor cores (e.g., TACC Sun

Constellation System, Ranger), Grids (e.g., TeraGrid)

with over a dozen sites and 161K processors, and

supercomputers with 160K processors (e.g., IBM Blue

Gene/P) are now available to the scientific community.

These large HPC systems are considered efficient at

executing tightly coupled parallel jobs within a

particular machine using MPI to achieve inter-process

communication. We proposed using HPC systems for

loosely-coupled applications, which involve the

execution of independent, sequential jobs that can be

individually scheduled, and using files for inter-process

communication.

We have already shown good support for MTC on a

variety of resources from clusters, grids, and

supercomputers through our work on Swift [6, 35, 42]

and Falkon [7, 63]. Furthermore, we have taken the first

steps to address data-intensive MTC by offloading

much of the I/O away from parallel file systems and

into the network, making full utilization of caches (both

on disk and in memory) and the full network bandwidth

of commodity networks (e.g. gigabit Ethernet) as well

as proprietary and more exotic networks (Torus, Tree,

and Infiniband). [9, 16]

We believe that there is more to HPC than tightly

coupled MPI, and more to HTC than embarrassingly

parallel long running jobs. Like HPC applications, and

science itself, applications are becoming increasingly

complex opening new doors for many opportunities to

apply HPC in new ways if we broaden our perspective.

We hope the definition of Many-Task Computing leads

to a stronger appreciation of the fact that applications

that are not tightly coupled via MPI are not necessarily

embarrassingly parallel: some have just so many simple

tasks that managing them is hard, some operate on or

produce large amounts of data that need sophisticated

data management in order to scale. There also exist

applications that involve MPI ensembles, essentially

many jobs where each job is composed of tightly

coupled MPI tasks, and there are loosely coupled

applications that have dependencies among tasks, but

typically use files for inter-process communication.

Efficient support for these sorts of applications on

existing large scale systems, including future ones will

involve substantial technical challenges and will have

big impact on science.

To extend the discussion of this paper with the broader

community on many-task computing, we held a

workshop at IEEE/ACM Supercomputing 2008 titled

“IEEE Workshop on Many-Task Computing on Grids

and Supercomputers (MTAGS08)” [64] as well as a

bird-of-feather (BOF) session titled “Megajobs08: How

to Run a Million Jobs” [65]. The half-day workshop

was a success; it attracted over 100 participants who

attended the presentations of the six accepted papers

[16, 66, 67, 68, 69, 70] and a keynote talk by the

renowned Dr. Alan Gara (IBM Blue Gene Chief

Architect). The BOF was also a success, having seven

short presentations and attracting over 60 participants.

We plan to have follow-up workshops and special issue

publications on many-task computing in the near future.

7. Acknowledgements

This work was supported in part by the NASA Ames

Research Center GSRP grant number NNA06CB89H,

the Mathematical, Information, and Computational

Sciences Division subprogram of the Office of

Advanced Scientific Computing Research, Office of

Science, U.S. Dept. of Energy, under Contract DE-

AC02-06CH11357, and the National Science

Foundation under grant OCI-0721939. We also thank

the Argonne Leadership Computing Facility for

allowing us to test MTC in practice on the IBM Blue

Gene/P. We also thank our many colleagues for their

contributions to the implementations and applications

of making many task computing a reality; in no

particular order, we would like to thank Michael Wilde,

Zhao Zhang, Allan Espinosa, Ben Clifford, Kamil

Iskra, Pete Beckman, Mike Kubal, Don Hanson,

Matthew Cohoon, Fangfang Xia, Rick Stevens,

Douglas Thain, Matei Ripeanu, and Samer Al-Kiswany.

8. References

[1] A. Gara, et al. “Overview of the Blue Gene/L

system architecture”, IBM Journal of Research

and Development 49(2/3), 2005

[2] IBM BlueGene/P (BG/P),

http://www.research.ibm.com/bluegene/, 2008

[3] J. Ousterhout, “Scripting: Higher Level

Programming for the 21st Century”, IEEE

Computer, March 1998

[4] Y. Zhao, I. Raicu, I. Foster. “Scientific

Workflow Systems for 21st Century e-Science,

New Bottle or New Wine?”, IEEE Workshop on

Scientific Workflows 2008

[5] J. Dean, S. Ghemawat. “MapReduce: Simplified

data processing on large clusters.” In OSDI,

2004

[6] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G.

von Laszewski, I. Raicu, T. Stef-Praun, M.

Wilde. “Swift: Fast, Reliable, Loosely Coupled

Parallel Computation”, IEEE Workshop on

Scientific Workflows 2007

[7] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, M.

Wilde. “Falkon: A Fast and Lightweight Task

Execution Framework”, IEEE/ACM SC, 2007

[8] E. Deelman et al. “Pegasus: A Framework for

Mapping Complex Scientific Workflows onto

Distributed Systems”, Scientific Programming

Journal 13(3), 219-237, 2005

[9] I. Raicu, Y. Zhao, I. Foster, A. Szalay.

“Accelerating Large-Scale Data Exploration

through Data Diffusion”, ACM International

Workshop on Data-Aware Distributed

Computing 2008

[10] M. Isard, M. Budiu, Y. Yu, A. Birrell, D.

Fetterly. “Dryad: Distributed Data-Parallel

Programs from Sequential Building Blocks”,

European Conference on Computer Systems

(EuroSys), 2007

[11] R. Pike, S. Dorward, R. Griesemer, S. Quinlan.

“Interpreting the Data: Parallel Analysis with

Sawzall”, Scientific Programming Journal,

Special Issue on Grids and Worldwide

Computing Programming Models and

Infrastructure 13(4), pp. 227-298, 2005

[12] M. Livny, J. Basney, R. Raman, T. Tannenbaum.

“Mechanisms for High Throughput Computing”,

SPEEDUP Journal 1(1), 1997

[13] M. Flynn. “Some Computer Organizations and

Their Effectiveness”, IEEE Trans. Comput. C-

21, pp. 948, 1972

[14] D. Thain, T. Tannenbaum, M. Livny,

“Distributed Computing in Practice: The Condor

Experience”, Concurrency and Computation:

Practice and Experience 17(2-4), pp. 323-356,

2005

[15] J. Appavoo, V. Uhlig, A. Waterland. “Project

Kittyhawk: Building a Global-Scale Computer”,

ACM Sigops Operating System Review, 2008

[16] Z. Zhang, A. Espinosa, K. Iskra, I. Raicu, I.

Foster, M. Wilde. “Design and Evaluation of a

Collective I/O Model for Loosely-coupled

Petascale Programming”, IEEE Workshop on

Many-Task Computing on Grids and

Supercomputers (MTAGS08) 2008

[17] Top500, June 2008,

http://www.top500.org/lists/2008/06, 2008

[18] T. Hey, A. Trefethen. “The data deluge: an e-

sicence perspective”, Gid Computing: Making

the Global Infrastructure a Reality, Wiley, 2003

[19] SDSS: Sloan Digital Sky Survey,

http://www.sdss.org/, 2008

[20] CERN’s Large Hadron Collider,

http://lhc.web.cern.ch/lhc, 2008

[21] GenBank,

http://www.psc.edu/general/software/packages/g

enbank2008

[22] European Molecular Biology Laboratory,

http://www.embl.org, 2008

[23] C. Catlett, et al. “TeraGrid: Analysis of

Organization, System Architecture, and

Middleware Enabling New Types of

Applications”, HPC 2006

[24] Open Science Grid (OSG),

http://www.opensciencegrid.org/, 2008

[25] F. Schmuck and R. Haskin, “GPFS: A Shared-

Disk File System for Large Computing

Clusters”, FAST 2002

[26] A. Szalay, A. Bunn, J. Gray, I. Foster, I. Raicu.

“The Importance of Data Locality in Distributed

Computing Applications”, NSF Workflow

Workshop 2006

[27] J. Gray. “Distributed Computing Economics”,

Technical Report MSR-TR-2003-24, Microsoft

Research, Microsoft Corporation, 2003

[28] A. Bialecki, M. Cafarella, D. Cutting, O.

O’Malley. “Hadoop: A Framework for Running

Applications on Large Clusters Built of

Commodity Hardware”,

http://lucene.apache.org/hadoop/, 2005

[29] D.P. Anderson, “BOINC: A System for Public-

Resource Computing and Storage”, IEEE/ACM

Workshop on Grid Computing, 2004

[30] J. Cope, M. Oberg, H.M. Tufo, T. Voran, M.

Woitaszek. “High Throughput Grid Computing

with an IBM Blue Gene/L”, Cluster 2007

[31] A. Peters, A. King, T. Budnik, P. McCarthy, P.

Michaud, M. Mundy, J. Sexton, G. Stewart.

“Asynchronous Task Dispatch for High

Throughput Computing for the eServer IBM

Blue Gene® Supercomputer”, Parallel and

Distributed Processing (IPDPS), 2008

[32] IBM Corporation. “High-Throughput Computing

(HTC) Paradigm”, IBM System Blue Gene

Solution: Blue Gene/P Application

Development, IBM RedBooks, 2008

[33] N. Desai. “Cobalt: An Open Source Platform for

HPC System Software Research”, Edinburgh

BG/L System Software Workshop, 2005

[34] J. Frey, T. Tannenbaum, I. Foster, M. Frey, S.

Tuecke. “Condor-G: A Computation

Management Agent for Multi-Institutional

Grids”, Cluster Computing, 2002

[35] Swift Workflow System,

www.ci.uchicago.edu/swift, 2008

[36] C. Catlett et al., “TeraGrid: Analysis of

Organization, System Architecture, and

Middleware Enabling New Types of

Applications”, HPC and Grids in Action, ed.

Lucio Grandinetti, IOS Press Advances in

Parallel Computing series, Amsterdam, 2007

[37] SiCortex, http://www.sicortex.com/, 2008

[38] G.v. Laszewski, M. Hategan, D. Kodeboyina.

“Java CoG Kit Workflow”, in I.J. Taylor, E.

Deelman, D.B. Gannon, and M. Shields, eds.,

Workflows for eScience, pp. 340-356, 2007

[39] J.C. Jacob, et al. “The Montage Architecture for

Grid-Enabled Science Processing of Large,

Distributed Datasets”, Earth Science Technology

Conference 2004

[40] The Functional Magnetic Resonance Imaging

Data Center, http://www.fmridc.org/, 2007

[41] T. Stef-Praun, B. Clifford, I. Foster, U. Hasson,

M. Hategan, S. Small, M. Wilde and Y. Zhao.

“Accelerating Medical Research using the Swift

Workflow System”, Health Grid , 2007

[42] Y. Zhao, I. Raicu, I. Foster, M. Hategan, V.

Nefedova, M. Wilde. “Realizing Fast, Scalable

and Reliable Scientific Computations in Grid

Environments”, Grid Computing Research

Progress, Nova Pub. 2008

[43] D.T. Moustakas et al. “Development and

Validation of a Modular, Extensible Docking

Program: DOCK 5”, J. Comput. Aided Mol. Des.

20, pp. 601-619, 2006

[44] D. Hanson. “Enhancing Technology

Representations within the Stanford Energy

Modeling Forum (EMF) Climate Economic

Models”, Energy and Economic Policy Models:

A Reexamination of Fundamentals, 2006

[45] T. Stef-Praun, G. Madeira, I. Foster, R.

Townsend. “Accelerating solution of a moral

hazard problem with Swift”, e-Social Science,

2007

[46] B. Bode, D.M. Halstead, R. Kendall, Z. Lei, W.

Hall, D. Jackson. “The Portable Batch Scheduler

and the Maui Scheduler on Linux Clusters”,

Usenix, 4th Annual Linux Showcase &

Conference, 2000

[47] W. Gentzsch, “Sun Grid Engine: Towards

Creating a Compute Power Grid”, 1st

International Symposium on Cluster Computing

and the Grid, 2001

[48] I. Raicu, I. Foster, A. Szalay, G. Turcu.

“AstroPortal: A Science Gateway for Large-scale

Astronomy Data Analysis”, TeraGrid

Conference 2006

[49] G.B. Berriman, et al., “Montage: a Grid Enabled

Engine for Delivering Custom Science-Grade

Image Mosaics on Demand”, SPIE Conference

on Astronomical Telescopes and

Instrumentation. 2004

[50] J.C. Jacob, et al. “The Montage Architecture for

Grid-Enabled Science Processing of Large,

Distributed Datasets”, Earth Science Technology

Conference 2004

[51] US National Virtual Observatory (NVO),

http://www.us-vo.org/index.cfm, 2008

[52] ASC / Alliances Center for Astrophysical

Thermonuclear Flashes,

http://www.flash.uchicago.edu/website/home/,

2008

[53] KEGG’s Ligand Database:

http://www.genome.ad.jp/kegg/ligand.html, 2008

[54] PL protein library, http://protlib.uchicago.edu/,

2008

[55] NIST Chemistry WebBook database,

http://webbook.nist.gov/chemistry/, 2008

[56] S.F. Altschul, W. Gish, W. Miller, E.W. Myers,

D.J. Lipman. “Basic Local Alignment Search

Tool”, J Mol Biol 215 (3): 403–410, 1990

[57] Computational Neuroscience Applications

Research Infrastructure,

http://www.ci.uchicago.edu/wiki/bin/view/CNA

RI/WebHome, 2008

[58] The Functional Magnetic Resonance Imaging

Data Center, http://www.fmridc.org/, 2007

[59] J. Dean and S. Ghemawat. “MapReduce:

Simplified Data Processing on Large Clusters”,

Symposium on Operating System Design and

Implementation (OSDI'04), 2004

[60] C. Moretti, J. Bulosan, D. Thain, and P. Flynn.

“All-Pairs: An Abstraction for Data-Intensive

Cloud Computing”, IPDPS 2008

[61] D. Bernholdt, S. Bharathi, D. Brown, K.

Chanchio, M. Chen, A. Chervenak, L. Cinquini,

B. Drach, I. Foster, P. Fox, J. Garcia, C.

Kesselman, R. Markel, D. Middleton, V.

Nefedova, L. Pouchard, A. Shoshani, A. Sim, G.

Strand, and D. Williams, “The Earth System

Grid: Supporting the Next Generation of Climate

Modeling Research”, Proceedings of the IEEE,

93 (3), p 485-495, 2005

[62] A. Szalay, A. Bunn, J. Gray, I. Foster, I. Raicu.

“The Importance of Data Locality in Distributed

Computing Applications”, NSF Workflow

Workshop 2006

[63] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P.

Beckman, K. Iskra, B. Clifford. “Towards

Loosely-Coupled Programming on Petascale

Systems”, IEEE/ACM International Conference

for High Performance Computing, Networking,

Storage and Analysis (SuperComputing/SC08),

2008

[64] I. Raicu, Y. Zhao, I. Foster. “IEEE Workshop on

Many-Task Computing on Grids and

Supercomputers (MTAGS08) 2008”, co-located

with IEEE/ACM Supercomputing 2008,

http://dsl.cs.uchicago.edu/MTAGS08/, 2008

[65] M. Pierce, I. Raicu, R. Pordes, J. McGee, D.

Repasky. “How to Run One Million Jobs

(Megajobs08)”, Bird-of-Feather Session at

IEEE/ACM Supercomputing 2008,

http://gridfarm007.ucs.indiana.edu/megajobBOF

/index.php/Main_Page, 2008

[66] Y. Gu, R. Grossman. “Exploring Data

Parallelism and Locality in Wide Area

Networks”, IEEE Workshop on Many-Task

Computing on Grids and Supercomputers

(MTAGS08) 2008

[67] E.V. Hensbergen, Ron Minnich. “System

Support for Many Task Computing”, IEEE

Workshop on Many-Task Computing on Grids

and Supercomputers (MTAGS08) 2008

[68] L. Hui, Y. Huashan, L. Xiaoming. “A

Lightweight Execution Framework for Massive

Independent Tasks”, IEEE Workshop on Many-

Task Computing on Grids and Supercomputers

(MTAGS08) 2008

[69] A.T. Thor, G.V. Zaruba, D. Levine, K. De, T.J.

Wenaus. “ViGs: A Grid Simulation and

Monitoring Tool for Grid Workflows”, IEEE

Workshop on Many-Task Computing on Grids

and Supercomputers (MTAGS08) 2008

[70] E. Afgan, P. Bangalore. “Embarrassingly Parallel

Jobs Are Not Embarrassingly Easy to Schedule

on the Grid”, IEEE Workshop on Many-Task

Computing on Grids and Supercomputers

(MTAGS08) 2008

