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Abstract 

Many-task computing aims to bridge the gap between 

two computing paradigms, high throughput computing 

and high performance computing. Many task computing 

differs from high throughput computing in the emphasis 

of using large number of computing resources over 

short periods of time to accomplish many 

computational tasks (i.e. including both dependent and 

independent tasks), where primary metrics are 

measured in seconds (e.g. FLOPS, tasks/sec, MB/s I/O 

rates), as opposed to operations (e.g. jobs) per month. 

Many task computing denotes high-performance 

computations comprising multiple distinct activities, 

coupled via file system operations. Tasks may be small 

or large, uniprocessor or multiprocessor, compute-

intensive or data-intensive. The set of tasks may be 

static or dynamic, homogeneous or heterogeneous, 

loosely coupled or tightly coupled. The aggregate 

number of tasks, quantity of computing, and volumes of 

data may be extremely large. Many task computing 

includes loosely coupled applications that are generally 

communication-intensive but not naturally expressed 

using standard message passing interface commonly 

found in high performance computing, drawing 

attention to the many computations that are 

heterogeneous but not “happily” parallel. 

Keywords: many-task computing, MTC, high-

throughput computing, HTC, high performance 

computing, HPC

1. Defining Many Task Computing 

We want to enable the use of large-scale distributed 

systems for task-parallel applications, which are linked 

into useful workflows through the looser task-coupling 

model of passing data via files between dependent 

tasks. This potentially larger class of task-parallel 

applications is precluded from leveraging the increasing 

power of modern parallel systems such as 

supercomputers (e.g. IBM Blue Gene/L [1] and Blue 

Gene/P [2]) because the lack of efficient support in 

those systems for the “scripting” programming model 

[3]. With advances in e-Science and the growing 

complexity of scientific analyses, more scientists and 

researchers rely on various forms of scripting to 

automate end-to-end application processes involving 

task coordination, provenance tracking, and 

bookkeeping. Their approaches are typically based on a 

model of loosely coupled computation, in which data is 

exchanged among tasks via files, databases or XML 

documents, or a combination of these. Vast increases in 

data volume combined with the growing complexity of 

data analysis procedures and algorithms have rendered 

traditional manual processing and exploration 

unfavorable as compared with modern high 

performance computing processes automated by 

scientific workflow systems. [4] 

The problem space can be partitioned into four main 

categories (Figure 1 and Figure 2).  1) At the low end of 

the spectrum (low number of tasks and small input 

size), we have tightly coupled Message Passing 

Interface (MPI) applications (white).  2) As the data 

size increases, we move into the analytics category, 

such as data mining and analysis (blue); MapReduce [5] 

is an example for this category.  3) Keeping data size 

modest, but increasing the number of tasks moves us 

into the loosely coupled applications involving many 

tasks (yellow); Swift/Falkon [6, 7] and 

Pegasus/DAGMan [8] are examples of this category.  4) 

Finally, the combination of both many tasks and large 

datasets moves us into the data-intensive many-task 

computing category (green); examples of this category 
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are Swift/Falkon and data diffusion [9], Dryad [

Sawzall [11].  
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computing, and the challenges that arise as datase

computing systems are growing exponentially. 
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used to denote parallel computations in which each 

individual (often identical) task can execute without 

any significant communication with other tasks or with 

a file system. Some MTC applications will be simple 

and embarrassingly parallel, but others will be 

extremely complex and communication-intensive, 

interacting with other tasks and shared file-systems. 

Is “many task computing” a useful distinction? Perhaps 

we could simply have said “applications that are 

communication-intensive but are not naturally 

expressed in MPI”, but there are also loosely coupled, 

and independent many tasks. Through the new term 

MTC, we are drawing attention to the many 

computations that are heterogeneous but not “happily” 

parallel. 

2. MTC for Clusters, Grids, and 

Supercomputers 

We claim that MTC applies to not only traditional HTC 

environments such as clusters and Grids, assuming 

appropriate support in the middleware, but also 

supercomputers. Emerging petascale computing 

systems, such as IBM’s Blue Gene/P [2], incorporate 

high-speed, low-latency interconnects and other 

features designed to support tightly coupled parallel 

computations. Most of the applications run on these 

computers have a SMPD structure, and are commonly 

implemented by using MPI to achieve the needed inter-

process communication. We believe MTC to be a 

viable paradigm for supercomputers. As the computing 

and storage scale increases, the set of problems that 

must be overcome to make MTC practical (ensuring 

good efficiency and utilization at large-scale) 

exacerbate. The challenges include local resource 

manager scalability and granularity, efficient utilization 

of the raw hardware, shared file system contention and 

scalability, reliability at scale, application scalability, 

and understanding the limitations of the HPC systems 

in order to identify promising and scientifically 

valuable MTC applications.  

One could ask, why use petascale systems for problems 

that might work well on terascale systems? We point 

out that petascale systems are more than just many 

processors with large peak petaflop ratings. They 

normally come well balanced, with proprietary, high-

speed, and low-latency network interconnects to give 

tightly-coupled applications good opportunities to scale 

well at full system scales. Even IBM has proposed in 

their internal project Kittyhawk [15] that Blue Gene/P 

can be used to run non-traditional workloads (e.g. 

HTC). We identify four factors that motivate the 

support of MTC applications on petascale HPC 

systems:  

1) The I/O subsystems of petascale systems offer unique 

capabilities needed by MTC applications. For example, 

collective I/O operations [16] could be implemented to 

use the specialized high-bandwidth and low-latency 

interconnects. MTC applications could be composed of 

individual tasks that are themselves parallel programs, 

many tasks operating on the same input data, and tasks 

that need considerable communication among them. 

Furthermore, the aggregate shared file system 

performance of a supercomputer can be potentially 

larger than that found in a distributed infrastructure 

(i.e., Grid), with data rates in the 10GB+/s range, rather 

than the more typical 0.1GB/s to 1GB/s range at most 

Grid sites.  

2) The cost to manage and run on petascale systems 

like the Blue Gene/P is less than that of conventional 

clusters or Grids[15]. For example, a single 13.9 TF 

Blue Gene/P rack draws 40 kilowatts, for 0.35 GF/watt. 

Two other systems that get good compute power per 

watt consumed are the SiCortex with 0.32 GF/watt and 

the Blue Gene/L with 0.23 GF/watt. In contrast, the 

average power consumption of the Top500 systems is 

0.12 GF/watt [17]. Furthermore, we also argue that it is 

more cost effective to manage one large system in one 

physical location, rather than many smaller systems in 

geographically distributed locations.  

3) Large-scale systems inevitably have utilization 

issues. Hence it is desirable to have a community of 

users who can leverage traditional back-filling 

strategies to run loosely coupled applications on idle 

portions of petascale systems.  

4) Perhaps most importantly, some applications are so 

demanding that only petascale systems have enough 

compute power to get results in a reasonable 

timeframe, or to exploit new opportunities in such 

applications. With petascale processing capabilities  on 

ordinary applications, it becomes possible to perform 

vast computations with quick turn-around, thus 

answering questions in a timeframe that can make a 

quantitative difference in addressing significant 

scientific challenges or responding to emergencies.  

3. The Data Deluge Challenge and the 

Growing Storage/Compute Gap 

Within the science domain, the data that needs to be 

processed generally grows faster than computational 

resources and their speed.  The scientific community is 

facing an imminent flood of data expected from the 

next generation of experiments, simulations, sensors 



and satellites. Scientists are now attempting 

calculations requiring orders of magnitude more 

computing and communication than was possible only a 

few years ago. Moreover, in many currently planned 

and future experiments, they are also planning to 

generate several orders of magnitude more data than 

has been collected in the entire human history [18].  

For instance, in the astronomy domain the Sloan Digital 

Sky Survey [19] has datasets that exceed 10 terabytes in 

size. They can reach up to 100 terabytes or even 

petabytes if we consider multiple surveys and the time 

dimension.  In physics, the CMS detector being built to 

run at CERN’s Large Hadron Collider [20] is expected 

to generate over a petabyte of data per year. In the 

bioinformatics domain, the rate of growth of DNA 

databases such as GenBank [21] and European 

Molecular Biology Laboratory (EMBL) [22] has been 

following an exponential trend, with a doubling time 

estimated to be 9-12 months. A large class of 

applications in Many-Task Computing will be 

applications that analyze large quantities of data, which 

in turn would require that data and computations be 

distributed over many hundreds and thousands of nodes 

in order to achieve rapid turnaround times.  

Many applications in the scientific computing generally 

use a shared infrastructure such as TeraGrid [23] and 

Open Science Grid [24], where data movement relies 

on shared or parallel file systems. The rate of increase 

in the number of processors per system is outgrowing 

the rate of performance increase of parallel file systems, 

which requires rethinking existing data management 

techniques. For example, a cluster that was placed in 

service in 2002 with 316 processors has a parallel file 

system (i.e. GPFS [25]) rated at 1GB/s, yielding 

3.2MB/s per processor of bandwidth. The second 

largest open science supercomputer, the IBM Blue 

Gene/P from Argonne National Laboratory, has 160K 

processors, and a parallel file system (i.e. also GPFS) 

rated at 8GB/s, yielding a mere 0.05MB/s per 

processor. That is a 65X reduction in bandwidth 

between a system from 2002 and one from 2008. 

Unfortunately, this trend is not bound to stop, as 

advances multi-core and many-core processors will 

increase the number of processor cores one to two 

orders of magnitude over the next decade. [4]  

We believe that data locality is critical to the successful 

and efficient use of large distributed systems for data-

intensive applications [26, 27] in the face of a growing 

gap between compute power and storage performance. 

Large scale data management needs to be a primary 

objective for any middleware targeting to support MTC 

workloads, to ensure data movement is minimized by 

intelligent data-aware scheduling both among 

distributed computing sites (assuming that each site has 

a local area network shared storage infrastructure), and 

among compute nodes (assuming that data can be 

stored on compute nodes’ local disk and/or memory).

4. Middleware Support for MTC 

As high throughput computing (HTC) is a subset of 

MTC, it is worth mentioning the various efforts in 

enabling HTC on large scale systems. Some of these 

systems are Condor [14], MapReduce [5], Hadoop [28], 

and BOINC [29]. MapReduce (including Hadoop) is 

typically applied to a data model consisting of 

name/value pairs, processed at the programming 

language level. Its strengths are in its ability to spread 

the processing of a large dataset to thousands of 

processors with minimal expertise in distributed 

systems; however it often involves the development of 

custom filtering scripts and does not support “black 

box” application execution as is commonly found in 

MTC or HTC applications. BOINC is known to scale 

well to large number of compute resources, but lacks 

support for data intensive applications due to the nature 

of the wide area network deployment BOINC typically 

has, as well as support for “black box” applications.  

On the IBM Blue Gene supercomputer, various works 

[30, 31] have leveraged the HTC-mode [32] support in 

Cobalt [33] scheduling system. These works have 

aimed at integrating their solutions as much as possible 

in Cobalt; however, it is not clear that the current 

implementations will be able to support the largest and 

most demanding MTC applications at full system 

scales. Furthermore, these works focus on compute 

resource management, and ignore data management 

altogether.  

Condor and glide-ins [34] are the original tools to 

enable HTC, but their emphasis on robustness and 

recoverability limits their efficiency for MTC 

applications in large-scale systems. We found that 

relaxing some constraints from the middleware and 

encouraging the end applications to implement these 

constraints have enabled significant improvements in 

middleware performance and efficiency at large scale. 

[7]  

For example, some of our work with the Falkon light-

weight task execution framework has shown that task 

granularity can be efficiently handled at scales of 

seconds on modest size clusters of thousands of 

processing cores, while prior resource management 

techniques would have required task granularity to be in 

minutes, or even hours, to allow good utilization of the 

raw resources at the same scale.  The task granularity 

issues are exaggerated as system scales are increased to 



levels of hundreds of thousands of processor cores. 

Falkon is able to achieve these improvements by 

streamlining the dispatching process, making the 

scheduler run in constant time in relation to the number 

of tasks queued and number of processors managed, 

multi-threading the resource manager to leverage multi-

core nodes, moving recoverability from the resource 

manager to the application, and leaving out many non-

essential features (i.e. accountability, support for multi-

node tasks such as MPI, etc) from production managers 

that can be offloaded to other systems or the 

application. [7]  

Swift [6, 35] and Falkon [7] have been used to execute 

MTC applications on clusters, multi-site Grids (e.g., 

Open Science Grid [24], TeraGrid [36]), specialized 

large machines (SiCortex [37]), and supercomputers 

(e.g., Blue Gene/P [2]). Swift enables scientific 

workflows through a data-flow-based functional 

parallel programming model. It is a parallel scripting 

tool for rapid and reliable specification, execution, and 

management of large-scale science and engineering 

workflows. The runtime system in Swift relies on the 

CoG Karajan [38] workflow engine for efficient 

scheduling and load balancing, and it integrates with 

the Falkon light-weight task execution dispatcher for 

optimized task throughput and efficiency, as well as 

improved data management capabilities to ensure good 

scalability with increasing compute resources. Large-

scale applications from many domains (e.g., astronomy 

[7, 39], medicine [7, 40, 41], chemistry [42], molecular 

dynamics [43], and economics [44, 45]) have been run 

at scales of up to millions of tasks on up to hundreds of 

thousands of processors. While this paper strives to  

define MTC, as well the theory and practice to enable 

MTC on a wide range of systems from the average 

cluster to the largest supercomputers, the Falkon 

middleware represents the practical aspects of enabling 

MTC workloads on these systems.  

5. MTC Applications 

We have found many applications that are a better fit 

for MTC than HTC or HPC. Their characteristics 

include having a large number of small parallel jobs, a 

common pattern observed in many scientific 

applications [6]. They also use files (instead of 

messages, as in MPI) for intra-processor 

communication, which tends to make these applications 

data intensive.  

While we can push hundreds or even thousands of such 

small jobs via GRAM to a traditional local resource 

manager (e.g. PBS [46], Condor [34], SGE [47]), the 

achieved utilization of a modest to large resource set 

will be poor due to high queuing and dispatching 

overheads, which ultimately results in low job 

throughput. A common technique to amortize the costs 

of the local resource management is to “cluster” 

multiple jobs into a single larger job. Although this 

lowers the per job overhead, it is best suited when the 

set of jobs to be executed are homogenous in execution 

times, or accurate execution time information is 

available prior to job execution; with heterogeneous job 

execution times, it is hard to maintain good load 

balancing of the underlying resource, causing low 

resource utilization. We claim that “clustering” jobs is 

not enough, and that the middleware that manages jobs 

must be streamlined and made as light-weight as 

possible to allow applications with heterogonous 

execution times to execute without “clustering” with 

high efficiency. 

In addition to streamlined task dispatching, scalable 

data management techniques are also required in order 

to support MTC applications. MTC applications are 

often data and/or meta-data intensive, as each job 

requires at least one input file and one output file, and 

can sometimes involve many files per job. These data 

management techniques need to make good utilization 

of the full network bandwidth of large scale systems, 

which is a function of the number of nodes and 

networking technology employed, as opposed to the 

relatively small number of storage servers that are 

behind a parallel file system or GridFTP server.  

We have identified various applications (as detailed 

below) from many disciplines that demonstrate 

characteristics of  MTC applications. These 

applications cover a wide range of domains, from 

astronomy, physics, astrophysics, pharmaceuticals, 

bioinformatics, biometrics, neuroscience, medical 

imaging, chemistry, climate modeling, economics, and 

data analytics. They often involve many tasks, ranging 

from tens of thousands to billions of tasks, and have a 

large variance of task execution times ranging from 

hundreds of milliseconds to hours. Furthermore, each 

task is involved in multiple reads and writes to and 

from files, which can range in size from kilobytes to 

gigabytes. These characteristics made traditional 

resource management techniques found in HTC 

inefficient; also, although some of these applications 

could be coded as HPC applications, due to the wide 

variance of the arrival rate of tasks from many users, an 

HPC implementation would also yield poor utilization. 

Furthermore, the data intensive nature of these 

applications can quickly saturate parallel file systems at 

even modest computing scales. 

Astronomy: One of the first applications that 

motivated much of this work was called the 



“AstroPortal” [48], which offered a stacking service of 

astronomy images from the Sloan Digital Sky Survey 

(SDSS) dataset using grid resources. Astronomical 

image collections usually cover an area of sky several 

times (in different wavebands, different times, etc). On 

the other hand, there are large differences in the 

sensitivities of different observations: objects detected 

in one band are often too faint to be seen in another 

survey. In such cases we still would like to see whether 

these objects can be detected, even in a statistical 

fashion. There has been a growing interest to re-project 

each image to a common set of pixel planes, then 

stacking images. The stacking improves the signal to 

noise, and after coadding a large number of images, 

there will be a detectable signal to measure the average 

brightness/shape etc of these objects. This application 

involved the SDSS dataset [19] (currently at 10TB with 

over 300 million objects, but these datasets could be 

petabytes in size if we consider multiple surveys in both 

time and space) [4], many tasks ranging from 10K to 

millions of tasks, each requiring 100ms to seconds of 

compute and 100KB to MB of input and output data.  

Another related application in astronomy is 

MONTAGE [49, 50], a national virtual observatory 

project [51] that stitches tiles of images of the sky from 

various sky surveys (e.g. SDSS [19], etc) into a 

photorealistic single image. Execution times per task 

range in the 100ms to 10s of seconds, and each task 

involves multiple input images and at least one image 

output. This application is both compute intensive and 

data intensive, and has been run as both a HTC (using 

Pegasus/DAGMan [8], and Condor [14]) and a HPC 

(using MPI) application, but we found its scalability to 

be limited when run under HTC or HPC.    

Astrophysics: Another application is from 

astrophysics, which analyzes the Flash turbulence 

dataset (simulation data) [52] from various 

perspectives, using volume rendering and vector 

visualization.  The dataset is composed of 32 million 

files (1000 time steps times 32K files) taking up about 

15TB of storage resource, and contains both temporal 

and spatial locality. In the physics domain, the CMS 

detector being built to run at CERN’s Large Hadron 

Collider [20] is expected to generate over a petabyte of 

data per year. Supporting applications that can perform 

a wide range of analysis of the LHC data will require 

novel support for data intensive applications.  

Economic Modeling: An application from the 

economic modeling domain that we have investigated 

as a good MTC candidate is Macro Analysis of 

Refinery Systems (MARS) [44], which studies 

economic model sensitivity to various parameters. 

MARS models the economic and environmental 

impacts of the consumption of natural gas, the 

production and use of hydrogen, and coal-to-liquids co-

production, and seeks to provide insights into how 

refineries can become more efficient through the 

capture of waste energy. Other economic modeling 

applications perform numerical optimization to 

determine optimal resource assignment in energy 

problems. This application is challenging as the 

parameter space is extremely large, which can produce 

millions, even billions of individual tasks, each with a 

relatively short execution time of only seconds long.  

Pharmaceutical Domain: In the pharmaceutical 

domain, there are applications that screen KEGG [53] 

compounds and drugs against important metabolic 

protein targets using DOCK6 [43] to  simulate the 

“docking” of small molecules, or ligands, to the “active 

sites” of large macromolecules of known structure 

called “receptors”. A compound that interacts strongly 

with a receptor (such as a protein molecule) associated 

with a disease may inhibit its function and thus act as a 

beneficial drug. The economic and health benefits of 

speeding drug development by rapidly screening for 

promising compounds and eliminating costly dead-ends 

is significant in terms of both resources and human life. 

The parameter space is quite large, totaling to more 

than one billion computations that have a large variance 

of execution times from seconds to hours, with an 

average of 10 minutes. The entire parameter space 

would require over 22,600 CPU years, or over 50 days 

on a 160K processor Blue Gene/P supercomputer [2]. 

This application is challenging as there many tasks, 

each task has a wide range of execution times with little 

to no prior knowledge about its execution time, and 

involves significant I/O for each computation as the 

compounds are typically stored in a database (i.e. 10s to 

100s of MB large) and must be read completely per 

computation.  

Chemistry: Another application in the same domain is 

OOPS [54], which aims to predict protein structure and 

recognize docking partners. In chemistry, specifically in 

molecular dynamics, we have an application MolDyn 

whose goal is to calculate the solvation free energy of 

ligands and protein-ligand binding energy, with 

structures obtained from the NIST Chemistry WebBook 

database [55]. Solvation free energy is an important 

quantity in Computational Chemistry with a variety of 

applications, especially in drug discovery and design. 

These applications have similar characteristics as the 

DOCK application previously discussed.   

Bioinformatics: In bioinformatics, Basic Local 

Alignment Search Tool (BLAST), is a family of tools 

for comparing primary biological sequence information 

(e.g. amino-acid sequences of proteins, nucleotides of 



DNA sequences). A BLAST search enables one to 

compare a query sequence with a library or database of 

sequences, and identify library sequences that resemble 

the query sequence above a certain threshold. [56]. 

Although the BLAST codes have been implemented in 

both HTC and HPC, they are often both data and 

compute intensive, requiring multi-GB databases to be 

read for each comparison (or kept in memory if 

possible), and each comparison can be done within 

minutes on a modern processor-core. MTC and its 

support for data intensive applications are critical in 

scaling BLAST on large scale resources with thousands 

to hundreds of thousands of processors. 

Neuroscience Domain: In the neuroscience domain, 

we have the Computational Neuroscience Applications 

Research Infrastructure (CNARI), which aims to 

manage neuroscience tools and the heterogeneous 

compute resources on which they can enable large-scale 

computational projects in the neuroscience community. 

The analysis includes the aphasia study, structural 

equation modeling, and general use of R for various 

data analysis. [57] The application workloads involve 

many tasks, relatively short on the order of seconds, 

and each task containing many small input and output 

files making the application meta-data intensive at large 

scale. 

Cognitive Neuroscience: The fMRI application is a 

workflow from the cognitive neuroscience domain with 

a four-step pipeline, which includes Automated Image 

Registration (AIR), Preprocessing and stats from NIH 

and FMRIB (AFNI and FSL), and Statistical Parametric 

Mapping (SPM2) [58]. An fMRI Run is a series of 

brain scans called volumes, with a Volume containing a 

3D image of a volumetric slice of a brain image, which 

is represented by an Image and a Header. Each volume 

can contain hundreds to thousands of images, and with 

multiple patients, the number of individual analysis 

tasks can quickly grow. Task execution times were only 

seconds long, and the input and output files ranged 

from kilobytes to megabytes in size. This application 

could run as an HTC one at small scales, but needs 

MTC support to scale up. 

Data Analytics: Data analytics and data mining is a 

large field that covers many different applications. 

Here, we outline several applications that fit MTC well. 

One example is the analysis of log data from millions 

computations. Another set of applications are ones 

commonly found in the MapReduce [59] paradigm, 

namely “sort” and “word count”. Both of these 

applications are essential to World Wide Web search 

engines, and are challenging at medium to large scale 

due to their data intensive nature. All three applications 

involve many tasks, many input files (or many disjoint 

sub-sections of few files), and are data intensive.  

Data Mining: Another set of applications that perform 

data analysis can be classified in the “All-Pairs” class 

of applications [60]. These applications aim to 

understand the behavior of a function on two sets, or to 

learn the covariance of these sets on a standard inner 

product. Two common applications in All-Pairs are data 

mining and biometrics. Data mining is the study of 

extracting meaning from large data sets; one phase of 

knowledge discovery is reacting to bias or other noise 

within a set. Different classifiers work better or worse 

for varying data, and hence it is important to explore 

many different classifiers in order to be able to 

determine which classifier is best for that type of noise 

on a particular distribution of the validation set.  

Biometrics: Biometrics aims to identifying humans 

from measurements of the body (e.g. photos of the face, 

recordings of the voice, and measurements of body 

structure). A recognition algorithm may be thought of 

as a function that accepts two images (e.g. face) as 

input and outputs a number between zero and one 

indicating the similarity between the two input images. 

The application would then compare all images of a 

database and create a scoring matrix which can later be 

easily searched to retrieve the most similar images. 

These All-Pairs applications are extremely challenging 

as the number of tasks can rapidly grow in the millions 

and billions, with each task being hundreds of 

milliseconds to tens of seconds, with multi-megabyte 

input data per task.  

MPI Ensembles: Finally, another class of applications 

is managing an ensemble of MPI applications. One 

example is from the climate modeling domain, which 

has been studying climate trends and predicting global 

warming [61], is already implemented as an HPC MPI 

application. However, the current climate models could 

be run as ensemble runs (many concurrent MPI 

applications) to quantify climate model uncertainty. 

This is challenging in large scale systems such as 

supercomputers (a typical resource such models would 

execute on), as the local resource managers (e.g. 

Cobalt) favor large jobs and have policy against 

running many jobs at the same time (i.e. where many is 

more than single digit number of jobs per user). 

All these applications pose significant challenges to 

traditional resource management found in HPC and 

HTC, from both job management and storage 

management perspective, and are in critical need of 

MTC support as the scale of these resources grows. 



6. Conclusions 

We have defined a new paradigm – MTC – which aims 

to bridge the gap between two computing paradigms, 

HTC and HPC. MTC applications are typically loosely

coupled that are communication-intensive but not 

naturally expressed using standard message passing 

interface commonly found in high performance 

computing, drawing attention to the many computations 

that are heterogeneous but not “happily” parallel. We 

believe that today’s existing HPC systems are a viable 

platform to host MTC applications. We also believe 

MTC is a broader definition than HTC, allowing for 

finer grained tasks, independent tasks as well as ones 

with dependencies, and allowing tightly coupled 

applications and loosely coupled applications to co-

exist on the same system.  

Furthermore, having native support for data intensive 

applications is central to MTC, as there is a growing 

gap between storage performance of parallel file 

systems and the amount of processing power. As the 

size of scientific data sets and the resources required for 

analysis increase, data locality becomes crucial to the 

efficient use of large scale distributed systems for 

scientific and data-intensive applications [62]. We 

believe it is feasible to allocate large-scale 

computational resources and caching storage resources 

that are relatively remote from the original data 

location, co-scheduled together to optimize the 

performance of entire data analysis workloads which 

are composed of many loosely coupled tasks.  

We identified challenges in running these novel 

workloads on large-scale systems, which can hamper 

both efficiency and utilization. These challenges 

include local resource manager scalability and 

granularity, efficient utilization of the raw hardware, 

shared file system contention and scalability, reliability 

at scale, application scalability, and understanding the 

limitations of HPC systems in order to identify 

promising and scientifically valuable MTC 

applications. 

Clusters with 62K processor cores (e.g., TACC Sun 

Constellation System, Ranger), Grids (e.g., TeraGrid) 

with over a dozen sites and 161K processors, and 

supercomputers with 160K processors (e.g., IBM Blue 

Gene/P) are now available to the scientific community. 

These large HPC systems are considered efficient at 

executing tightly coupled parallel jobs within a 

particular machine using MPI to achieve inter-process 

communication. We proposed using HPC systems for 

loosely-coupled applications, which involve the 

execution of independent, sequential jobs that can be 

individually scheduled, and using files for inter-process 

communication. 

We have already shown good support for MTC on a 

variety of resources from clusters, grids, and 

supercomputers through our work on Swift [6, 35, 42] 

and Falkon [7, 63]. Furthermore, we have taken the first 

steps to address data-intensive MTC by offloading 

much of the I/O away from parallel file systems and 

into the network, making full utilization of caches (both 

on disk and in memory) and the full network bandwidth 

of commodity networks (e.g. gigabit Ethernet) as well 

as proprietary and more exotic networks (Torus, Tree, 

and Infiniband). [9, 16] 

We believe that there is more to HPC than tightly 

coupled MPI, and more to HTC than embarrassingly 

parallel long running jobs. Like HPC applications, and 

science itself, applications are becoming increasingly 

complex opening new doors for many opportunities to 

apply HPC in new ways if we broaden our perspective. 

We hope the definition of Many-Task Computing leads 

to a stronger appreciation of the fact that applications 

that are not tightly coupled via MPI are not necessarily 

embarrassingly parallel: some have just so many simple 

tasks that managing them is hard, some operate on or 

produce large amounts of data that need sophisticated 

data management in order to scale. There also exist 

applications that involve MPI ensembles, essentially 

many jobs where each job is composed of tightly 

coupled MPI tasks, and there are loosely coupled 

applications that have dependencies among tasks, but 

typically use files for inter-process communication. 

Efficient support for these sorts of applications on 

existing large scale systems, including future ones will 

involve substantial technical challenges and will have 

big impact on science. 

To extend the discussion of this paper with the broader 

community on many-task computing, we held a 

workshop at IEEE/ACM Supercomputing 2008 titled 

“IEEE Workshop on Many-Task Computing on Grids 

and Supercomputers (MTAGS08)” [64] as well as a 

bird-of-feather (BOF) session titled “Megajobs08: How 

to Run a Million Jobs” [65]. The half-day workshop 

was a success; it attracted over 100 participants who 

attended the presentations of the six accepted papers 

[16, 66, 67, 68, 69, 70] and a keynote talk by the 

renowned Dr. Alan Gara (IBM Blue Gene Chief 

Architect).  The BOF was also a success, having seven 

short presentations and attracting over 60 participants. 

We plan to have follow-up workshops and special issue 

publications on many-task computing in the near future. 
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