

• Motivation and definitions

• Processes

• Threads

• Synchronization constructs

• Speedup issues

– Overhead

– Caches

– Amdahl’s Law

CS550: Advanced Operating Systems 2

• Dynamic execution context of an executing program

• Several processes may run the same program, but

each is a distinct process with its own state

• Process state includes:

– The code for the running program;

– The static data;

– Space for dynamic data (heap)& the heap pointer (HP);

– The Program Counter (PC) indicating the next instruction;

– An execution stack and the stack pointer (SP);

– Values of CPU registers;

– A set of OS resources;

– Process execution state (ready, running, etc.)

CS550: Advanced Operating Systems 3

• To see how processes can be used in
application and how they are implemented, we
study how processes are created and
manipulated in UNIX.

• Important source of information on UNIX is
“man.”

• UNIX supports multiprogramming, so there will
be many processes in existence at any given
time.
– Processes are created in UNIX with the fork() system

call.

– When a process P creates a process Q, Q is called
the child of P and P is called the parent of Q. CS550: Advanced Operating Systems 4

• Parent creates a child process, child
processes can create its own process

• Forms a hierarchy

– UNIX calls this a process group

• Signals can be sent all processes of a
group

• Windows has no concept of process
hierarchy

– all processes are created equal

CS550: Advanced Operating Systems 5

At the root of the family tree of processes in

a UNIX system is the special process init:

– created as part of the bootstrapping

procedure

– process-id = 1

– among other things, init spawns a child to

listen to each terminal, so that a user may log

on.

– do "man init” to learn more about it

CS550: Advanced Operating Systems 6

UNIX provides a number of system calls for

process control including:

– fork - used to create a new process

– exec - to change the program a process is executing

– exit - used by a process to terminate itself normally

– abort - used by a process to terminate itself

abnormally

– kill - used by one process to kill or signal another

– wait - to wait for termination of a child process

– sleep - suspend execution for a specified time interval

– getpid - get process id

– getppid - get parent process id CS550: Advanced Operating Systems 7

• The fork() system call creates a "clone" of
the calling process.

• Identical in every respect except
– the parent process is returned a non-zero value (namely, the

process id of the child)

– the child process is returned zero.

• The process id returned to the parent can
be used by parent in a wait or kill system
call.

CS550: Advanced Operating Systems 8

 1. #include <unistd.h>

 2. main(){

 3. pid_t pid;

 4. printf(“Just one process so far\n”);

 5. pid = fork();

 6. if (pid == 0) /* code for child */

 7. printf(“I’m the child\n”);

 8. else if (pid > 0) /* code for parent */

 9. printf(“The parent, child pid =%d\n”,

10. pid);

11. else /* error handling */

12. printf(“Fork returned error code\n”);

13. }

 CS550: Advanced Operating Systems 9

 fork() is typically used in conjunction with exec (or variants)

pid_t pid;

if ((pid = fork()) == 0) {

 /* child code: replace executable image */

 execv("/usr/games/tetris", "-easy")

} else {

 /* parent code: wait for child to terminate */

 wait(&status)

}

CS550: Advanced Operating Systems 10

 A family of routines, execl, execv, ..., all eventually make a
call to execve.

 execve(program_name, arg1, arg2, ..., environment)

 text and data segments of current process replaced with
those of program_name

 stack reinitialized with parameters

 open file table of current process remains intact

 the last argument can pass environment settings

 as in example, program_name is actually path name of
executable file containing program

 Note: unlike subroutine call, there is no return after this call.
That is, the program calling exec is gone forever!

CS550: Advanced Operating Systems 11

• exit(status) - executed by a child process
when it wants to terminate. Makes status (an
integer) available to parent.

• wait(&status) - suspends execution of
process until some child process terminates
– status indicates reason for termination

– return value is process-id of terminated child

• waitpid (pid, &status, options)
– pid can specify a specific child

– Options can be to wait or to check and proceed

CS550: Advanced Operating Systems 12

• Besides being able to terminate itself with exit, a process can be killed
by another process using kill:

– kill(pid, sig) - sends signal sig to process with process-id pid. One
signal is SIGKILL (terminate the target process immediately).

• When a process terminates, all the resources it
owns are reclaimed by the system:

– “process control block” reclaimed

– its memory is deallocated

– all open files closed and Open File Table reclaimed.

• Note: a process can kill another process only if:

– it belongs to the same user

– super user CS550: Advanced Operating Systems 13

 when you type a command, the shell forks a clone of itself

 the child process makes an exec call, which causes it to stop
executing the shell and start executing your command

 the parent process, still running the shell, waits for the child to
terminate

fork wait

exit exec Required job

Parent shell

Child

CS550: Advanced Operating Systems 14

• Motivation and definitions

• Processes

• Threads

• Synchronization constructs

• Speedup issues

– Overhead

– Caches

– Amdahl’s Law

CS550: Advanced Operating Systems 15

• Multitasking OS can do more than one thing
concurrently by running more than a single process

• A process can do several things concurrently by
running more than a single thread

• Each thread is a different stream of control that can
execute its instructions independently.

• Ex: A program (e.g. Browser) may consist of the
following threads:

 GUI thread

 I/O thread

 Computation thread

CS550: Advanced Operating Systems 16

• A thread defines a single sequential execution stream

within a process

• Threads are bound to a single process

• Does each thread have its own stack, PC and

registers?

• Each process may have multiple threads of control

within it:

– The address space of a process is shared or not?

– No system calls are required to cooperate among threads

– Simpler than message passing and shared-memory

CS550: Advanced Operating Systems 17

Remote

User
rlogin

Local

Applications

ri

ro li

lo

CS550: Advanced Operating Systems 18

• There are basically 4 activities to be scheduled

– read(li), read(ri), write(lo), write(ro)

• read and write are blocking calls

• So before issuing any of these calls, the program
needs to check readyness of devices, and interleave
these four operations

– System calls such as FD_SET and select

• Bottomline: single-threaded code can be quite tricky
and complex

CS550: Advanced Operating Systems 19

incoming(int ri, lo){

 int d=0;

 char b[MAX];

 int s;

 while (!d) {

 s=read(ri,b,MAX);

 if (s<=0) d=1;

 if (write(lo,b,s)<=0)

 d=1;

 }

}

outgoing(int li, ro){

 int d=0;

 char b[MAX];

 int s;

 while (!d) {

 s=read(li,b,MAX);

 if (s<=0) d=1;

 if (write(ro,b,s)<=0)

 d=1;

 }

}

 CS550: Advanced Operating Systems 20

n/4 n/4 n/4 n/4

n/4 n/4 n/4 n/4

n/2 n/2

n/2 n/2

Sort on

4 parallel threads

Merge on

2 parallel threads

Sort on

2 parallel threads

Merge

Is there a speed-up ? CS550: Advanced Operating Systems 21

1. Superior programming model of parallel

sequential activities with a shared store

2. Easier to create and destroy threads than

processes.

3. Better CPU utilization (e.g. dispatcher

thread continues to process requests

while worker threads wait for I/O to finish)

4. Guidelines for allocation in multi-

processor systems
CS550: Advanced Operating Systems 22

• A UNIX Process is

– a running program with

– a bundle of resources (file descriptor table, address

space)

• A thread has its own

– stack

– program counter (PC)

– All the other resources are shared by all threads of

that process. These include:

 open files

 virtual address space

 child processes
CS550: Advanced Operating Systems 23

• POSIX standard API for multi-threaded

programming

• A thread can be created by pthread_create call

• pthread_create (&thread, 0, start, args)

ID of new thread is returned in this variable

used to define thread attributes (eg. Stack size)

0 means use default attributes

Name/address of the routine

where new thread should begin executing

Arguments passed to start CS550: Advanced Operating Systems 24

typedef struct { int i, o } pair;

rlogind (int ri, ro, li, lo) {

 pthread_t in_th, out_th;

 pair in={ri,lo}, out={li,ro};

 pthread_create(&in_th,0, incoming, &in);

 pthread_create(&out_th,0, outgoing, &out);

}

Note: 2 arguments are packed in a structure

Problem: If main thread terminates, memory for in and out structures

may disappear, and spawned threads may access incorrect memory locations

If the process containing the main thread terminates, then all

threads are automatically terminated, leaving their jobs unfinished. CS550: Advanced Operating Systems 25

typedef struct { int i, o } pair;

rlogind (int ri, ro, li, lo) {

 pthread_t in_th, out_th;

 pair in={ri,lo}, out={li,ro};

 pthread_create(&in_th,0, incoming, &in);

 pthread_create(&out_th,0, outgoing, &out);

 pthread_join(in_th,0);

 pthread_join(out_th,0);

}

CS550: Advanced Operating Systems 26

• A thread can terminate

1. by executing pthread_exit, or

2. By returning from the initial routine (the one

specified at the time of creation)

• Termination of a thread unblocks any

other thread that’s waiting using

pthread_join

• Termination of a process terminates all its

threads

CS550: Advanced Operating Systems 27

#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

pthread_t threads[NUM_THREADS];

int main(void) {

 for(int ii = 0; ii < NUM_THREADS; ii+=1) {

 (void) pthread_create(&threads[ii], NULL, threadFunc, (void *) ii);

 }

 for(int ii = 0; ii < NUM_THREADS; ii+=1) {

 pthread_join(threads[ii],NULL); // blocks until thread ii has exited

 }

 return 0;

}

void *threadFunc(void *id) {

 printf(“Hi from thread %d!\n”,(int) id);

 pthread_exit(NULL);

}

To compile against the PThread library, use gcc’s -lpthread flag!
CS550: Advanced Operating Systems 28

• PThreads aren’t the only game in town

• OpenMP can automatically parallelize

loops and do other cool, less-manual stuff!

#define N 100000

int main(int argc, char *argv[]){

 int i, a[N];

 #pragma omp parallel for

 for (i=0;i<N;i++)

 a[i]= 2*i;

 return 0;

}

CS550: Advanced Operating Systems 29

• Web Browsers such as IE are multi-threaded

• Such browsers can display data before entire

document is downloaded: performs multiple

simultaneous tasks

– Fetch main HTML page, activate separate threads for other

parts

– Each thread sets up a separate connection with the server

• Uses blocking calls

– Each part (gif image) fetched separately and in parallel

– Advantage: connections can be setup to different sources

• Ad server, image server, web server…

CS550: Advanced Operating Systems 30

• Apache web server: pool of pre-spawned worker

threads

– Dispatcher thread waits for requests

– For each request, choose an idle worker thread

– Worker thread uses blocking system calls to service web

request

CS550: Advanced Operating Systems 31

CS550: Advanced Operating Systems 32

