

• Motivation and definitions

• Processes

• Threads

• Synchronization constructs

• Speedup issues

– Overhead

– Caches

– Amdahl’s Law

CS550: Advanced Operating Systems 2

• If task can be completely decoupled into

independent sub-tasks, cooperation required is

minimal

– Starting and stopping communication

• Trouble when they need to share data!

• Race conditions:

• We need to force some serialization

– Synchronization constructs do that!

Thread B

Thread A

time -->

readX incX writeX

readX incX writeX

time -->

readX incX writeX

readX incX writeX Thread B

Thread A

Scenario 2 Scenario 1

CS550: Advanced Operating Systems 3

• A lock (mutual exclusion, mutex) guards a

critical section in code so that only one thread at

a time runs its corresponding section

– acquire a lock before entering crit. section

– releases the lock when exiting crit. section

– Threads share locks, one per section to synchronize

• If a thread tries to acquire an in-use lock, that

thread is put to sleep

– When the lock is released, the thread wakes up with

the lock! (blocking call)

CS550: Advanced Operating Systems 4

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

int x;
threadA() {

 int temp = foo(x);

 pthread_mutex_lock(&lock);

 x = bar(x) + temp;

 pthread_mutex_unlock(&lock);

 // continue…

}

threadB() {

 int temp = foo(9000);

 pthread_mutex_lock(&lock);

 baz(x) + bar(x);

 x *= temp;

 pthread_mutex_unlock(&lock);

 // continue…

}
Thread B

Thread A readX

… acquireLock readX

acquireLock => SLEEP …

readX writeX releaseLock …

WAKE w/ LOCK … releaseLock

•But locks don’t solve everything…

• Problem: potential deadlock!

time -->

threadA() {

 pthread_mutex_lock(&lock1);

 pthread_mutex_lock(&lock2);

}

threadB() {

 pthread_mutex_lock(&lock2);

 pthread_mutex_lock(&lock1);

} CS550: Advanced Operating Systems 5

• A condition variable (CV) is an object that threads can

sleep on and be woken from

– Wait or sleep on a CV

– Signal a thread sleeping on a CV to wake

– Broadcast all threads sleeping on a CV to wake

– I like to think of them as thread pillows…

• Always associated with a lock!

– Acquire a lock before touching a CV

– Sleeping on a CV releases the lock in the thread’s sleep

– If a thread wakes from a CV it will have the lock

• Multiple CVs often share the same lock

CS550: Advanced Operating Systems 6

• Motivation and definitions

• Processes

• Threads

• Synchronization constructs

• Speedup issues

– Overhead

– Caches

– Amdahl’s Law

CS550: Advanced Operating Systems 7

• More threads does not always mean
better!
– I only have two cores…
– Threads can spend too much time

synchronizing (e.g. waiting on locks and
condition variables)

• Synchronization is a form of overhead
– Also communication and creation/deletion

overhead

CS550: Advanced Operating Systems 8

• Caches are often one of the largest

considerations in performance

• For multicore, common to have independent L1

caches and shared L2 caches

• Can drive domain

decomposition design

CS550: Advanced Operating Systems 9

• Applications can almost never be completely parallelized; some serial code remains

• s is serial fraction of program, P is # of processors

• Amdahl’s law:

Speedup(P) = Time(1) / Time(P)

 ≤ 1 / (s + ((1-s) / P)), and as P ∞

 ≤ 1/s

• Even if the parallel portion of your application speeds up perfectly, your performance may
be limited by the sequential portion

Parallel portion

Time

Serial portion

Number of Processors
1 2 3 4 5

CS550: Advanced Operating Systems 10

• Super-linear speedup is possible

• Multicore is hard for architecture people,

but pretty easy for software

• Multicore made it possible for Google to

search the web

CS550: Advanced Operating Systems 11

• Super-linear speedup is possible

True: more cores means simply more cache accessible

(e.g. L1), so some problems may see super-linear

speedup

• Multicore is hard for architecture people, but pretty easy

for software

False: parallel processors put the burden of concurrency

largely on the SW side

• Multicore made it possible for Google to search the web

False: web search and other Google problems have

huge amounts of data. The performance bottleneck

becomes RAM amounts and speeds! (CPU-RAM gap)

CS550: Advanced Operating Systems 12

• Threads can be awake and ready/running on a core or asleep for

sync. (or blocking I/O)

• Use PThreads to thread C code and use your multicore processors

to their full extent!
– pthread_create(), pthread_join(), pthread_exit()

– pthread_mutex_t, pthread_mutex_lock(), pthread_mutex_unlock()

– pthread_cond_t, pthread_cond_wait(), pthread_cond_signal(),

pthread_cond_broadcast()

• Domain decomposition is a common technique for multithreading

programs

• Watch out for

– Synchronization overhead

– Cache issues (for sharing data, decomposing)

– Amdahl’s Law and algorithm parallelizability

• Reading Ch. 3

• Programming Assignment – Part 1 CS550: Advanced Operating Systems 13

• Part 1: Peer-to-peer file sharing with centralized

index

Foo.avi: Node1

Bar.c: Node 1

Foo.avi: Node 2

Mypic.gif: Node 3

Indexing server

Peer 1

Peer 2

Peer 3

1: registry(node 1,foo.avi)

2: search(foo.avi)

3: Node1, node2

4: obtain (foo.avi)

CS550: Advanced Operating Systems 14

• Two entities

– Central indexing server

• List of all files at peers

– Peer (both client and server)

• [client] Search for a file at the indexing server

• Download file from a peer, update indexing server

• [server] listen for download requests and service

– Provide concurrency at the central indexing

server and peer

• Feel free to use any prog language and any

mechanism (threads, RPC, RMI, sockets,

semaphores…)
CS550: Advanced Operating Systems 15

CS550: Advanced Operating Systems 16

