

• Many systems: one or few processes perform

updates

– How frequently should these updates be made available to

other read-only processes?

• Examples:

– DNS:

• Single naming authority per domain

• Only naming authority allowed updates (no write-write conflicts)

• How should read-write conflicts (consistency) be addressed?

– NIS:

• User information database in Unix systems

• Only sys-admins update database, users only read data

• Only user updates are changes to password

 2 CS550: Advanced Operating Systems

• Assume a replicated database with few updaters and

many readers

• Eventual consistency:

– Definition: in absence of updates, all replicas converge towards

identical copies

– Only requirement: an update should eventually propagate to all

replicas

– Cheap to implement: no or infrequent write-write conflicts

– Things work fine as long as user accesses same replica

– What if they don’t?

3 CS550: Advanced Operating Systems

4 CS550: Advanced Operating Systems

• Assume read operations by a single process P at
two different local copies of the same data store, four
different consistency semantics:

– Monotonic reads: once read, subsequent reads on that data

item return the same or more recent value

– Monotonic writes: a write must be propagated to all replicas
before a successive write by the same process

– Read your writes: read(x) always returns write(x) by that
process

– Writes follow reads: write(x) following read(x) will take place
on the same or more recent version of x

5 CS550: Advanced Operating Systems

• Bayou: weakly connected replicas
– Useful in mobile computing (mobile laptops)

– Useful in wide area distributed databases (weak
connectivity)

• Based on theory of epidemics
– Upon an update, try to “infect” other replicas as quickly as

possible

– Pair-wise exchange of updates (like pair-wise spreading of a
disease)

– Terminology:

• Infective store: store with an update that is willing to spread

• Susceptible store: store that is not yet updated

• Removed store: store that is not willing or able to spread its
updates

10 CS550: Advanced Operating Systems

• Anti-entropy

– Server P picks a server Q at random and exchanges

updates

– Three different possibilities: pull, push, or both

– Claim: A pure push-based approach does not help spread

updates quickly (Why?)

• Rumor spreading (aka gossiping)

– Upon receiving an update, P tried to push to Q

– If Q already received the update, stop spreading with

probability of 1/k

– Con?

11 CS550: Advanced Operating Systems

• Deletion of data items is hard in epidemic

protocols

• Example: server deletes data item x

– No state information is preserved

• Can’t distinguish between a deleted copy and no

copy!

12 CS550: Advanced Operating Systems

• Two techniques to implement consistency

models

– Primary-based protocols

• Assume a primary replica for each data item

• Primary is responsible for coordinating all writes

– Replicated write protocols

• No primary is assumed for a data item

• Writes can take place at any replica

13 CS550: Advanced Operating Systems

14 CS550: Advanced Operating Systems

15 CS550: Advanced Operating Systems

• Limitation: ?
16 CS550: Advanced Operating Systems

17 CS550: Advanced Operating Systems

• Relax the assumption of one primary
– No primary, any replica is allowed to update

– Consistency is more complex to achieve

• Quorum-based protocols
– Use voting to request/acquire permissions from

replicas

– Example:
• Consider a file replicated on N servers

• Update: contact N/2+1 replicas and get them to agree to do
the update (with a version number for the file)

• Read: contact N/2+1 replicas and obtain the version number

18 CS550: Advanced Operating Systems

• Mostly used for shared-memory systems

– Based on hardware support (snooping or

broadcast) or software-based solutions

• Two major design issues:

– Coherence detection strategy

• Determines when inconsistency are actually

detected

– Coherence enforcement strategy

• Determines how caches are kept consistency with

the copies stored at servers

 20 CS550: Advanced Operating Systems

• Replication and caching improve performance in

distributed systems

• Consistency of replicated data is crucial

• Many consistency semantics (models) possible

– Need to pick appropriate model depending on the application

– Example: web caching: weak consistency is OK since humans

are tolerant to stale information (can reload browser)

– Implementation overheads and complexity grows if stronger

guarantees are desired

21 CS550: Advanced Operating Systems

• Replication

• Consistency models

• Replica placement

• Distribution protocols

• Client-centric models

• Eventual consistency and Epidemic protocols

• Implementation issues (consistency protocols)
– Primary-based

– Replicated-write

– Cache-coherence

• Readings:
– AST chpt 7

22 CS550: Advanced Operating Systems

23 CS550: Advanced Operating Systems

