CS 550:

Advanced Operating Systems

Consistency
Part 2

loan Raicu
Computer Science Department
lllinois Institute of Technology

CS 550
Advanced Operating Systems
March 8th, 2011

Evenitual Consisiency

« Many systems: one or few processes perform
updates
— How frequently should these updates be made available to
other read-only processes?
« Examples:

— DNS:
« Single naming authority per domain
« Only naming authority allowed updates (no write-write conflicts)
» How should read-write conflicts (consistency) be addressed?

— NIS:
» User information database in Unix systems
« Only sys-admins update database, users only read data
* Only user updates are changes to password

CS550: Advanced Operating Systems

Evenitual Consisiency

« Assume a replicated database with few updaters and
many readers

« Eventual consistency:

Definition: in absence of updates, all replicas converge towards
identical copies

Only requirement: an update should eventually propagate to all
replicas

Cheap to implement: no or infrequent write-write conflicts
Things work fine as long as user accesses same replica

What if they don’t?

CS550: Advanced Operating Systems

Client moves to other location
and (transparently) connects to
other replica

B
BN

g Replicas need to maintain

client-centric consistency

Wide-area network _/_/

Distributed and replicated database

7‘ Read and write operations
Portable computer

CS550: Advanced Operating Systems 4

Client-ceniric Consisiency WModels

« Assume read operations by a single process P at
two different local copies of the same data store, four
different consistency semantics:

— Monotonic reads: once read, subsequent reads on that data
item return the same or more recent value

— Monotonic writes: a write must be propagated to all replicas
before a successive write by the same process

— Read your writes: read(x) always returns write(x) by that
process

— Writes follow reads: write(x) following read(x) will take place
on the same or more recent version of X

CS550: Advanced Operating Systems 5

Epidemic Protocols

« Bayou: weakly connected replicas

— Useful in mobile computing (mobile laptops)
— Useful in wide area distributed databases (weak
connectivity)

« Based on theory of epidemics
— Upon an update, try to “infect” other replicas as quickly as
possible
— Pair-wise exchange of updates (like pair-wise spreading of a
disease)
— Terminology:
* Infective store: store with an update that is willing to spread
» Susceptible store: store that is not yet updated

» Removed store: store that is not willing or able to spread its
updates

CS550: Advanced Operating Systems

10

Spreading an Epidemic

* Anti-entropy

— Server P picks a server Q at random and exchanges
updates

— Three different possibilities: pull, push, or both

— Claim: A pure push-based approach does not help spread
updates quickly (Why?)

* Rumor spreading (aka gossiping)
— Upon receiving an update, P tried to push to Q

— If Q already received the update, stop spreading with
probability of 1/k

— Con?

CS550: Advanced Operating Systems

11

Removing Daia

* Deletion of data items is hard In epidemic
protocols
« Example: server deletes data item x

— No state information is preserved

« Can’t distinguish between a deleted copy and no
copy!

CS550: Advanced Operating Systems

12

Implementation Issues

* Two techniques to implement consistency
models
— Primary-based protocols

« Assume a primary replica for each data item
* Primary is responsible for coordinating all writes

— Replicated write protocols
* No primary is assumed for a data item
« Writes can take place at any replica

CS550: Advanced Operating Systems

13

Client

-

Single server

Client

A for item x A Backup server
W1 | | W4 \ R4 /
v 3 v ™
—_
« —_ »
W3 R3

Data store

j

W1. Write request
W2. Forward request to server for x
W3. Acknowledge write completed
W4. Acknowledge write completed

R1. Read request

R2. Forward request to server for x
R3. Return response

R4. Return response

CS550: Advanced Operating Systems 14

Client Client

Primary server

A for item x A
V1 W5 \ R1| |R2

4 < v ™
Y oowa X owe YL
st e
e —»
\WC’)//{ U Data store

Backup server

W2 W3
\ W4 J
W1, Write request R1. Read request
W2. Forward request to primary R2. Response to read

W3. Tell backups to update
W4d. Acknowledge update
W5, Acknowledge write completed

CS550: Advanced Operating Systems 15

Current server New server
for item x A for item x
\ 1 4
A N

-

]

j

Data store

1. Read or write request

2. Forward request to current server for x
3. Move item x to client's server

4. Return result of operation on client's server

 Limitation: ?

CS550: Advanced Operating Systems 16

Client Client
Old primary New primary

A for item x for item x yy

R1| | R2 W1 |W3

Backup server

-
i

W5 ik/\

Data store

j

W1. Write request

W2. Move item x to new primary
W3. Acknowledge write completed
W4, Tell backups to update

W5. Acknowledge update

CS550: Advanced Operating Systems

R1. Read request
R2. Response to read

17

Replicated-write Protocols

* Relax the assumption of one primary

— No primary, any replica is allowed to update
— Consistency is more complex to achieve

* Quorum-based protocols
— Use voting to request/acquire permissions from
replicas
— Example:

« Consider a file replicated on N servers

« Update: contact N/2+1 replicas and get them to agree to do
the update (with a version number for the file)

« Read: contact N/2+1 replicas and obtain the version number

CS550: Advanced Operating Systems 18

Cache-coherent Protocols

* Mostly used for shared-memory systems

— Based on hardware support (snooping or
broadcast) or software-based solutions

 Two major design ISSUes:

— Coherence detection strategy

» Determines when inconsistency are actually
detected

— Coherence enforcement strategy

* Determines how caches are kept consistency with
the copies stored at servers

CS550: Advanced Operating Systems

20

Final Thoughis

* Replication and caching improve performance in
distributed systems

« Consistency of replicated data is crucial

« Many consistency semantics (models) possible
— Need to pick appropriate model depending on the application

— Example: web caching: weak consistency is OK since humans
are tolerant to stale information (can reload browser)

— Implementation overheads and complexity grows if stronger
guarantees are desired

CS550: Advanced Operating Systems

21

Summary

Replication
Consistency models
Replica placement

Distribution protocols
Client-centric models
Eventual consistency and Epidemic protocols

Implementation issues (consistency protocols)
— Primary-based

— Replicated-write

— Cache-coherence

Readings:

— AST chpt 7

CS550: Advanced Operating Systems

22

X

Quesiions

|

CS550: Advanced Operating Systems

23

