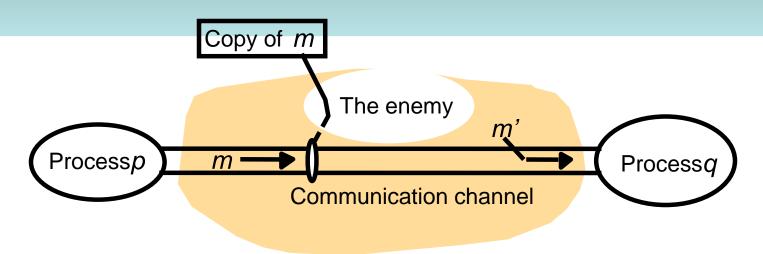
## CS 550: Advanced Operating Systems

### Security

Ioan Raicu Computer Science Department Illinois Institute of Technology

CS 550 Advanced Operating Systems March 24<sup>th</sup>, 2011

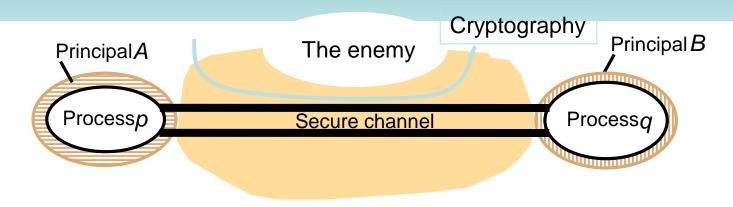

### Outline

- Security issues:
  - Threats
  - Methods of attack
- Encryption algorithms
  - Secret-key
  - Public-key
  - Hybrid protocols

### **Historical context**

|                                       |                                                                              |                                                                                        | 2                                                   |                                                                        |
|---------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------|
|                                       | 1965-75                                                                      | 1975-89                                                                                | 1990-99                                             | Current                                                                |
| Platforms                             | Multi-user<br>timesharing<br>computers                                       | Distributed systems<br>based on local<br>networks                                      | The Internet, wide-<br>area services                | The Internet + mobile<br>devices                                       |
| Shared<br>resources                   | Memory, files                                                                | Local services (e.g. NFS), local networks                                              |                                                     | Distributed objects, mobile code                                       |
| Security<br>requirements              | User identification a authentication                                         | n <b>&amp;</b> rotection of service                                                    | s Strong security for<br>commercial<br>transactions | Access control for<br>individual objects,<br>secure mobile code        |
| Security<br>management<br>environment | Single authority,<br>single authorization<br>database (e.g. /etc/<br>passwd) | Single authority,<br>delegation, repli-<br>cated authorization<br>databases (e.g. NIS) | Many authorities,<br>no network-wide<br>authorities | Per-activity<br>authorities, groups<br>with shared<br>responsibilities |

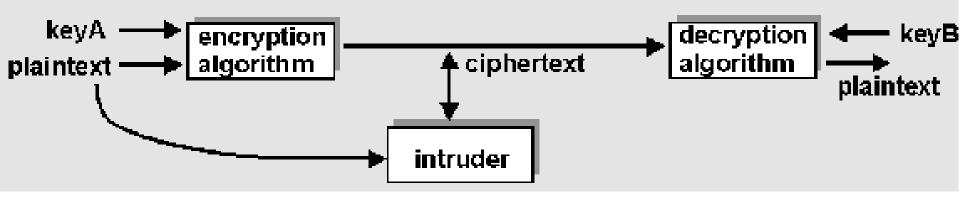
### **Security Problems**




- Attacks
  - On applications that handle financial transactions or other information whose secrecy or integrity is crucial
- Enemy (or adversary)
- Threats
  - To processes, to communication channels, denial of service

### **Threats/Methods of Attacks**

- Eavesdropping:
  - Obtain private or secret information
- Masquerading
  - Assume the identity of another user
- Message tampering
  - Alter the content of messages in transit
    - Man-in-the-middle attack
- Replaying
  - Store secure msgs and send them at a later data
- Denial of service
  - Flood a channel or other resources, denying access to others


### Secure channels



- Properties:
  - Each proc is sure of the identity of the other
  - Data is private and protected against tampering
  - Protection against repetition and reordering of data
- Important issues:
  - Cryptography
  - Authentication

CS550: Distributed OS

## Encryption



plaintext: unencrypted message

### ciphertext: encrypted form of message

### **Intruder may**

- intercept ciphertext transmission
- intercept plaintext/ciphertext pairs
- obtain encryption decryption algorithms

## A simple encryption algorithm

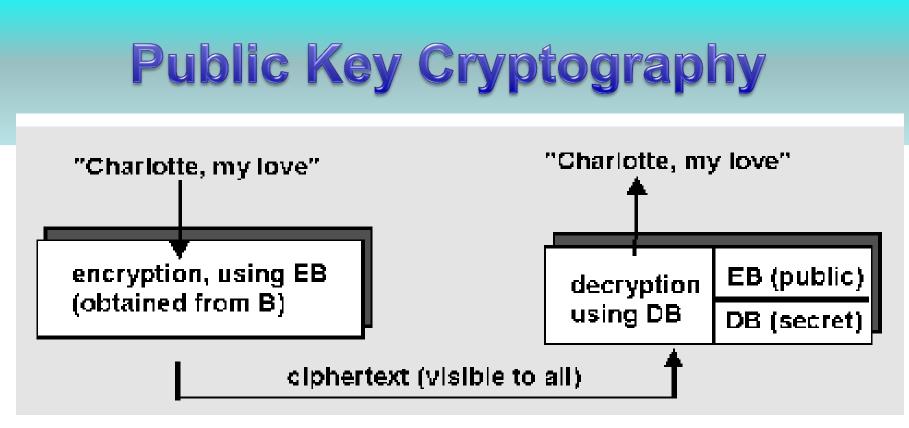
### **Substitution cipher:**

abcdefghijklmnopqrstuvwxyz

poiuytrewqasdfghjklmnbvczx

• replace each plaintext character in message with matching ciphertext character:

```
plaintext: Charlotte, my love
ciphertext: iepksgmmy, dz sgby
```


## A simple encryption Alg (cont.)

- key is pairing between plaintext characters and ciphertext characters
- 26! (approx 10^26) different possible keys: unlikely to be broken by random trials
- substitution cipher subject to decryption using observed frequency of letters
  - 'e' most common letter, 'the' most common word

## Public Key Cryptography

- Separate encryption/decryption keys
  - Receiver makes known (!) its encryption key
  - Receiver keeps its decryption key secret
- To send to receiver B:

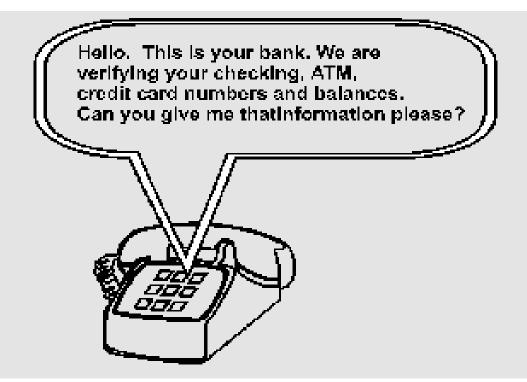
• To decrypt:



- Knowing encryption key does not help with decryption; decryption is a non-trivial inverse of encryption
- Only receiver can decrypt message

## Question: good encryption/decryption algorithms

CS550: Distributed OS Lecture 15 Page 18


# RSA: public key encryption/decryption

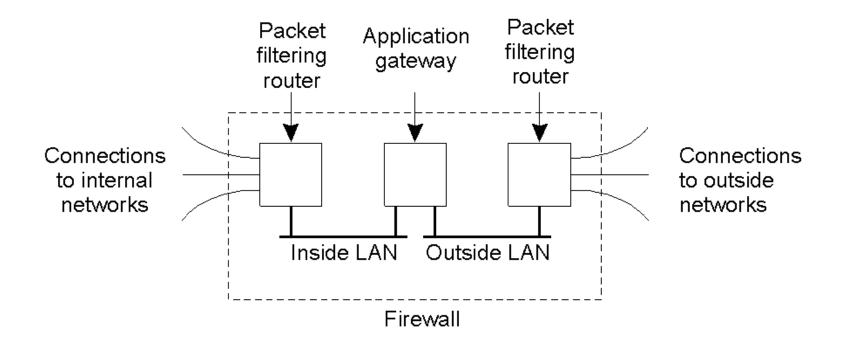
**RSA:** a public key algorithm for encrypting/decrypting Entity wanting to receive encrypted messages:

### to break RSA:

- need to know p, q, given pq=n, n known
- factoring 200 digit n into primes takes 4 billion years using known methods

### Authentication



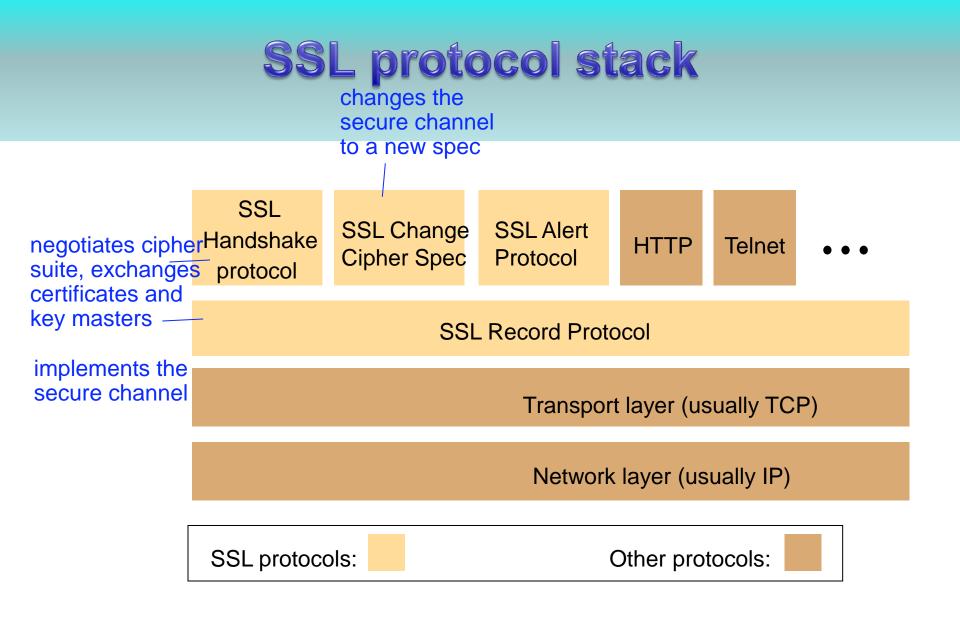

 Question: how does a receiver know that remote communicating entity is who it is claimed to be?

CS550: Distributed OS Lecture 16 Page 27

## Authentication Protocol (ap)

- Ap 1.0
  - Alice to Bob: "I am Alice"
  - Problem: ?
- Ap 2.0
  - Authenticate source IP address is from Alice's machine
  - Problem: ?
- Ap 3.0: use a secret password
  - Alice to Bob: "I am Alice, here is my password" (e.g., telnet)
  - Problem: ?

### Protection Against Intruders: Firewalls




### Firewalls

- **Firewall:** network components (host/router+software) sitting between inside ("us") and outside ("them)
- Packet filtering firewalls: drop packets on basis of source or destination address (i.e., IP address, port)
- Application gateways: application specific code intercepts, processes and/or relays application specific packets
  - e.g., email of telnet gateways
  - application gateway code can be security hardened
  - can log all activity

## Secure Sockets Layer (SSL)

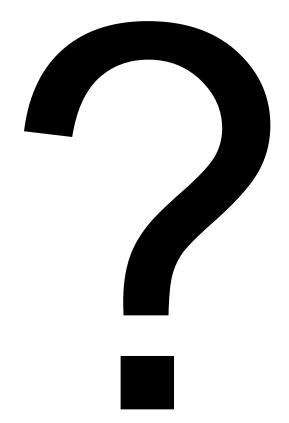
- SSL: Developed by Netscape
  - Provides data encryption and authentication between web server and client
  - SSL lies above the transport layer
  - Features:
    - SSL server authentication
    - Encrypted SSL session
    - SSL client authentication



### Secure Socket Layer

- Protocol: https instead of http
  - Steps?
  - Browser -> Server: B's SSL version and preferences
  - S->B: S's SSL version, preferences, and *certificate* 
    - Certificate: server's RSA public key encrypted by CA's private key
  - B: uses its list of CAs and public keys to decrypt S's public key
  - B->S: generate K, encrypt K with with  $E_S$
  - B->S: "future messages will be encrypted", and K(m)
  - S->B: "future messages will be encrypted", and K(m)
  - SSL session begins...

### **Security: conclusion**


#### key concerns:

- encryption
- authentication
- key exchange

### also:

- increasingly an important area as network connectivity increases
- digital signatures, digital cash, authentication, increasingly important
- an important social concern
- further reading:
  - Crypto Policy Perspectives: S. Landau et al., Aug 1994 CACM
  - Internet Security, R. Oppliger, CACM May 1997
  - www.eff.org

### Questions

