

• Commonly used DHT-based systems for distributing

data, combined with a key-based lookup mechanism

• Key difference: whether build a file system on top of

a distributed storage layer

• Example: Ivy

CS550: Advanced Operating Systems 2

• How should the system be organized?
– Are clients and server different?

• Same process implements both functionality

• Different processes, same machine

• Different machines (a machine can either be client or server)

– How are file and directory services organized-same server?
• Different server processes: cleaner, more flexible, more

overhead

• Same server: just the opposite

– Caching/no caching
• server

• client

– how are updates handled?

– File sharing semantics?

– Server type: stateful vs. stateless

CS550: Advanced Operating Systems 3

• Stateless server

– No info is kept about a request after the request is served

– Request has to be self contained (e.g. contain complete file

names)

– Pro & Con?

– Longer messages required

– Mapping required for each request

– Better tolerance to server crashes

– No table required => no limit on the number of clients

– File locking not possible => requires a locking server

CS550: Advanced Operating Systems 4

• Stateful server
– Info kept about each client that has an open file

• Server maintains information about client accesses

– Shorted request messages

• Request to open file needs complete file name => server
returns file descriptor

• Other request need file descriptor only => mapping not required
for each request

– Pro & Con?

– Difficult recovery from server crashes

– Server is the performance bottleneck

– Better performance

– Consistency is easier to achieve

CS550: Advanced Operating Systems 5

• Location transparency: the path name does

 not reveal the file location

– E.g. /serverA/dir1/dir2/x does not say where the

server is located

• Location independency: files can be moved

 and all references to them continue to be

 valid

– E.g. /serverA/dir1/dir2/x is not location

independent

CS550: Advanced Operating Systems 6

• Mounting: file system can be mounted to a node of

the directory

• Depending on the actual mounts, different clients see

different view of the distributed file system

jim jane joeann

usersstudents

usrvmunix

Client Server 2

. . . nfs

Remote

mount
staff

big bobjon

people

Server 1

export

(root)

Remote

mount

. . .

x

(root) (root)

CS550: Advanced Operating Systems 8

• Unix semantics: used in centralized systems
– Read after write returns value written

• System enforces absolute time ordering on all operations

• Always returns most recent value

• Changes immediately visible to all processes

• Issues in distributed systems
– Single file server (no client caching): easy to implement

UNIX semantics

– Client file caching: improves performance by decreasing
demand at the server; updates to the cached file are not
seen by other clients

– Conclusion:?

• Difficult to enforce in distributed file systems unless all access
occur at server (with no client caching)

CS550: Advanced Operating Systems 9

• Session semantics (relaxed semantics)

– Local changes only visible to process that opened

file

– File close => changes made visible to all

processes

– Allows local caching of file at client

• Problems:

– What if two or more clients are caching and

modifying a file?

• Final result depends on who closes last

• Use an arbitrary rule to decide who wins

CS550: Advanced Operating Systems 10

• No file update semantics (Immutable files):

– Files are never updated/modified

– Allowed file operations: CREATE and READ

– Files are atomically replaced in the directory

– Problems:

• what if two clients want to replace a file at the

same time?

– Take the last one or use any non-deterministic rule

• Delete file in use by another process

CS550: Advanced Operating Systems 11

• Atomic transactions

– All file changes are delimited by a Begin and

End transaction

– All files requests within the transaction are

carried out in order

– The complete transaction is either carried out

completely or not at all (atomicity)

– Serializable access

– Problem: ?

• Costly to implement
CS550: Advanced Operating Systems 12

client server

•Server caching

•Client caching

•Caching unit: files or disk blocks?

Main memory

 cache

Disk

cache

Main memory

 cache

Disk

cache

CS550: Advanced Operating Systems 13

• Server Disk

– + most space

– + one copy of each file

– + no consistency problem

– Issue?

• Server Memory

– Keep MRU files in server’s memory

– If request satisfied from cache ==> no disk transfer BUT still network

transfer

– Unit of caching?

• Whole files: pro & con?

–

• Blocks: pro & con?

– What to replace when cache full?

• LRU

CS550: Advanced Operating Systems 14

• Disk:

– Pros & cons?

• Memory:

– Pros & cons?

• Where to cache

– user address space

• Pros & cons?

– Kernel

• Pros & cons?

– separate user-level cache process
CS550: Advanced Operating Systems 15

• Write-through:

– Every time a block is modified at the client,

send modification to server

– Cache is effective for read traffic but not for

write traffic

– If client cache survives processes, then cache

currency has to be validated with the server

(version numbers or checksum can be used

here)

CS550: Advanced Operating Systems 16

• Delayed write:

– Make a note that a file has been modified but

do not inform the server immediately

– Send all modifications as a batch to the server

every 30 seconds (more efficient)

– Reduces write traffic for temporary files that

are written, read, and deleted before the

server needs to be notified

– Cleaner semantics is traded for better

performance
CS550: Advanced Operating Systems 17

• Write on close:

– Adopt session semantics and write back to

the server 30 seconds after file is closed

(deleted files are never sent to the server)

– Still possible for writes to be lost. If two or

more processes have the file open for write,

only one wins. Similar problem may arise in

centralized systems if no locking is issued

CS550: Advanced Operating Systems 18

• Centralized control:

– A centralized controller keeps track of all files

that are open and their respective clients

– Conflicting requests to open files can be

handled in three ways:

• Deny request

• Queue request

• Grant request but notify all clients that have the file

open to remove it from their cache and disable

caching (unsolicited messages to clients is

required)

• Does not scale and is not robust
CS550: Advanced Operating Systems 19

• Wide area networking

• New hardware
– Cheap main memory => file system in main memory

with backups in videotape or optical disks

– Extremely fast fiber optic networks => avoid client
caching

• Scalability
– From 100 to 1,000 to 10,000 nodes!

– Use of broadcast messages should be reduced

– Resources and algorithms should not be linear in the
number of users

CS550: Advanced Operating Systems 20

• Fault tolerance

– As DSs become more widespread, provisions for

higher availability have to be incorporated into the

design

• Mobile users

– Increase in disconnected operation mode

– Files will be cached for longer periods (hours or

days) at the client laptop

• Multimedia

– New applications such as video-on-demand, audio

files pose different demands on the design of a file

system CS550: Advanced Operating Systems 21

CS550: Advanced Operating Systems 22

