


• GFS: Google File System 

– Google 

– C/C++ 

• HDFS: Hadoop Distributed File System 

– Yahoo 

– Java, Open Source 

• Sector: Distributed Storage System 

– University of Illinois at Chicago 

– C++, Open Source 
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• System that permanently stores data 

• Usually layered on top of a lower-level 
physical storage medium 

• Divided into logical units called “files” 

– Addressable by a filename  (“foo.txt”) 

– Usually supports hierarchical nesting 
(directories) 

• A file path joins file & directory names into 
a relative or absolute address to identify 
a file (“/home/aaron/foo.txt”) 



• Support access to files on remote servers 

• Must support concurrency 

– Make varying guarantees about locking, who 
“wins” with concurrent writes, etc... 

– Must gracefully handle dropped connections 

• Can offer support for replication and local 
caching 

• Different implementations sit in different 
places on complexity/feature scale 



• Google needed a good distributed file system 
– Redundant storage of massive amounts of data on 

cheap and unreliable computers 

 

• Why not use an existing file system? 
– Google’s problems are different from anyone else’s 

• Different workload and design priorities 

– GFS is designed for Google apps and workloads 

– Google apps are designed for GFS 

 



• High component failure rates 

– Inexpensive commodity components fail all the 
time 

• “Modest” number of HUGE files 

– Just a few million 

– Each is 100MB or larger; multi-GB files typical 

• Files are write-once, mostly appended to 

– Perhaps concurrently 

• Large streaming reads 

• High sustained throughput favored over low latency 



• Most files are mutated by appending new data – large sequential 

writes 

• Random writes are very uncommon 

• Files are written once, then they are only read 

• Reads are sequential 

• Large streaming reads and small random reads 

• High bandwidth is more important than low latency 

• Google applications: 

– Data analysis programs that scan through data repositories 

– Data streaming applications 

– Archiving 

– Applications producing (intermediate) search results 
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• Files stored as chunks 

– Fixed size (64MB) 

• Reliability through replication 

– Each chunk replicated across 3+ chunkservers 

• Single master to coordinate access, keep metadata 

– Simple centralized management 

• No data caching 

– Little benefit due to large data sets, streaming reads 

• Familiar interface, but customize the API 

– Simplify the problem; focus on Google apps 
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• Single master 

• Multiple chunk servers 

• Multiple clients 

• Each is a commodity Linux machine, a server is a user-level process 

• Files are divided into chunks  

• Each chunk has a handle (an ID assigned by the master) 

• Each chunk is replicated (on three machines by default) 

• Master stores metadata, manages chunks, does garbage collection, 

etc.  

• Clients communicate with master for metadata operations, but with 

chunkservers for data operations 

• No additional caching (besides the Linux in-memory buffer caching) 
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• Client/GFS Interaction 

• Master 

• Metadata 

• Why keep metadata in memory? 

• Why not keep chunk locations persistent? 

• Operation log 

• Data consistency 

• Garbage collection 

• Load balancing 

• Fault tollerance  11 



• Sector: Distributed Storage System 

• Sphere: Run-time middleware that 

supports simplified distributed data 

processing. 

• Open source software, GPL, written in 

C++. 

• Started since 2006, current version 1.18 

• http://sector.sf.net 

http://sector.sf.net/
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• Sector stores files on the native/local file system 
of each slave node. 

• Sector does not split files into blocks 
– Pro: simple/robust, suitable for wide area 

– Con: file size limit 

• Sector uses replications for better reliability and 
availability 

• The master node maintains the file system 
metadata. No permanent metadata is needed. 

• Topology aware 



• Write is exclusive 

• Replicas are updated in a chained 

manner: the client updates one replica, 

and then this replica updates another, and 

so on. All replicas are updated upon the 

completion of a Write operation. 

• Read: different replicas can serve different 

clients at the same time. Nearest replica to 

the client is chosen whenever possible. 



• Supported file system operation: ls, stat, 

mv, cp, mkdir, rm, upload, download 

– Wild card characters supported 

• System monitoring: sysinfo. 

• C++ API: list, stat, move, copy, mkdir, 

remove, open, close, read, write, sysinfo. 
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