

• GFS: Google File System

– Google

– C/C++

• HDFS: Hadoop Distributed File System

– Yahoo

– Java, Open Source

• Sector: Distributed Storage System

– University of Illinois at Chicago

– C++, Open Source
2

• System that permanently stores data

• Usually layered on top of a lower-level
physical storage medium

• Divided into logical units called “files”

– Addressable by a filename (“foo.txt”)

– Usually supports hierarchical nesting
(directories)

• A file path joins file & directory names into
a relative or absolute address to identify
a file (“/home/aaron/foo.txt”)

• Support access to files on remote servers

• Must support concurrency

– Make varying guarantees about locking, who
“wins” with concurrent writes, etc...

– Must gracefully handle dropped connections

• Can offer support for replication and local
caching

• Different implementations sit in different
places on complexity/feature scale

• Google needed a good distributed file system
– Redundant storage of massive amounts of data on

cheap and unreliable computers

• Why not use an existing file system?
– Google’s problems are different from anyone else’s

• Different workload and design priorities

– GFS is designed for Google apps and workloads

– Google apps are designed for GFS

• High component failure rates

– Inexpensive commodity components fail all the
time

• “Modest” number of HUGE files

– Just a few million

– Each is 100MB or larger; multi-GB files typical

• Files are write-once, mostly appended to

– Perhaps concurrently

• Large streaming reads

• High sustained throughput favored over low latency

• Most files are mutated by appending new data – large sequential

writes

• Random writes are very uncommon

• Files are written once, then they are only read

• Reads are sequential

• Large streaming reads and small random reads

• High bandwidth is more important than low latency

• Google applications:

– Data analysis programs that scan through data repositories

– Data streaming applications

– Archiving

– Applications producing (intermediate) search results

7

• Files stored as chunks

– Fixed size (64MB)

• Reliability through replication

– Each chunk replicated across 3+ chunkservers

• Single master to coordinate access, keep metadata

– Simple centralized management

• No data caching

– Little benefit due to large data sets, streaming reads

• Familiar interface, but customize the API

– Simplify the problem; focus on Google apps

9

• Single master

• Multiple chunk servers

• Multiple clients

• Each is a commodity Linux machine, a server is a user-level process

• Files are divided into chunks

• Each chunk has a handle (an ID assigned by the master)

• Each chunk is replicated (on three machines by default)

• Master stores metadata, manages chunks, does garbage collection,

etc.

• Clients communicate with master for metadata operations, but with

chunkservers for data operations

• No additional caching (besides the Linux in-memory buffer caching)

10

• Client/GFS Interaction

• Master

• Metadata

• Why keep metadata in memory?

• Why not keep chunk locations persistent?

• Operation log

• Data consistency

• Garbage collection

• Load balancing

• Fault tollerance 11

• Sector: Distributed Storage System

• Sphere: Run-time middleware that

supports simplified distributed data

processing.

• Open source software, GPL, written in

C++.

• Started since 2006, current version 1.18

• http://sector.sf.net

http://sector.sf.net/

Security Server Master

slaves slaves

SSL SSL

Client

User account

Data protection

System Security

Storage System Mgmt.

Processing Scheduling

Service provider

System access tools

App. Programming

Interfaces

Storage and

Processing

Data

UDT

Encryption optional

• Sector stores files on the native/local file system
of each slave node.

• Sector does not split files into blocks
– Pro: simple/robust, suitable for wide area

– Con: file size limit

• Sector uses replications for better reliability and
availability

• The master node maintains the file system
metadata. No permanent metadata is needed.

• Topology aware

• Write is exclusive

• Replicas are updated in a chained

manner: the client updates one replica,

and then this replica updates another, and

so on. All replicas are updated upon the

completion of a Write operation.

• Read: different replicas can serve different

clients at the same time. Nearest replica to

the client is chosen whenever possible.

• Supported file system operation: ls, stat,

mv, cp, mkdir, rm, upload, download

– Wild card characters supported

• System monitoring: sysinfo.

• C++ API: list, stat, move, copy, mkdir,

remove, open, close, read, write, sysinfo.

CS550: Advanced Operating Systems 17

