
 1 CS550 Spring 2011 – PA#3

CS 550 Programming Assignment #3
Maintaining file consistency in your Gnutella-style P2P system

Instructions:

 Due date: 11:59PM on Monday, 05/02/11

 You may work individual or in groups of two for this assignment; your groups could be different
than your course project.

 Please post your questions to the mailing list cs550-s11@datasys.cs.iit.edu.

 Both hardcopy and softcopy are required (India students and remote students only need to
submit softcopy). Please drop your hardcopy to TA’s mailbox (2nd floor of computer science
department), and submit the softcopy to “Digital Drop Box” on Blackboard (see section 3).

 Name your file as this rule: “LastName_FirstName_*HW or PA number+”. E.g. “John_Doe_HW1”.
(HW for Written Assignment, PA for Programming Assignment).

 For all programming assignments and projects, please submit the hardcopy of your
documentation only. You don't need to submit the hardcopy of your source code. In the
meantime, please zip all files (source code, documentation and etc.) and submit it to BB.

 Late submission will be penalized at 20% per day.

1 The problem
This project builds on the previous project. The goal of this project is to add consistency mechanisms to a Gnutella-
style P2P file sharing system. While audio files that are typically shared using today’s P2P systems rarely change
after creation, in the future, we can expect to use P2P systems to share other types of files that do change after
creation. The objective of the assignment is to ensure that all copies of a file in the P2P system consistent with one
another.

You can be creative with this project. You are free to use any machines (PC, UNIX, etc). Feel free to implement
more sophisticated techniques than have been specified (but you must at least implement the above methods for
full credit). You are free to use any programming languages (C, C++, Java, etc) and any abstractions such as sockets,
RPCs, RMIs, threads, events, etc. that might be needed. However, be cautious if you are using RPC or RMI, since
they may be inconvenient in a fully distributed environment. Come up with a good design before you start coding.

We will assume that there is a master copy for each file in the system. The master copy is typically stored at the
peer where the object was initially created. We will call this peer the origin server. The origin server is the owner of
the file. Additionally, for simplicity, we assume that only the master copy of the file can be modified. The goal of
this project is two-fold: first, when a peer client issues a query, only those peers that have a valid copy of the
specified file will return results to the query issuer (thus, if a peer suspects that its copy is possibly stale, it
pretends not to have the object while answering queries). Second, the system needs to implement mechanisms to
determine when cached versions of objects become out of date with the master copy. A cached copy is valid (or
consistent) only if it is the same as the master copy. To keep things simple, we will make determine validity by
simply by comparing version numbers (the version number of a file is incremented after each modification).

The consistency can be achieved either using push or pull.

1. In the push approach, whenever the master copy of the file is modified, the server broadcasts an
"Invalidate" message for the file. The invalidate message propagates exactly like a "query" message. Upon
receiving an "Invalidate" message, each peer checks if it has a copy of the object (and if so, discards it).
Further, it propagates the “Invalidate” message to all its neighboring peers. In this manner, the invalidate
message propagates through the system and invalidates all cached versions of the object. Note that,

mailto:cs550-s11@datasys.cs.iit.edu

 2 CS550 Spring 2011 – PA#3

unlike in push-based web caching, the origin server does not maintain any state about which peer is
caching an object--an invalidate message is simply broadcast through the system and reaches all peers
regardless of whether they have the object or not.

Thus the technique is inefficient in terms of network bandwidth usage, but it's simple, stateless, and takes
advantage of the underlying message routing framework. Further, the technique provides strong
consistency guarantees in the absence of failures.

2. In the pull approach, it is the responsibility of each peer to poll the origin server to see if a cached object
is valid. The poll message contains the version number of the cached object. The origin server, upon
receiving this message, will check the version number of the master copy and respond accordingly. If the
master copy is newer, the origin server sends a "file out of date" message back and the peer then discards
its cached copy and notifies the user (by printing an appropriate message on the screen).

The effectiveness of the pull approach depends on when and how frequently a peer polls the origin
server. In general, the more frequent the polls, the better are the consistency guarantees that can be
provided. If the master copy is modified between two successive polls, then the peer is left with a stale
copy until its next poll. For simplicity, in the project, we will use server-specified TTR (time-torefresh)
value to determine the time between polls. When downloading an object, the origin server attaches a TTR
value with the object to indicate the next time the peer should poll the server (e.g., TTR=5min or
TTR=30min). The peer simply polls the origin server when the TTR expires.

Note that a peer does not have to immediately poll the server when a TTR expires. Instead it could just
mark the object as "TTR expired" and poll the server in a lazy fashion at a later time. By not using objects
with expired TTR values to answer queries, a peer can minimize the chances of sharing stale data. It is up
to you to decide if your system will poll the server in an eager fashion (as soon as the TTR expires) or in a
lazy manner (by merely marking the object as "TTR expired").

Below is a list of what you need to implement:

1. Implement push-based approach by adding a new message type, invalidation message, into your system.
The format of the message is like this:

INVALIDATION (msg id, origin server ID, filename, version number), where the version number is the new
version number of the specified file.

The server will "broadcast" an invalidation message out whenever there's a modification to a file. This
message requires no reply from the recipients.

From the server perspective, you need to create at least two directories for each peer, one for the files
that are owned by you, the other for the files that are downloaded from other peers. You can only make
changes to the files you own. You can create a function to simulate modifications to files (this is also
easier for testing) and whenever this function is triggered, a push message is generated and broadcast
out. From the client perspective, you need to store the following information for each downloaded file:
version number of the file, the origin server id for the file, and consistency state of the file, where the
consistency state is (valid | invalid | TTR expired).

2. Implement pull-based approach. Here we are going to use a static TTR based approach. You can configure
this value in the configuration file (this is the default value) and use it for every file that particular peer
owns.

From the server perspective, whenever a download request comes in, the server must send the following
info along with the file: the origin server ID for the file, TTR, and last-modified-time of the file. If the file is

 3 CS550 Spring 2011 – PA#3

downloaded from a peer other than the origin server, then that peer simply uses the information stored
with that copy and passes it to the new downloader.

From the client perspective, a peer will periodically checks its local store and poll the server for those
copies whose TTR expired. And the server in reply will send a new TTR if the file is not modified since. Or a
negative reply if the file has been modified. The client will mark its copy invalid if the server reply is
negative. Otherwise the client updates the file's TTR and proceeds. The client side should provide users an
option to "refresh" an outdated file, which downloads a new copy of the file.

3. Implement both the push and pull based approach as described above but have configuration parameters
that can turn on and off these features.

Other requirements:

• No GUIs are required.

2 Evaluation and Measurement
Deploy at least 10 peers. They can be setup on the same machine (different directories) or different machines.
Each peer has in its shared directory at least 10 text files of varying sizes (for example 1k, 2k, ..., 10k). Initially only
the master copies of the files exist in the system. When a peer starts up, it will assume all files in a particular
directory are its owned files (master copies).

In order to perform the experiments, you need to make some changes to the query hit message, i.e., in addition to
your existing message format, add the last-modified-time of the file found to each query result, also attach a bit
indicating whether the message is from the origin server.

Do the following experiments:

1. Testing the effectiveness of PUSH. Let one peer do queries and downloads (and refreshes) randomly and
collect the query results for each query, statistically compute the percentage of invalid query results that
comes back (we define a query result to be invalid if the attached last-mod-time is less than that of the
query result from the origin server). The remaining peers simulate modifications of their own files and
broadcast invalidations. Do the same thing with 2, 3, and 4 peers that do queries, downloads, etc. and
collects statistics.

2. Testing the effectiveness of PULL. Let 2 to 3 peers do queries, downloads, and refreshes. The remaining
peers simulate modifications using an exponential distribution. Collect statistics of the percentage of
invalid query results. Do the above under different TTR values, for example: 1 min, 2 min, etc., you may
choose appropriate values depending on the distribution of the modifications.

3 What you will submit
When you have finished implementing the complete assignment as described above, you should submit your
solution to ‘digital drop box’ on blackboard.

Each program must work correctly and be detailed in-line documented. You should hand in:

1. Output: A copy of the output generated by running your program.
2. Program Design: A separate (typed) document of approximately 2-4 pages describing the overall program

design, a description of "how it works", and design tradeoffs considered and made. Also describe possible
improvements and extensions to your program (and sketch how they might be made).

3. A program listing containing in-line documentation. Please put comments around where you made
changes, for example:
/*--------- start change ----------*/
...

 4 CS550 Spring 2011 – PA#3

/*--------- end change ----------*/
This will make it easier to grade.

4. Tests: A separate description of the tests you ran on your program to convince yourself that it is indeed
correct. Also describe any cases for which your program is known not to work correctly.

5. Performance results.
6. Problem report: if your code does not work or does not work correctly, you should report this.

Please put all of the above into one .zip or .tar file, and upload it to ‘digital drop box’ on blackboard’. The name of
.zip or .tar should follow this format:

LastName_FirstName_PA3.zip.

Please do NOT email your files to the professor and TA!!

If you do the programming on BABBAGE machine, it's important to leave your source code in your BABBAGE
account.

In the meantime, you are required to submit a hardcopy of all your documentation files except the source code.
Please drop your hardcopy to TA’s mailbox (2nd floor of computer science department) by deadline.

4 Grading policy for all programming assignments
 Program Listing

o works correctly (including the quality or effectiveness of manual)------------- 50%
o in-line documentation -------- 15%

 Design Document
o quality of design ------------ 15%
o understandability of doc ------- 10%

 Thoroughness of test cases ---------- 10%

Grades for late programs will be lowered 20 points per day late.

