
1

-Sandeep Palur and Ajay Anthony
 (A20302187) (A20306352)

2

Introduction to Cloudkon

Cloudkon Architecture

Cloudkon Reloaded Architecture

Cloudkon Reloaded Improvements

Benchmarking results

Conclusion

Contributions

Demo

 CloudKon is a compact, light-weight, scalable, and
distributed task execution framework .

 Built on following Amazon components:

• EC2

• SQS

• DynamoDB

 Major Components in CloudKon:

• Client

• Server

• Global Request Queue (SQS)

• Client Response Queue (SQS)

 3

4

5

 1. Improved concurrency

 2. Bundled Response

 3. Efficient Monitoring

6

 Server
 Worker Thread (WT)

 1. Pulls task bundles from global request queue.

 2. Creates task thread in optimal concurrency mode.

 Task Thread (TT)

 1. Deletes the task from the global request queue.

 2. Checks for duplication with DynamoDB.

 3. Executes task and puts back response to client specific
array in Buffer.

7

 Buffer (BUF):

 1. Concurrent hash map

 Key :Client Response Queue link.

 Value: ArrayList of task responses.

 Send Response Thread (SRT):

 1. Pulls message bundles from buffer.

 2. Sends bundled response to clients.

 Monitor Thread (MT):

 1. Attaches object with task thread.

 2. Tracks utilization using object’s reference.

8

 Client
 Worker Thread (WT):

 1. Creates client response queue.

 2. Submits task to global request queue.

 3. Pulls messages from it’s response queue.

 4. Creates task threads using maximum concurrency mode.

 Task Thread (WT):

 1. Deletes message from response queue.

 2. Adds message in the concurrent ArrayList.

9

 1. Improved concurrency
• All tasks are processed concurrently.

• Reduces Latency.

• Increases throughput.

 2. Bundled Response:
• Reduces network overhead.

• Utilizes network bandwidth more effectively i.e. reducing the
probablity of network latency.

 3. Efficient Monitoring:
• Reduces network overhead .

• Reduces contention by 1/n, where n = no. of workers

 10

 Test-bed:
• Ran on Amazon EC2 instances experiments on
 us.east.1 datacenter of Amazon.
• Instance type – m1.large
• All instances have Linux OS with JRE 1.7

installed.
• Each instance runs both client and server.
• 2 client threads and 4 worker threads run on

each instance.
• Each instance submits 16000 tasks.

(8000/thread)
• Tasks: sleep 0 , 16, 128

 Scripts and programs developed specifically for
benchmarking:

 1. Shell Scripts (Bash): Throughput, Latency, File
transfer from EC2 instances.

 2. Parallel-SSH: For parallel execution on EC2.

 3. EC2 CLI (Command Line Interface): For instance
startup, terminate, Getting IP address, etc.

 4. AWS CLI (Command Line Interface): Mainly for
Dynamic Provisioning for SQS operations and EC2
dynamic instance startup.

 Throughput:
• sleep 0 tasks

 Throughput Comparison:

 Comparison of Sleeps for Throughput:
• sleep 0 tasks

 Efficiency:
• Homogenous workloads.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 100 200 300E
ff

ic
ie

n
c
y
 (
p

e
rc

e
n
ta

g
e
)

No. of Instances

sleep 128

sleep 128

0%

20%

40%

60%

80%

100%

0 100 200 300

E
ff

ic
ie

n
c
y
 (
p

e
rc

e
n
ta

g
e
)

No. of Instances

sleep 16

sleep 16

 Consistency:
• sleep 16 tasks

 Utilization:
• sleep 100 tasks

1

2

4

8

16

32

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73

U
ti

li
z
a
ti

o
n

Time (seconds)

8 nodes

8 nodes

1

2

4

8

16

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

U
ti

li
z
a
ti

o
n

Time (seconds)

4 nodes

4 nodes

 The evaluation of the CloudKon proves that it is
highly scalable and achieves a stable performance
over different scales.

 CloudKon achieves up to 87% efficiency.

 CloudKon was able to outperform other systems
like Sparrow and MATRIX on scales of 128
instances or more in terms of throughput.

19

 Throughput and efficiency experiments for sleep
(0,1,16,128) on the following scales
(1,2,4,8,16,32,64,128,256,512,1024).

 Our code was used for throughput and efficiency
benchmarking experiments in CloudKon paper
submitted for CCGRID 2014.

21

 Questions??

22

