
MATRIX-HPC 

Many-Task computing execution fabRIc at eXascale – HPC implementation 
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MATRIX-HPC ZHT and NoVHT 
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Simple Flowchart 
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Resource Stealing 

● Task is identified MTC or HPC with the number of nodes requested 

● If HPC task, check if the number of cores are sufficient on a single node 

● If yes, waits till the node is available for execution 

● If No, resource stealing is initiated 

● Neighbors are selected in the same way as chosen for work stealing 

● The idle cores information is collected from each node 

● Out of the selected nodes, again it is traversed to select the actual nodes sufficient for task execution 

 



Resource Stealing 

● Nodes are selected along with their indexes and number of cores available. 

● Tasks ID and description are updated to ZHT and NoVHT by building package. 

● ZHT_Insert is directly called by the worker. 

● After updating ZHT, worker migrates the tasks 

● The task migration is only adding the task id directly into the ready queue of selected nodes. 

● The task description updated on NoVHT consists of number of cores required divided accordingly to the 

available on all nodes 



Resource Stealing 

● After Migrating, it works the same with taking the task from ready queue. 

● Check for MTC or HPC. 

● HPC tasks migrated might be again subjected to work stealing. 

● States are not maintained yet for work stealing after migration of HPC tasks 

● As the tasks are completed, the information will be updated at the source which initiated the resource stealing. 

● Once the task is completed execution on all nodes, it is pushed to complete queue. 

 



Back off implementation 

● Two types of Back off time 

● When a task has sufficient cores on the same node, resource stealing is not initiated. 

● The ready_queue is locked until it is allocated to the task. 

● Idle_cores information is polled frequently. 

● If the sufficient cores are not available on the same node, resource stealing is initiated. 

● After receiving number of idle cores with each node, if sufficient cores are not available, the node implements 

a back off by releasing all the resources. 

● Once the back off time reaches threshold,  the task is pushed at the back of ready queue. 

 

 



Resource Release 

● Select available core information from all nodes 

● While getting the information, ready queue and idle_core variable is locked. 

● After selecting the nodes on which task will be launched, the resources locked on the nodes which will not be 

used are released 

● If sufficient cores are not available, back off is implemented and all the resources are released. 

 



Pseudo Code 

Resource_Stealing(num_of_cores,package) 

● Selected_neigh = select_nodes_in_random() 

● get_idle_core_information(idle_core_info) 

● Success=check_for_sufficient_cores(idle_core_info,num_of_cores,selected_neigh) 

● If(!success) 

●   release_resources(idle_core_info) 

● else 

●   for(i=0;i<selected_neigh_count) 

●      package= build_package_with_self_index() 

●      Update_ZHT_and_NoVHT(package) 

●      Migrate_Tasks(selected_neigh[i].index) 



Benchmarking 

● Tested till 6 nodes. 

● Each tasks needs at least 2 nodes to run 

● 10 cores for each task 

● Tested on Jarvis cluster. 

● Each node in Jarvis has 8 cores. 

● 1000 tasks of sleep 0 is passed to the schedulers. 

● Single client 



Benchmarking 



Advantages and Disadvantages 

● To start with, the advantage is that, all the cores on all systems will me mostly occupied since the resource 

stealing happens at the core level. 

● Resource Release happens very quickly if the nodes are not required to run the tasks. 

● The current implementation of random nodes might not work at higher scales, 

● Network overhead might be higher since for each HPC task broken into sub tasks to migrate, ZHT and 

NoVHT update needs to be done and sent across network. 

● If all the nodes are busy, resource stealing with high requirement for a task might lead to backing-off very 

often and hence increases turn around time. 



Future work 

● Complete system implementation 

● Test the system up-to 64 node scales and collect results. 

● The random selection needs to be modified in order increase performance. 

● A new node selection policy to distinguish between free nodes and busy nodes can be implemented 

● Try to decrease network overhead for HPC tasks. 



Questions? 


