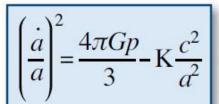
Introduction to Distributed Systems

Ioan Raicu

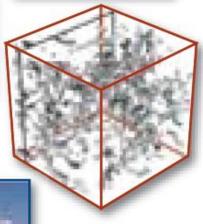
Computer Science Department
Illinois Institute of Technology

CS554: Data-Intensive Computing August 21st, 2013

Famous Quotes

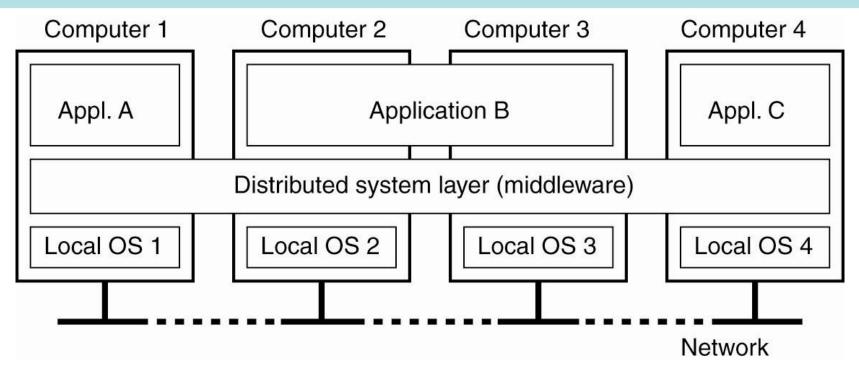

The advent of computation can be compared, in terms of the breadth and depth of its impact on research and scholarship, to the invention of writing and the development of modern mathematics.

Ian Foster, 2006


Science Paradigms

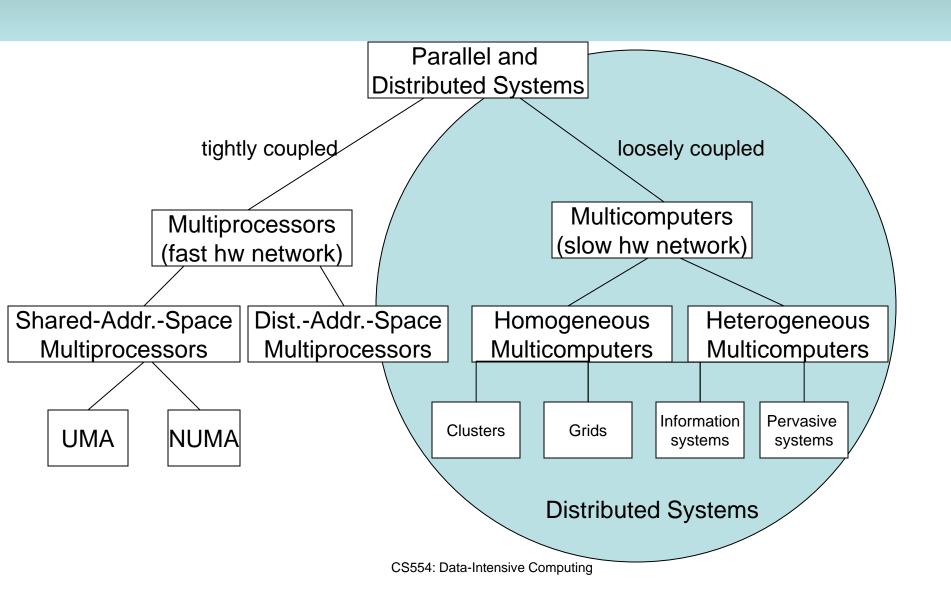
- Thousand years ago: science was empirical describing natural phenomena
- Last few hundred years: theoretical branch using models, generalizations
- Last few decades:

 a computational branch
 simulating complex phenomena
- Today: data exploration (eScience)
 unify theory, experiment, and simulation
 - Data captured by instruments or generated by simulator
 - Processed by software
 - Information/knowledge stored in computer
 - Scientist analyzes database/files using data management and statistics

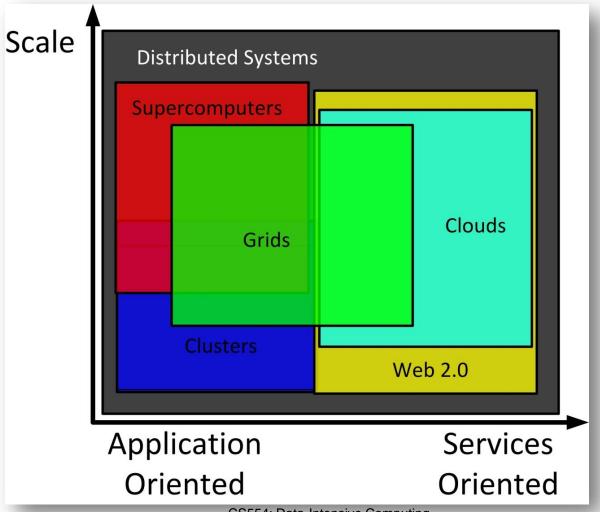

Distributed Systems

What is a distributed system?

"A collection of independent computers that appears to its users as a single coherent system"


-A. Tanenbaum

Distributed Systems



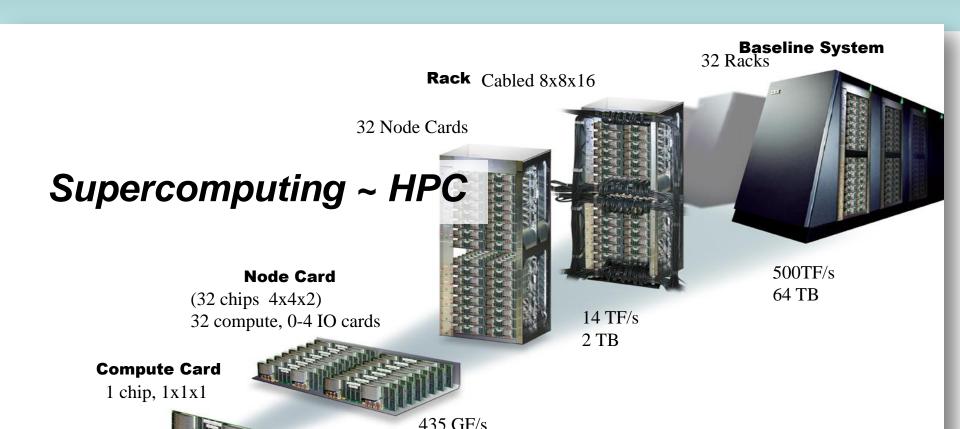
A distributed system organized as middleware. The middleware layer extends over multiple machines, and offers each application the same interface.

Distributed Systems

Distributed Systems: Clusters, Grids, Clouds, and Supercomputers

CS554: Data-Intensive Computing

Cluster Computing



Computer clusters using commodity processors, network interconnects, and operating systems.

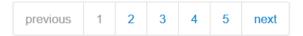
Supercomputing

Highly-tuned computer clusters using commodity

13.6 GF/s processors combined with custom network

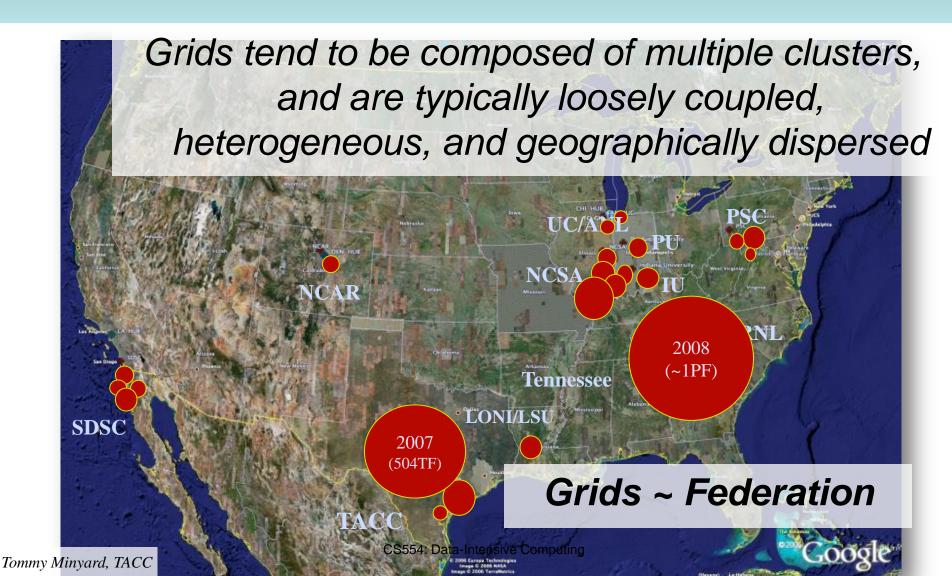
interconnects and customized operating system

Chip


Top Supercomputers from Top500

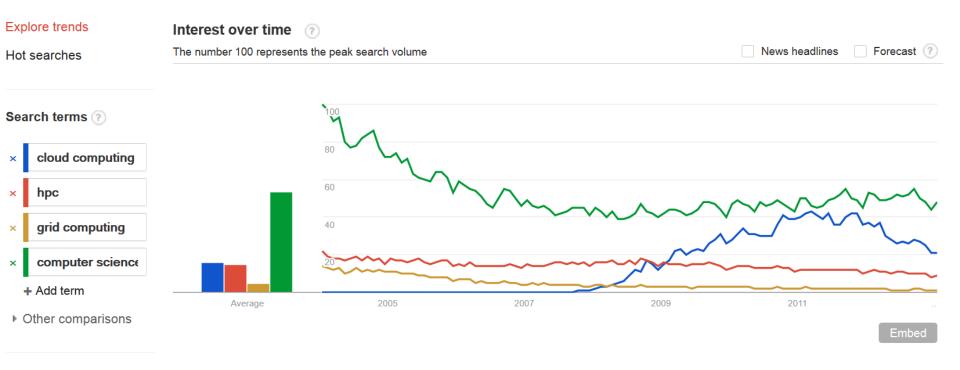
- Cray XT4 & XT5
 - Cray #1
 - Cielo #18
 - Hopper #19
- IBM BlueGene/L/P/Q
 - Sequia #2
 - Mira #4
 - Juqueen #5
 - Fermi #9
- GPU based
 - Titan #1
 - Tianhe-1A #8
 - Nebulae #12
- SGI Altix ICE
 - Plaiedas #14
- SPARC64 VIIIfx
 - K#3

Top500 List - November 2012


 R_{max} and R_{peak} values are in TFlops. For more details about other fields, check the TOP500 description.

Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
•	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560640	17590.0	27112.5	8209
2	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1572864	16324.8	20132.7	7890
3	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705024	10510.0	11280.4	12660
4	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786432	8162.4	10066.3	3945
5	Forschungszentrum Juelich (FZJ) Germany	JUQUEEN - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect IBM	393216	4141.2	5033.2	1970

CS554: Data-Intensive Computing

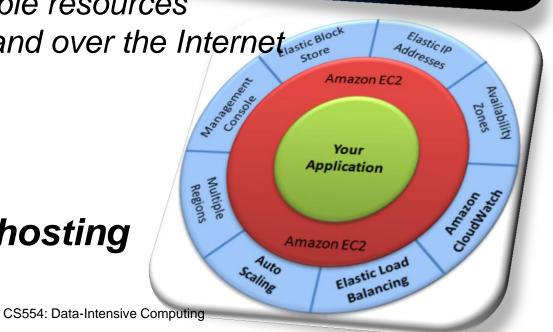

Grid Computing

Major Grids

- XSEDE (Formerly TeraGrid)
 - 200K-cores across 11 institutions and 22 systems over the US
- Open Science Grid (OSG)
 - 43K-cores across 80 institutions over the US
- Enabling Grids for E-sciencE (EGEE)
- LHC Computing Grid from CERN
- Middleware
 - Globus Toolkit
 - Unicore

Cloud Computing: A Mature Paradigm

Cloud Computing


 A large-scale distributed computing paradigm driven by:

- 1. economies of scale
- 2. virtualization
- 3. dynamically-scalable resources

4. delivered on demand over the Internet

Clouds ~ hosting

Windows Azure

Magellan +

DOE's Advanced Network Initiative

Major Clouds

- Industry
 - Google App Engine
 - Amazon
 - Windows Azure
 - Salesforce
- Academia/Government
 - Magellan
 - FutureGrid
- Opensource middleware
 - Nimbus
 - Eucalyptus
 - OpenNebula
 - OpenStack

Distributed vs. Single Systems

- Data sharing
 - Multiple users can access common database, data files,...
- Device/resource sharing
 - Printers, servers, CPUs,....
- Communication
 - Communication with other machines...
- Flexibility
 - Spread workload to different & most appropriate machines
- Extensibility
 - Add resources and software as needed

Distributed vs. Centralized Systems

Economics

- Microprocessors have better price/performance than mainframes
- Speed
 - Collective power of large number of systems
- Geographic and responsibility distribution
- Reliability
 - One machine's failure need not bring down the system
- Extensibility
 - Computers and software can be added incrementally

Disadvantages of Distributed Systems

- Software
 - Little software exists compared to PCs
- Networking
 - Still slow and can cause other problems (e.g. when disconnected)
- Security
 - Data may be accessed by unauthorized users

Key Characteristics of Distributed Systems

- Support for resource sharing
- Openness
- Concurrency
- Scalability
- Fault tolerance (reliability)
- Transparence

Resource Sharing

- Share hardware, software, data and information
- Hardware devices
 - Printers, disks, memory, ...
- Software sharing
 - Compilers, libraries, toolkits,...
- Data
 - Databases, files, …

Openness

- Definition?
- Hardware extensions
 - Adding peripherals, memory, communication interfaces...
- Software extensions
 - Operating systems features
 - Communication protocols

Concurrency

- In a single system several processes are interleaved
- In distributed systems: there are many systems with one or more processors
 - Many users simultaneously invoke commands or applications
 - Many servers processes run concurrently, each responding to different client request

Scalability

- Scale of system
 - Few PCs servers ->dept level systems->local area networks->internetworked systems->wide are network...
 - Ideally, system and application software should not change as systems scales
- Scalability depends on all aspects
 - Hardware
 - Software
 - networks

CS554: Data-Intensive Computing

Fault Tolerance

- Definition?
- Two approaches:
 - Hardware redundancy
 - Software recovery
- In distributed systems:
 - Servers can be replicated
 - Databases may be replicated
 - Software recovery involves the design so that state of permanent data can be recovered

Transparency in a Distributed System


Transparency	Description			
Access	Hide differences in data representation and how a resource is accessed			
Location	Hide where a resource is located			
Migration	Hide that a resource may move to another location			
Relocation	Hide that a resource may be moved to another location while in use			
Replication	Means that users do not know whether a replica or a master provides a service.			
Concurrency	Hide that a resource may be shared by several competitive users			
Failure	Hide the failure and recovery of a resource			
Persistence	Hide whether a (software) resource is in memory or on disk			

CS554: Data-Intensive Computing

Pitfalls When Developing Distributed Systems

- False assumptions made by first time developer:
 - The network is reliable.
 - The network is secure.
 - The network is homogeneous.
 - The topology does not change.
 - Latency is zero.
 - Bandwidth is infinite.
 - Transport cost is zero.
 - There is one administrator.

Questions

CS554: Data-Intensive Computing