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Introduction 

• MTC: Many-Task Computing 
• Bridge the gap between HPC and HTC 

• Many resources over short time periods 

• Loosely coupled apps with HPC orientations 

• Example: MapReduce, Workflows 

 

• Data analytics moving towards 

  fine granular tasks 
• Example: GAMESS(chemistry), 

   TPC-H(industry) 

 

• Traditional Batch Schedulers 
• Heavy weight (optimized for long running workloads) 

• Poor scalability (centralized) 

Image taken from: Sparrow: Scalable scheduling for sub-second parallel jobs. 

Tech. Rep. UCB/EECS-2013-29, University of California, Berkeley, 



Introduction 

• Large Scale Task Execution 
• Run on distributed resources 

 

• Workloads 

• Tasks 

• More in number  

• Shorter in length 

 

• Requirements for high performance 

• Concurrency 

• Load Balance 

• System Utilization 

 

 

 

 

 



Motivation 

• Current resources  

• Clusters & Super Computers  

• Alternatives?! 

 

• How about Clouds? 

• Large resources 

• Relatively easy to access 

• Scale up to infinite scales 

• Pay-as-you go model, pay only when you use it 

• Perfect for small to medium size projects with limited budget 

 



State-of-the-art job schedulers 

− Centralized Master/Slaves architecture 

− Scalability issues at petascale and beyond 

− Single point of failure 

− Example: SLURM, CONDOR, Falkon 

− Distributed Architectures 

− Hierarchical 

− several dispatchers in a tree-based topology 

− Example: Distributed Falkon, Dremel 

− Fully distributed 

− each computing node maintains its own job execution 

− Example: Sparrow, MATRIX 

 Common issues 

− Complex Design and Implementation 

− Poor load balancing 

− Poor system utilization 
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− Distributed Architectures 
− Hierarchical 

− several dispatchers in a tree-based topology 

− Example: Distributed Falkon, Dremel 

− Fully distributed 
− each computing node maintains its own job execution 

− Example: Sparrow, MATRIX 

 Common issues 

− Complex Design and Implementation 
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Amazon EC2 

• IaaS Cloud Service 

• Launch VMs and access remotely 

• Different instance types 

• Micro to HPC instances 

• Ability to launch more than 1000 instances 

• Availability rate 99.95% guaranteed  

• Reliable and secure 

 



Amazon Simple Queue Service (SQS) 

• Distributed message delivery queue 

• Highly scalable 

• Messages sent and read simultaneously  

• Messages sent to multiple servers 

• Reliable 

• Guarantees message delivery 

• At least once delivery 

• Multiple copies may be available and accessed 

• Secure 

• Through authentication 

 



Amazon Dynamo DB 

• No-SQL Key Value Store 

• Fully distributed  

• faster and more scalable than traditional DBs 

• Simple query support 

• Atomic operations support 

• Atomic read 

• Atomic write 
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Proposed Work 

• Use SQS as a task delivery component 

• Decouple Clients and Workers 

• Pushing vs. Pulling approach 

• Pushing 

• Local/global manager node needs to predict/decide 

• About the address of worker nodes. 

• Underlying network topology  

• Pulling 

• No need to know about workers 

• Workers decide for themselves 

• Load balancing 

• System Utilization 

 



CloudKon Architecture 



Task consistency 

• SQS only guarantees at least once delivery 

• Some workloads require exactly once execution of tasks! 

• Use DynamoDB to verify 

• Use conditional write 
Write if the task does not exist 

Throw exception if exists 

• Atomic operation 

• Using a single operation, the checking is done 

• Minimize the communication overhead 

 



Dynamic Provisioning 

• Dynamically scale up and down the system 

• Scale up 

 

 

 

• Scale down 

• If: 

• The worker goes idle (because of having no job to run!) 

• The rent time is closer than threshold to the rent unit value of time 

• Then: 

• Terminate the worker instance 

• Benefits: 

• No component needs to keep track of workers 

 

 

Use Provisioner 
component 

Check request 
queue length 

(periodically) 

Launch new worker if 
it’s getting larger 



Monitoring 

• Monitor workers for: 

• System utilization 

• Debug 

 

• Monitor Thread 

• Each worker thread has a monitor thread 

• Reports system utilization periodically 

• Able to report other details of each worker 

• Monitoring System 

• Reads the aggregate utilization results from store 



Communication Cost 

• Communication overhead is high on Cloud 

• Need to minimize the communication 

• Message batching 

• Bundle tasks together to send 

 

• Number of communications 

• Minimum possible number 



Implementation Details 

• Written in Java 

• Dependency 

• AWS Java SDK library  

• Apache Commons library 

• Google protocol buffer library 

• Serialization 

• Used Google Protocol Buffer  

 More efficient protocol than JSON 

• Simple and short code base 

• Only 1000 lines of code 

• Delivers 2X performance with less than 5% code base length 

CloudKon Sparrow Falkon 

Lines of code 1000+ 24000+ 33000+ 
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Throughput 

 

 

 

 

 

 

 

 

 

• 1 to 64 instances on Amazon EC2 

• 16K to 1M tasks 

• 5735 tasks/sec on the largest scale (64) 
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 Consistency effect on throughput 
 

 

 

 

 

 

 

 

 
 

 

 

• Duplicate task controller enabled/disabled 

• 30% overhead on average 

• Overhead decreasing on larger scales 
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Efficiency 

 

 

 

 

 

 

 

 

• 64 instances scale 

• High efficiency on 1 sec tasks (91.26%) 

• Moderate efficiency on tasks with 100s of ms length. 
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 Consistency effect on efficiency 
 

 

 

 

 

 

 

 

 
 

 

 

• Duplicate task controller enabled/disabled 

• Overhead decreasing on larger scales 
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Conclusion 

 

• Design and implement simple yet effective distributed 

task execution framework 

• Using cloud services like SQS, DynamoDB 

• Run on Public Cloud environment as an alternate 

resource 

• Optimum usage of cloud resources 

• Outperforming other state of the art systems 

• Sparrow 2013 

• Falkon 2007 

• High throughput and efficiency  



Future work 

• On Cloud Environment 
• Extend the evaluation scale to 1024 instances 

• Run real applications on CloudKon 
• Industrial benchmarks: TPC-H 

• Data Analytics: MapReduce applications (Hadoop workloads) 

• Scientific: GAMESS 

• Implement a SQS like service 
• Using ZHT distributed hash table as a building block 

• Make CloudKon infrastructure independent 

• Test CloudKon on private clouds (e. g. OpenStack) 

• On HPC environment 
• Create a tightly coupled system using our own Distributed Queue 

implementation  
• Deliver lower latency 

• Evaluate the performance on HPC Clusters and super computers 
• Run real applications 



Thank you 

• Questions?! 


