
CloudKon: a CLOUD-enabled

distributed tasK executiON framework

 Iman Sadooghi

Dr. Ioan Raicu

Data Intensive Computing (DataSys) Laboratory

Introduction

• MTC: Many-Task Computing
• Bridge the gap between HPC and HTC

• Many resources over short time periods

• Loosely coupled apps with HPC orientations

• Example: MapReduce, Workflows

• Data analytics moving towards

 fine granular tasks
• Example: GAMESS(chemistry),

 TPC-H(industry)

• Traditional Batch Schedulers
• Heavy weight (optimized for long running workloads)

• Poor scalability (centralized)

Image taken from: Sparrow: Scalable scheduling for sub-second parallel jobs.

Tech. Rep. UCB/EECS-2013-29, University of California, Berkeley,

Introduction

• Large Scale Task Execution
• Run on distributed resources

• Workloads

• Tasks

• More in number

• Shorter in length

• Requirements for high performance

• Concurrency

• Load Balance

• System Utilization

Motivation

• Current resources

• Clusters & Super Computers

• Alternatives?!

• How about Clouds?

• Large resources

• Relatively easy to access

• Scale up to infinite scales

• Pay-as-you go model, pay only when you use it

• Perfect for small to medium size projects with limited budget

State-of-the-art job schedulers

− Centralized Master/Slaves architecture

− Scalability issues at petascale and beyond

− Single point of failure

− Example: SLURM, CONDOR, Falkon

− Distributed Architectures

− Hierarchical

− several dispatchers in a tree-based topology

− Example: Distributed Falkon, Dremel

− Fully distributed

− each computing node maintains its own job execution

− Example: Sparrow, MATRIX

 Common issues

− Complex Design and Implementation

− Poor load balancing

− Poor system utilization

State-of-the-art job schedulers

− Centralized Master/Slaves architecture

− Scalability issues at petascale and beyond

− Single point of failure

− Example: SLURM, CONDOR, Falkon

State-of-the-art job schedulers

− Distributed Architectures
− Hierarchical

− several dispatchers in a tree-based topology

− Example: Distributed Falkon, Dremel

− Fully distributed
− each computing node maintains its own job execution

− Example: Sparrow, MATRIX

 Common issues

− Complex Design and Implementation

− Poor load balancing

− Poor system utilization

Agenda

Background

Proposed Work

 CloudKon Architecture

 Task Consistency

 Dynamic Provisioning

 Communication Cost

 Implementation details

Performance Evaluation

 Throughput

 Latency

 Consistency effect on throughput and latency

 Efficiency

 Consistency effect on efficiency

Conclusion and Future work

Amazon EC2

• IaaS Cloud Service

• Launch VMs and access remotely

• Different instance types

• Micro to HPC instances

• Ability to launch more than 1000 instances

• Availability rate 99.95% guaranteed

• Reliable and secure

Amazon Simple Queue Service (SQS)

• Distributed message delivery queue

• Highly scalable

• Messages sent and read simultaneously

• Messages sent to multiple servers

• Reliable

• Guarantees message delivery

• At least once delivery

• Multiple copies may be available and accessed

• Secure

• Through authentication

Amazon Dynamo DB

• No-SQL Key Value Store

• Fully distributed

• faster and more scalable than traditional DBs

• Simple query support

• Atomic operations support

• Atomic read

• Atomic write

Agenda

Intro and Motivation (5min)

Background (2min)

Proposed Work (6min)

 CloudKon Architecture

 Task Consistency

 Dynamic Provisioning 15s

 Monitoring15s

 Communication Cost 15s

 Implementation details

Performance Evaluation (5min)

 Throughput

 Consistency effect on throughput and latency

 Efficiency

 Consistency effect on efficiency

Conclusion and Future work (2min)

Proposed Work

• Use SQS as a task delivery component

• Decouple Clients and Workers

• Pushing vs. Pulling approach

• Pushing

• Local/global manager node needs to predict/decide

• About the address of worker nodes.

• Underlying network topology

• Pulling

• No need to know about workers

• Workers decide for themselves

• Load balancing

• System Utilization

CloudKon Architecture

Task consistency

• SQS only guarantees at least once delivery

• Some workloads require exactly once execution of tasks!

• Use DynamoDB to verify

• Use conditional write
Write if the task does not exist

Throw exception if exists

• Atomic operation

• Using a single operation, the checking is done

• Minimize the communication overhead

Dynamic Provisioning

• Dynamically scale up and down the system

• Scale up

• Scale down

• If:

• The worker goes idle (because of having no job to run!)

• The rent time is closer than threshold to the rent unit value of time

• Then:

• Terminate the worker instance

• Benefits:

• No component needs to keep track of workers

Use Provisioner
component

Check request
queue length

(periodically)

Launch new worker if
it’s getting larger

Monitoring

• Monitor workers for:

• System utilization

• Debug

• Monitor Thread

• Each worker thread has a monitor thread

• Reports system utilization periodically

• Able to report other details of each worker

• Monitoring System

• Reads the aggregate utilization results from store

Communication Cost

• Communication overhead is high on Cloud

• Need to minimize the communication

• Message batching

• Bundle tasks together to send

• Number of communications

• Minimum possible number

Implementation Details

• Written in Java

• Dependency

• AWS Java SDK library

• Apache Commons library

• Google protocol buffer library

• Serialization

• Used Google Protocol Buffer

 More efficient protocol than JSON

• Simple and short code base

• Only 1000 lines of code

• Delivers 2X performance with less than 5% code base length

CloudKon Sparrow Falkon

Lines of code 1000+ 24000+ 33000+

Agenda

Background

Proposed Work

 CloudKon Architecture

 Task Consistency

 Dynamic Provisioning

 Communication Cost

 Implementation details

Performance Evaluation

 Throughput

 Consistency effect on throughput

 Efficiency

 Consistency effect on efficiency

Conclusion and Future work

Throughput

• 1 to 64 instances on Amazon EC2

• 16K to 1M tasks

• 5735 tasks/sec on the largest scale (64)

0

1000

2000

3000

4000

5000

6000

7000

0 20 40 60 80

T
h

ro
u

g
h

p
u

t
(t

a
s

k
s

/s
e

c
)

instances

CloudKon

Sparrow

Falkon

 Consistency effect on throughput

• Duplicate task controller enabled/disabled

• 30% overhead on average

• Overhead decreasing on larger scales

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 20 40 60 80

O
v
e
rh

e
a
d

 (
%

)

T
h

ro
u

g
h

p
u

t
(t

a
s

k
s

/s
e

c
)

Instances

with Duplicate Controller

no Duplicate Controller

de-duplication overhead

Efficiency

• 64 instances scale

• High efficiency on 1 sec tasks (91.26%)

• Moderate efficiency on tasks with 100s of ms length.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 4 16 64 256 1024

E
ff

ic
ie

n
c
y

Task length (ms)

CloudKon

Sparrow

Falkon

 Consistency effect on efficiency

• Duplicate task controller enabled/disabled

• Overhead decreasing on larger scales

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 4 16 64 256 1024

E
ff

ic
ie

n
c

y

Task length (ms)

With duplicate controller

no duplicate controller

Agenda

Background

Proposed Work

 CloudKon Architecture

 Task Consistency

 Dynamic Provisioning

 Communication Cost

 Implementation details

Performance Evaluation

 Throughput

 Latency

 Consistency effect on throughput and latency

 Efficiency

 Consistency effect on efficiency

Conclusion and Future work

Conclusion

• Design and implement simple yet effective distributed

task execution framework

• Using cloud services like SQS, DynamoDB

• Run on Public Cloud environment as an alternate

resource

• Optimum usage of cloud resources

• Outperforming other state of the art systems

• Sparrow 2013

• Falkon 2007

• High throughput and efficiency

Future work

• On Cloud Environment
• Extend the evaluation scale to 1024 instances

• Run real applications on CloudKon
• Industrial benchmarks: TPC-H

• Data Analytics: MapReduce applications (Hadoop workloads)

• Scientific: GAMESS

• Implement a SQS like service
• Using ZHT distributed hash table as a building block

• Make CloudKon infrastructure independent

• Test CloudKon on private clouds (e. g. OpenStack)

• On HPC environment
• Create a tightly coupled system using our own Distributed Queue

implementation
• Deliver lower latency

• Evaluate the performance on HPC Clusters and super computers
• Run real applications

Thank you

• Questions?!

