
Overview on ZHT

1

 General terms
 Overview to NoSQL dabases and key-value

stores
 Introduction to ZHT
 CS554 projects

2

 Relational databases
 Query with SQL

 DB2, MySQL, Oracle, SQL Server

 CS 425, 525
 NoSQL databses

 Loose consistency model

 Simpler design

 High performance

 Distributed design

3

 Key-Value store

 ZHT, Dynamo, Memcached, Cassandra, Chord

 Document Oriented Databases

 MongoDB, Couchbase

 Graph databases

 Neo4J, Allegro, Virtuoso

4

 Another name for Distributed Hash Table

5

Node

1 Node

2
...

Node

nNode

n-1

Client 1 … n

hash

Key

j

Value j

Replica

1

hash

Key

k

Value j

Replica

2

Value j

Replica

3

Value k

Replica

1 Value k

Replica

2

Value k

Replica

3

6

7

 Updating membership tables

 Planed nodes join and leave: strong consistency

 Nodes fail: eventual consistency

 Updating replicas

 Configurable

 Strong consistency: consistent, reliable

 Eventual consistency: fast, availability

8

 Many DHTs: Chord, Kademlia, Pastry,
Cassandra, C-MPI, Memcached, Dynamo ...

 Why another?

Name Impl.

Routing
Time

Persistence
Dynamic

membership

Append
Operation

Cassandra Java Log(N) Yes Yes No

C-MPI C Log(N) No No No

Dynamo Java
0 to

Log(N)
Yes Yes No

Memcached C 0 No No No

ZHT C++ 0 to 2 Yes Yes Yes

9

 ZHT Bench: Benchmarking mainstream NoSQL
databases

 ZHT Cons: Eventual consistency support for ZHT
 ZHT DMHDFS: Distributed Metadata

Management for the Hadoop File System
 ZHT Graph: Design and implement a graph

database on ZHT
 ZHT OHT: Hierarchical Distributed Hash Tables
 ZHT ZST: Enhance ZHT through Range Queries

and Iterators

10

 IBM Blue Gene/P supercomputer

 Up to 8192 nodes

 32768 instance deployed

 Commodity Cluster

 Up to 64 node

 Amazon EC2

 M1.medium and Cc2.8xlarge

 96 VMs, 768 ZHT instances deployed

11

 Familiar with Linux and it’s command line
 Shell scripting language (eg. Bash, zsh…)
 Programming skills in C++/C (except

benchmark)
 GCC compiler
 No object oriented skill needed

12

 Goal: Extensively benchmarking NoSQL
databases and analysis performance data.

 ZHT, MongoDB, Cassandra
 Neo4J (experiment for Graph)
 And others…
 Metrics

 Latency and its distribution , throughput
 Parameters

 Message size
 Scales
 Key Distributions

13

 Goal 1: allow replicas serve read operation
 Goal 2: maintain eventual consistency

between replicas
 Goal 3: make it scale (pretty hard!)

 Optional goal: allow replicas serve write

requests and maintain consistency (applying
Paxos protocol, even harder)

14

 What is metadata?
 Goal: improve HDFS performance by adding

distributed metadata service
 Requirement: experience with Hadoop and

HDFS; strong programming skill in both Java
and C++

15

1

10

100

1000

1 2 4 8 16 32 64 128 256 512

T
im

e
 P

e
r

O
p

e
ra

ti
o

n

(m
s)

Number of Nodes

Fusionfs

 Goal: build a graph databases on top of ZHT
 How: construct a mapping from key-value

store interface to graph interface

16

 Goal: adding a proxy level to ZHT
architecture so to reduce concurrency stress
to each server

 Easy: make it work and scale
 Hard: handle failures

17

 Goal: design and implement new interface
methods to ZHT

 Iterator: next/previous operation

 Range get/put: given a range of key, return a
series of results in one request loop

 How?

 Sorted map

 B+ tree (bold!)

18

 Communication: come and talk to me (by
appointment)

 Make good use of Google
 Fail quick, fail early, fail cheap.
 Fast iteration: very small but frequent

progress

 Why bother? 80% points from projects!

19

Welcome abroad
and enjoy!

Tonglin Li

tli13@hawk.iit.edu
http://datasys.cs.iit.edu/projects/ZHT/

20

mailto:tli13@hawk.iit.edu
http://datasys.cs.iit.edu/projects/ZHT/

