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• Swift is a parallel scripting language for multicores, clusters, grids, clouds, 
and supercomputers 

– for loosely-coupled applications - application and utility programs linked by 
exchanging files 

– debug on a laptop, then run on a Cray 

• Swift is easy to write 
– it’s a simple high-level functional language with C-like syntax 

– Small Swift scripts can do large-scale work 

• Swift is easy to run: contains all services for running Grid workflow - in one 
Java application 

– untar and run – Swift acts as a self-contained grid or cloud client 

– Swift automatically runs scripts in parallel – usually with no user input 

• Swift is fast: based on a powerful, efficient, scalable and flexible Java 
execution engine 

– scales readily to millions of tasks 

• Swift usage is growing: 
– applications in neuroscience, proteomics, molecular dynamics, biochemistry, 

economics, statistics, earth systems science, and more. 
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When do you need Swift? 
Typical application: protein-ligand docking for drug screening 

 2M+ ligands 

(Mike Kubal, Benoit Roux, and others) 

(B) 

O(100K) 
drug 

candidates 

Tens of fruitful 
candidates for 
wetlab & APS 

O(10) 
proteins 
implicated 
in a disease 

1M 
compute 

jobs 

X … 

T1af7 T1r69 T1b72 
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Submit host 
(Laptop, Linux login node…) 

Workflow 
status 

and logs 

Java application 

Compute 
nodes 

f1 

f2 

f3 

a1 

a2 

Data server 

f1 f2 f3 

Provenance 
log 

script 
App 
a1 

App 
a2 

site 
list 

app 
list 

File 
transport 

Swift supports clusters, grids, and supercomputers. 
Dowload, untar, and run 

Solution:  parallel scripting for high level parallellism 
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A simple Swift script: functions run programs 

1 type image;  // Declare a “file” type. 
2   
3 app (image output) rotate (image input) { 
4 { 
5     convert  "-rotate"  180  @input  @output ; 
6 } 
7   
8 image oldimg <"orion.2008.0117.jpg">; 
9 image newimg <"output.jpg">; 
10   
11 newimg = rotate(oldimg);   // runs the “convert” app 

5 
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A simple Swift script: functions run programs 

1 type image;  // Declare a “file” type. 
2   
3 app (image output) rotate (image input) { 
4 { 
5     convert  "-rotate"  180  @input  @output ; 
6 } 
7   
8 image oldimg <"orion.2008.0117.jpg">; 
9 image newimg <"output.jpg">; 
10   
11 newimg = rotate(oldimg);   // runs the “convert” app 

6 

“application” 
wrapping function 
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A simple Swift script: functions run programs 

1 type image;  // Declare a “file” type. 
2   
3 app (image output) rotate (image input) { 
4 { 
5     convert  "-rotate"  180  @input  @output ; 
6 } 
7   
8 image oldimg <"orion.2008.0117.jpg">; 
9 image newimg <"output.jpg">; 
10   
11 newimg = rotate(oldimg);   // runs the “convert” app 

7 

Input file Output file 

Actual files 
to use 
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A simple Swift script: functions run programs 

1 type image;  // Declare a “file” type. 
2   
3 app (image output) rotate (image input) { 
4 { 
5     convert  "-rotate"  180  @input  @output ; 
6 } 
7   
8 image oldimg <"orion.2008.0117.jpg">; 
9 image newimg <"output.jpg">; 
10   
11 newimg = rotate(oldimg);   // runs the “convert” app 

8 

Invoke the “rotate” 
function to run the 

“convert” application 
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Execution is driven by data flow 

1 (int r) myproc (int i) 
2 { 
3      j = f(i);     
4     k = g(i); 
5     r = j + k; 
6 } 

 
7 f() and g() are computed in parallel 
8 myproc() returns r when they are done 

 
9 This parallelism is AUTOMATIC 
10 Works recursively down the program’s call graph 

 
 
 

9 
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Parallelism via foreach { } 

1 type image;  
2   
3 (image output) flip(image input) { 
4   app { 
5     convert "-rotate" "180" @input @output; 
6   } 
7 } 
8   
9 image observations[ ] <simple_mapper; prefix=“orion”>; 
10 image flipped[ ]           <simple_mapper; prefix=“flipped”>; 
11   
12   
13   
14 foreach obs,i in observations { 
15   flipped[i] = flip(obs);   
16 } 

 

10 

Name outputs based on index 

Process all dataset members in parallel 

Map inputs from local directory 
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foreach sim in [1:1000] { 
    (structure[sim], log[sim]) = predict(p, 100., 25.); 
} 
result = analyze(structure) 

… 
1000 

Runs of the 
“predict” 

application 

Analyze() 

T1af
7 

T1r6
9 

T1b72 

Large scale parallelization with simple loops 
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… 
8760 

Runs of the 

“AMPL” 

modeling 

application 

for DOE 

power grid 

transmission 

simulation 

Analyze() 

Similar patterns handle diverse app domains 

foreach hour in [0:365*24] { 

    (structure[hour], log[hour]) =  

       model(p, 100., 25.); 

} 

result = analyze(structure) 
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Nested loops generate massive parallelism 

1. Sweep( ) 
2. { 
3.    int nSim = 1000; 
4.    int maxRounds = 3; 
5.    Protein pSet[ ] <ext; exec="Protein.map">; 
6.    float startTemp[ ] = [ 100.0, 200.0 ]; 
7.    float delT[ ] = [ 1.0, 1.5, 2.0, 5.0, 10.0 ]; 
8.    foreach p, pn in pSet { 
9.       foreach t in startTemp { 
10.          foreach d in delT { 
11.             ItFix(p, nSim, maxRounds, t, d); 
12.          } 
13.       } 
14.    } 
15. } 
16.   
17. Sweep(); 13 

10 proteins x 1000 simulations x 
3 rounds x 2 temps x 5 deltas 

= 300K tasks  
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Complex parallel workflows can be easily expressed 
 Example fMRI preprocessing script below is automatically parallelized 

(Run snr) functional ( Run r, NormAnat a,  

                                    Air shrink ) 

{      Run yroRun = reorientRun( r , "y" ); 

Run roRun = reorientRun( yroRun , "x" ); 

Volume std = roRun[0]; 

Run rndr = random_select( roRun, 0.1 ); 

AirVector rndAirVec = align_linearRun( rndr, std, 12, 1000, 1000, "81 3 3" ); 

Run reslicedRndr = resliceRun( rndr, rndAirVec, "o", "k" ); 

Volume meanRand = softmean( reslicedRndr, "y", "null" ); 

Air mnQAAir = alignlinear( a.nHires, meanRand, 6, 1000, 4, "81 3 3" ); 

Warp boldNormWarp = combinewarp( shrink, a.aWarp, mnQAAir ); 

Run nr = reslice_warp_run( boldNormWarp, roRun ); 

Volume meanAll = strictmean( nr, "y", "null" ) 

Volume boldMask = binarize( meanAll, "y" ); 

snr = gsmoothRun( nr, boldMask, "6 6 6" ); 

} 

(Run or) reorientRun (Run ir,  
                                     string direction) { 
        foreach Volume iv, i in ir.v { 
                or.v[i] = reorient(iv, direction); 
        } 
  } 
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Spatial normalization of functional run 

reorientRun

reorientRun

reslice_warpRun

random_select

alignlinearRun

resliceRun

softmean

alignlinear

combinewarp

strictmean

gsmoothRun

binarize

reorient/01

reorient/02

reslice_warp/22

alignlinear/03 alignlinear/07alignlinear/11

reorient/05

reorient/06

reslice_warp/23

reorient/09

reorient/10

reslice_warp/24

reorient/25

reorient/51

reslice_warp/26

reorient/27

reorient/52

reslice_warp/28

reorient/29

reorient/53

reslice_warp/30

reorient/31

reorient/54

reslice_warp/32

reorient/33

reorient/55

reslice_warp/34

reorient/35

reorient/56

reslice_warp/36

reorient/37

reorient/57

reslice_warp/38

reslice/04 reslice/08reslice/12

gsmooth/41

strictmean/39

gsmooth/42gsmooth/43gsmooth/44 gsmooth/45 gsmooth/46 gsmooth/47 gsmooth/48 gsmooth/49 gsmooth/50

softmean/13

alignlinear/17

combinewarp/21

binarize/40

reorient

reorient

alignlinear

reslice

softmean

alignlinear

combine_warp

reslice_warp

strictmean

binarize

gsmooth

Dataset-level 
workflow 

Expanded (10 volume)  workflow 
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Submit host 
(Laptop, Linux server, …) 

Workflow 
status 

and logs 

Java application 

Compute 
nodes 

f1 

f2 

f3 

a1 

a2 

Data server 

f1 f2 f3 

Provenance 
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a1 
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Swift supports clusters, grids, and supercomputers. 
Dowload, untar, and run 

Running Swift scripts 
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Running Swift at the ALCF 

• Fully contained Java grid client 

• Run swift on a BG/P login host 

– Soon can run Swift from an external host 

• Uses (and needs) ZeptoOS 

– Code must be compiled for ZeptoOS compatibility 

– Typically we use standard GNU toolchain 

• “Jets” allows multiple socket-based MPICH2 
apps to run across worker nodes 

– Trying to extend this to enable higher performance 
MPI stacks to run in same manner 
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Software stack for Swift on ALCF BG/Ps 

Swift: 
scripting language, task coordination, 
throttling, data management, restart 

Coaster/Falkon execution provider: 
per-node agents for fast task dispatch 
across all nodes in Cobalt job(s) 

ZeptoOS: 
complete, high performance Linux 
compute node OS with full fork/exec 

Swift 
scripts 

Shell 
scripts 

App 
invocations 

applications 
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Swift app: homology-free protein structure prediction 

The laboratories of Karl Freed and Tobin Sosnick use Beagle to develop and 
validate methods to predict protein structure using homology-free 
approaches. 

 

A. Adhikari (under K. Freed and T. Sosnick) has developed new structure 
prediction 
techniques based on Monte Carlo simulated annealing  which 
employ novel, compact molecular representations and innovative “moves” of 
the protein backbone to achieve accurate prediction with far less computation 
then previous methods. One of the applications of the method involves 
rebuilding local regions in protein structures, called “loop modeling”,  a 
problem which the group  tackled with considerable success in the CASP 
protein folding tournament(shown in right).They are now testing further 
algorithmic innovations using the computational power of Beagle. 

 

 

 
Results:  The group is now developing a new iterative algorithm for predicting 
protein structure and folding pathway starting only from the amino acid 
sequence. In progress, no publications yet from Beagle studies. 
 
 
 
 

 

 

 

 

 

T0623, 25 res.  
8.2Å to 6.3Å  

 (excluding tail region) 

T0585,45 res.  15.5Å to 
9.1Å 

Protein loop modeling. Courtesy A. 
Adhikari 

Native 
OOPS modeling 

Initial 
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Swift app: analysis & visualization of high-res climate models 

Climate models are continuing to increase both their resolution and the 
number of variables resulting in multi-terabyte model outputs.  This 
large volume of data overwhelms the series of processing steps used to 
derive climate averages and produce visualizations.  Since many of the 
tasks in the post-processing sequence are independent, we have 
applied task-parallel scripting to speed up the post-processing.  We 
have re-written portions of the complex shell script that process output 
from the Community Atmosphere Model in Swift, a high-level implicitly-
parallel scripting langauge that uses data dependencies to 
automatically parallelize a workflow.  This has resulted in valuable 
speedups in model analysis for this heavily-used procedure. 
 
Work of: J Dennis, M Woitasek, S Mickelson, R Jacob, J Wozniak 
K Schuchardt 
 

AMWG Diagnostic Package Results: 

          Rewriting the AMWG Diagnostic                               

Package in Swift created a 3X                                          speedup.  
 
(a) The AMWG Diagnostic Package was used to calculate the 

climatological mean files for 5 years of 0.10 degree up-sampled data 
from a 0.25 degree CAM-SE cubed sphere simulation.  This was ran 
on fusion, a cluster at Argonne, on 4 nodes using one core on each. 

(b) The AMWG Diagnostic Package was used to compare two data sets.  
The data consisted of two sets of 30 year, 1 degree monthly average 
CAM files.  This was ran on one data analysis cluster node on mirage 
at NCAR. 

(c) The AMWG Package was used to compare 10 years of 0.5 degree 
resolution CAM monthly output files to observational data.  This 
comparison was also ran on one node on mirage. 
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Swift app: Protein-nucleic acid interaction modeling 

M. Parisien (with T. Sosnick, T. Pan, and K. Freed) used Beagle to develop a first-generation algorithm for 
the prediction of the RNA-protein interactome.  

 
Non-coding RNAs often function in cells through specific interactions with their protein partners. 
Experiments alone cannot provide a complete picture of the RNA-protein interactome. To complement 
experimental methods, computational approaches are highly desirable. No existing method, however, can 
provide genome-wide predictions of docked RNA-protein complexes. 
the application of computational predictions, together with experimental methods, will provide a more 
complete understanding on cellular networks and function of RNPs. The approach makes use of a rigid-
body docking algorithm and a scoring function custom- tailored for protein-tRNA interactions. Using Swift, 
Beagle screened about 300 proteins per day on 80 nodes of 24 cores (11% of the total XE6’s power). 
  

Results: the scoring function can identify the native docking conformation in large sets of decoys 
(100,000) for many known protein-tRNA complexes (4TRA shown here). (left) Scores for true positive 
complexes (●)(N=28) are compared to true negative ones of low (▼)(N=40) and high (▲) (N=40) isoelectric 
points. (right) Because the density curve of the true positives, which have pI < 7, has minimal overlap with 
the curve of the low pI true negatives (blue area), the scoring function has the specificity to identify tRNA-
binding proteins.  Protein-DNA interactions are being similarly studied. 
 
 
 
 
 
 
 
 
 
 
 
Systematic prediction and validation of RNA-protein interactome. 
Parisien M, Sosnick TR, Pan T. Poster; Kyoto, June 12-19, 2011, 
RNA Society. Manuscript in progress. 
 
 
 

 

 

 

 

 

Protein-RNA interaction. Courtesy M. Parisien  

Docked complexes: (L) tRNA docked 
at many positions. 
 
 
 
 
 (R) Many conformations in a docking 
site testing site robustness. 
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Swift app: glass structure modeling (theoretical chemistry) 

This project models of aspects of glass structure at a theoretical 
chemistry level. (Hocky/Reichman) 
 
Recent studies of the glass transition in model systems have focused 
on calculating from theory or simulation what is known as the “mosaic 
length”. This project  evaluated a new “cavity method” for measuring 
this length scale.  Correlation functions are calculated at the interior 
of cavities of varying sizes and averaged over many independent 
simulations to determine a thermodynamic length. Using Swift on 
Beagle, Hocky investigated whether this thermodynamic length 
causes variations among seemingly identical systems. ~1M Beagle 
CPU hours were used. 
 
Results: Three simple models of glassy behavior were studied. All 
appear the same (top, abc) but only two of which have particles 
relaxing at the same rate for the same temperature (top, d). This 
would imply that the glass structure does not dictate the dynamics. A 
new computational technique was used to extract a length scale on 
which the liquid is ordered in an otherwise undetectable way.  Results 
(bottom) showed that using this length we can distinguish the two 
systems which have the same dynamics as separate from the third 
which has faster dynamics than the other two.  
 
A manuscript is in preparation for Physical Review Letters. 
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Swift app: modeling climate impact on watershed hydrology 

Projecting biofuel production impact on hydrology (E. Yan, Y. 
Demisie) 

 

SWAT – model – Soil and Water Assessment Tool 

 

This project studies the impact of global temperature 
increase on the Upper Mississippi River Basin on water and 
plant productivity. It is in the process of combining future 
climate data obtained from a statistically downscaled global 
circulation model (GCM) into the Upper Mississippi River 
Basin model. The results from these models will be used in 
the proposed study to evaluate the relative performance of 
the proposed coupling of climate and hydrology models. 

 

Results of this research demonstrate that plausible changes 
in temperature and precipitation caused by increases in 
atmospheric greenhouse gas concentrations could have 
major impacts on both the timing and magnitude of runoff, 
soil moisture, water quality, 
water availability, and crop yield (including energy crops) in 
important agricultural areas. 

 

 

Visualization of multiple layers of SWAT 
hydrology model. Courtesy E. Yan. 
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Swift app: hybrid multiscale subsurface modeling 

Credit: Karen Schuchardt , Bruce Palmer, Khushbu Agarwal, Tim Scheibe, PNNL 

Multiscale subsurface modeling using the STOMP 
application 

Integrates STOMP and SPH application codes 

Executes MPI, serial, and viz apps form Swift on 
NERSC Cray resources Franklin and Hopper 

Design and Implementation of Many Parallel 
Task Hybrid Subsurface Model, (K Agarwal, J 
Chase, K Schuchardt, T Scheibe, B Palmer, T 
Elsethagen, PNNL, MTAGS 2011 at SC11. 
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Swift app: econ/land use models for CIM-EARTH and RDCEP 

The CIM-EARTH project develops a large-scale integrated modeling 
framework for decision makers in climate and energy policy.  (Foster, 
Elliott) 
 
Beagle is being used to study land use, land cover, and the impacts of 
climate change on agriculture and the global food supply.  Using a 
DSSAT 4.0 (“Decision Support System for Agrotechnology Transfer”) 
crop systems model ported from Windows, a parallel simulation 
framework was implemented using Swift. Benchmarks of this 
framework have been performed on a prototype simulation campaign, 
measuring yield and climate impact for a single crop (maize) across 
the conterminous USA with daily weather data and climate model 
output spanning 120 years (1981-2100) and 16 different 
configurations of local management (fertilizer and irrigation) and 
cultivar choice.  

 

Preliminary results of parallel DSSAT on Beagle have been presented 
in an NSF/advisory board meeting of the CIM-EARTH project. At right, 
top 2 maps: Preliminary results of parallel DSSAT: maize yields 
across the USA with intensive nitrogen application and full irrigation; 
bottom 2 maps show results with no irrigation. Each model run is 
~120,000 DSSAT invocations. 

 

 

 

 

 

            DSSAT models of corn 
yield. 
Courtesy J. Elliott and K. 
Maheshwari 
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Performance: Proteomics on BG/P 

26 

4,127 PTMap jobs with Swift/Falkon on BG/P in 3 minutes 
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Performance: SEM for fMRI on Sun Constellation “Ranger”  

27 

Executing 418K SEM models in 41 hours running Swift with coasters on Ranger 
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Swift work in progress 

• ExM: extending Swift to the exascale realm 
– Jets: Running multiple MPI jobs under Swift agents 

– Turbine: Scaling up Swift with fully parallel evaluation 

– Collective data management: adapting Swift data 
management to best use storage hardware (broadcast, 
local RAM disk, gather() primitives) 

• GPSI web portal: enables Swift use without 
programming 

• Integration with Globus Online 
– Swift as an execution service under GO 

– Swift to use GO as a data transport service 
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ExM project: scaling many-task computing to exascale 

• Sponsored under DOE ASCR X-Stack program 
• Extend Swift: tasks can be lightweight functions 

– Use Swift for the high-level logic of exascale applications 
– Retain functional semantics of input-process-output 

• Highly distributed program evaluation 
– Re-building Swift based on an intermediate representation (“TIC”) 

that lends itself to highly parallel evaluation 
– Scales to massive computing complexes 
– Distributed future store accessible in the manner of global arrays 
– Highly distributed program evaluation 
– Optimizations to reduce access to global future store 

• Transparent distributed local storagemanagement 
– MosaStore aggregates local/RAM filesystems, make access more 

transparent through DHT methods 

29 
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ExM: Scaling the many-task model to exascale 

30 
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Swift: 
scripting language, task coordination, 
throttling, data management, restart 

Falkon: 
ultra-fast task dispatch and load 
balancing over psets 

ZeptoOS: 
complete, high performance 
Linux with full fork/exec 

Swift 
scripts 

Shell 
scripts 

Command 
lists 

applications 

Swift: 
scripting language, task coordination, 
throttling, data management, restart 

Falkon: 
ultra-fast task dispatch and load 
balancing over psets 

ZeptoOS: 
complete, high performance 
Linux with full fork/exec 

Swift 
scripts 

Shell 
scripts 

Command 
lists 

applications 

GPSI science portal for Swift workflow 
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• Swift is a parallel scripting language for multicores, clusters, grids, clouds, 
and supercomputers 

– for loosely-coupled applications - application and utility programs linked by 
exchanging files 

– debug on a laptop, then run on a Cray 

• Swift is easy to write 
– it’s a simple high-level functional language with C-like syntax 

– Small Swift scripts can do large-scale work 

• Swift is easy to run: contains all services for running Grid workflow - in one 
Java application 

– untar and run – Swift acts as a self-contained grid or cloud client 

– Swift automatically runs scripts in parallel – usually with no user input 

• Swift is fast: based on a powerful, efficient, scalable and flexible Java 
execution engine 

– scales readily to millions of tasks 

• Swift usage is growing: 
– applications in neuroscience, proteomics, molecular dynamics, biochemistry, 

economics, statistics, earth systems science, and more. 
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