Cloud Programming and Software Environments

The Swift parallel scripting language

Slides courtesy of Michael Wilde
loan Raicu

Computer Science Department
lllinois Institute of Technology

. .°;...-..i... b .
e ® CS554: Data-Intensive Computing A
':.'-:0..0. September 30, 2013 A

I rgonne

. . NATIONAL
Computation Institute LABORATORY



Swift is a parallel scripting language for multicores, clusters, grids, clouds,
and supercomputers

— for loosely-coupled applications - application and utility programs linked by
exchanging files

— debug on a laptop, then run on a Cray

Swift is easy to write
— it’s a simple high-level functional language with C-like syntax
— Small Swift scripts can do large-scale work

Swift is easy to run: contains all services for running Grid workflow - in one
Java application

— untar and run — Swift acts as a self-contained grid or cloud client
— Swift automatically runs scripts in parallel — usually with no user input

Swift is fast: based on a powerful, efficient, scalable and flexible Java
execution engine

— scales readily to millions of tasks
Swift usage is growing:

— applications in neuroscience, proteomics, molecular dynamics, biochemistry,
economics, statistics, earth systems science, and more.

www.ci.uchicago.edu/swift , Argonneo

AAAAAAAAAAAAAAAAAA



When do you need Swift?

Typical application: protein-ligand docking for drug screening

O(10) O(100K) [
implicated candidates |.. ay
o

1M
compute
jobs

Tens of fruitful

=N I
0 o NN K _on, candidates for
pro-f-o” () Y 5. wetlab & APS

po3361. , Argonne°

AAAAAAAAAAAAAAAAAA



Solution: parallel scripting for high level parallellism

a serve F|Ie
é transort

Submit host

(Laptop, Linux login node...)

\

script
A;P]p > P;p)p Java application
Site | [app v/\ |
| list | list Workflow -
status rovenance
and logs lo

—

Swift supports clusters, grids, and supercomputers.

Dowload, untar, and run

www.ci.uchicago.edu/swift



A simple Swift script: functions run programs

type image; // Declare a “file” type.

app (image output) rotate (image input) {
{
convert "-rotate" 180 @input @output ;

}

image oldimg <"orion.2008.0117.jpg">;
image newimg <"output.jpg">;

newimg = rotate(oldimg); // runs the “convert” app

www.ci.uchicago.edu/swift i Argonneo

AAAAAAAAAAAAAAAAAA




A simple Swift script: functions run programs

A Tlare a “file” type.

wrapping function

app (image output) rotate (image input) {
{
convert "-rotate" 180 @input @output ;

}

image oldimg <"orion.2008.0117.jpg">;
image newimg <"output.jpg">;

newimg = rotate(oldimg); // runs the “convert” app

www.ci.uchicago.edu/swift A Argonne°

AAAAAAAAAAAAAAAAAA



A simple Swift script: functions run programs
type image; // D

S - S

app (image output) rotate (image input) {
{

convert "-rotate" 180 @input @output ;
}

image oldimg <"orion.2008.0117.jpg">; ﬁ ;

image newimg <"output.jpg">;

newimg = rotate(oldimg); // runs the “convert” app

www.ci.uchicago.edu/swift , Argonneo

AAAAAAAAAAAAAAAAAA




A simple Swift script: functions run programs

type image; // Declare a “file” type.

app (image output) rotate (image input) {
{
convert "-rotate" 180 @input @output ;

}

image oldimg <"orion.2008.0117.jj
image newimg <"output.jpg">;

newimg = rotate(oldimg);~7// runs the “convert” app

www.ci.uchicago.edu/swift . Argonnea

AAAAAAAAAAAAAAAAAA




Execution is driven by data flow

(int r) myproc (int i)
{

j=1(i);

k = gli);

r=j+k;

}

f() and g() are computed in parallel
myproc() returns r when they are done

This parallelism is AUTOMATIC
Works recursively down the program’s call graph

www.ci.uchicago.edu/swift

AAAAAAAAAAAAAAAAAA



Parallelism via foreach { }

type image;

(image output) flip(image input) {

app {

convert "-rotate" "180" @input @output;

}

} s

Map inputs from local directory

image observations|[ ]| <simple_mapper; prefix="orion”>;
image flipped| ] <simple_mapper; prefix="flipped”>;

-

Name outputs based on index

~

)

/foreach obs,i in observations { )

flipped[i] = flip(obs);
}

-

‘a0 o
*%" o

Process all dataset members in parallel

)

www.ci.uchicago.edu/swift

AAAAAAAAAAAAAAAAAA



Large scale parallelization with simple loops
-~ - - - -

U1~ UL - O
Runsofthe (& &% (& &V ARNENRAYL S
“Oredict” et | e b |l
application

——

T1laf7-50-500

Analyze()

000000

foreach sim in [1:1000] {

(structure[sim], log[sim]) = predict(p, 100., 25.);
}

result = analyze(structure)

'8 os,
Le%%’ @
1

www.ci.uchicago.edu/swift nArgonneo

AAAAAAAAAAAAAAAAAA




Similar patterns handle diverse app domains

8760
Runs of the
‘AMPL”
modeling
application
for DOE
power grid
transmission
simulation

Analyze()

foreach hour in [0:365*24] {
(structure[hour], log[hour]) =
model(p, 100., 25.);

}
_result = analyze(structure)

www.ci.uchicago.edu/swift 12Argonne°

AAAAAAAAAAAAAAAAAA




Nested loops generate massive parallelism

Sweep( )

{
int nSim = 1000;

int maxRounds = 3;
Protein pSet[ ] <ext; exec="Protein.map">;

float startTemp[ ] =[ 100.0, 200.0 ];
float delT[]=[1.0, 1.5, 2.0, 5.0, 10.0 ];

foreach p, pnin pSet {
foreach t in startTemp {
foreach d in delT {
ItFix(p, nSim, maxRounds, t, d);

} 10 proteins x 1000 simulations x
} 3 rounds x 2 temps x 5 deltas
= 300K tasks

www.ci.uchicago.edu/swift 13Argonne°

AAAAAAAAAAAAAAAAAA




Complex parallel workflows can be easily expressed

Example fMRI preprocessing script below is automatically parallelized

(Run or) reorientRun (Runir,
(Run snr) functional ( Run r, NormAnat a, string direction) {
Air shrink ) foreach Volume iv, i inir.v {
or.v[i] = reorient(iv, direction);

{ RunyroRun =reorientRun(r,"y"); 1
Run roRun = reorientRun( yroRun , "Xy }
Volume std = roRun[0];

Run rndr = random_select( roRun, 0.1);
AirVector rndAirVec = align_linearRun( rndr, std, 12, 1000, 1000, "81 3 3");
Run reslicedRndr = resliceRun( rndr, rndAirVec, "o", "k" );

Volume meanRand = softmean( reslicedRndr, "y", "null" );

Air mnQAAIr = alignlinear( a.nHires, meanRand, 6, 1000, 4, "81 3 3");
Warp boldNormWarp = combinewarp( shrink, a.aWarp, mnQAAir );

Run nr =reslice_warp_run( boldNormWarp, roRun);

Volume meanAll = strictmean( nr, "y", "null" )

Volume boldMask = binarize( meanAll, "y");

snr = gsmoothRun( nr, boldMask, "6 6 6" );

www.ci.uchicago.edu/swift 14Argonne@

AAAAAAAAAAAAAAAAAA



Spatial normalization of functional run

reorientRun reorient

- AN L DCIN DAL L

reorientRun reorient

- e

alignlinearRun

\ reslice
resliceRun \ /
l softmean
softmean
l alignlinear
alignlinear
l combine_warp

combinewarp

\ reslice_warp

reslice_warpRun \ /
strictmean strictmean ‘
binarize binarize
e 4

gsmoothRun gsmooth

Expanded (10 volume) workflow
www.ci.uchicago.edu/swift JArgonne o

AAAAAAAAAAAAAAAAAA




Running Swift scripts

Ezzl

File
transport

Submit host
(Laptop, Linux server, ...) /v
script
P;p1p > P;p)p Java application
site | [[app v//\ |
| list | list Workflow -
status rovenance
and logs lo

—

Swift supports clusters, grids, and supercomputers.

Dowload, untar, and run

www.ci.uchicago.edu/swift



Running Swift at the ALCF

» Fully contained Java grid client

» Run swift on a BG/P login host
— Soon can run Swift from an external host

» Uses (and needs) ZeptoOS
— Code must be compiled for ZeptoOS compatibility
— Typically we use standard GNU toolchain

» “Jets” allows multiple socket-based MPICH?2
apps to run across worker nodes

— Trying to extend this to enable higher performance
MPI stacks to run in same manner

www.ci.uchicago.edu/swift 17Argonne°

AAAAAAAAAAAAAAAAAA




Software stack for Swift on ALCF BG/Ps

. I
Swift Swift:

scripts | = | Scripting language, task coordination,
. — \throttllng, data management, restart

M

N . :
App Coaster/Falkon execution provider:
invocations = per-node agents for fast task dispatch
\across all nodes in Cobalt job(s)

M
hell 4 AV
w ZeptoOsS:
= complete, high performance Linux

ﬁ \compute node OS with full fork/exec ,

~

NG

applications

www.ci.uchicago.edu/swift 18Argonnea

AAAAAAAAAAAAAAAAAA




Swift app: homology-free protein structure prediction

The laboratories of Karl Freed and Tobin Sosnick use Beagle to develop and 0028 25 1SS
validate methods to predict protein structure using homology-free (excluding tail region)
approaches.

A. Adhikari (under K. Freed and T. Sosnick) has developed new structure
prediction

techniques based on Monte Carlo simulated annealing which

employ novel, compact molecular representations and innovative “moves” of Pt
the protein backbone to achieve accurate prediction with far less computatiorllo585 " re 10
then previous methods. One of the applications of the method involves ’ -
rebuilding local regions in protein structures, called “loop modeling”, a
problem which the group tackled with considerable success in the CASP
protein folding tournament(shown in right). They are now testing further
algorithmic innovations using the computational power of Beagle.

www.ci.uchicago.edu/swift



Swift app: analysis & visualization of high-res climate models

SALT ZONAL=AVE (GLO) b40.201h.track1.1¢eq.005 [1981-2005]

TA NS 3 (Y,
““’J ..!'-"4>0 ™
s | 7 3 -
ol

f\”“ Vo
\

°

DEPTH (km)

§
o W A N

40t

9rs a0's 30 o 90

[ 3062401 to 361401 by C.40pou)
(MODEL — 0BS)

L/
LL\,‘) T
v-h

o
a -
s o N

%o

DEPTH (km)

Climate models are continuing to increase both their resolution and the
number of variables resulting in multi-terabyte model outputs. This
large volume of data overwhelms the series of processing steps used to
derive climate averages and produce visualizations. Since many of the &
tasks in the post-processing sequence are independent, we have -
applied task-parallel scripting to speed up the post-processing. We

have re-written portions of the complex shell script that process output

from the Community Atmosphere Model in Swift, a high-level implicitly-
parallel scripting langauge that uses data dependencies to

automatically parallelize a workflow. This has resulted in valuable

speedups in model analysis for this heavily-used procedure.

{~1.83¢+00 ta 1012400 by 0.20psu)

Work of: J Dennis, M Woitasek, S Mickelson, R Jacob, J Wozniak
K Schuchardt

www.ci.uchicago.edu/swift ZOArgonneo

NATIONALI LABORATORY




Swift app: Protein-nucleic acid interaction modeling

M. Parisien (with T. Sosnick, T. Pan, and K. Freed) used Beagle to develop a first-generation algorithm for
the prediction of the RNA-protein interactome.

Non-coding RNAs often function in cells through specific interactions with their protein partners.
Experiments alone cannot provide a complete ﬁlcture of the RNA-protein interactome. To complement
experimental methods, computational approaches are highly desirable. No existing method, however, can
provide genome-wide predictions of docked RNA-ﬁrotel_n complexes. _ _

the application of computational predictions, together with experimental methods, will provide a more
complete understanding on cellular networks and function of RNPs. The apgroaqh makes use of a rigid-
body docking algorlthm and a scoring function custom- tailored for protein-tRNA interactions. Using Swift,
Beagle screened about 300 proteins per day on 80 nodes of 24 cores (11% of the total XEG's power).

Results: the scoring function can identify the native docking conformation in large sets of decoys
(100,000) for many known protein-tRNA complexes (4TRA shown here). geft) cores for true positive
complexes (.)(N=28) are compared to true negative ones of low (_v%(N=4O and hl%h (a) (N=40) isoelectric
points. (right) Because the density curve of the true positives, which have pl < 7, has minimal overlap with
the curve of the low pl true negatives (blue area), the scoring function has the specificity to identify tRNA-
binding proteins. Protein-DNA interactions are being similarly studied.

N S o '
S e A
« 4 g . ° Ty Tt am °
£ - P El 3 5 aw™ w v <
A : ’ . N N / g v, YA =, 0
P, , o %8 vV vy A2 28
e v Loay 3
59 WY vy A L3
g8 v % A4 33
wl A A A A E
g AL} sl
g2 .- *e At e ,‘52
> v RS
< . Ny HF
g E
H ) A = .8
3 ’ g
2 \
b
9 g

4 5 6 7 8 s 10 0010 0008 0.006 0004 0002 0.000
Isoelectric Point (pl) Density

Systematic prediction and validation of RNA-protein interactome.
Parisien M, Sosnick TR, Pan T. Poster; Kyoto, June 12-19, 2011,
RNA Society. Manuscript in progress.

R
ettt e

www.ci.uchicago.edu/swift 21Argonne°

NATIONALI LABORATORY



Swift app: glass structure modeling (theoretical chemistry)

This project models of aspects of glass structure at a theoretical 1

chemistry level. (Hocky/Reichman) ,

Recent studies of the glass transition in model systems have focused
on calculating from theory or simulation what is known as the “mosaic

o —_ 3% w = o

length”. This project evaluated a new “cavity method” for measuring
this length scale. Correlation functions are calculated at the interior

of cavities of varying sizes and averaged over many independent
simulations to determine a thermodynamic length. Using Swift on
Beagle, Hocky investigated whether this thermodynamic length
causes variations among seemingly identical systems. ~1M Beagle
CPU hours were used.

33
LI [ = i
ouwo®

oo

Results: Three simple models of glassy behavior were studied. All
appear the same (top, abc) but only two of which have particles
relaxing at the same rate for the same temperature (top, d). This
would imply that the glass structure does not dictate the dynamics. A
new computational technique was used to extract a length scale on
which the liquid is ordered in an otherwise undetectable way. Results
(bottom) showed that using this length we can distinguish the two
systems which have the same dynamics as separate from the third
which has faster dynamics than the other two.

scaled length

A manuscript is in preparation for Physical Review Letters.

www.ci.uchicago.edu/swift

preliminary scaling plot

100

1000

T
KA LJ
1PL

KA WCA

zzArgonne@

NATIONALI LABORATORY



Swift app: modeling climate impact on watershed hydrology

Projecting biofuel production impact on hydrology (E. Yan, Y.
Demisie)

SWAT — model — Soil and Water Assessment Tool

This project studies the impact of global temperature
increase on the Upper Mississippi River Basin on water:and g
plant productivity. It is in the process of combining future,__

climate data obtained from a statistically downscaled global
circulation model (GCM) into the Upper Mississippi River.
Basin model. The results from these models will be used '.:
the proposed study to evaluate the relative performance ¢
the proposed coupling of climate and hydrology models.

Q-

Results of this research demonstrate that plausible chang
In temperature and precipitation caused by increases in
atmospheric greenhouse gas concentrations could have
major impacts on both the timing and magnitude of runoff,
soil moisture, water quality,

water availability, and crop yield (including energy crops) in
important agricultural areas.

S

Visualization of multiple layers of SWAT
hydrology model. Courtesy E. Yan.

www.ci.uchicago.edu/swift 23Argonne°

NATIONALI LABORATORY




Swift app: hybrid multiscale subsurface modeling

Multiscale subsurface modeling using the STOMP
application

Integrates STOMP and SPH application codes

Executes MPI, serial, and viz apps form Swift on
NERSC Cray resources Franklin and Hopper

Design and Implementation of Many Parallel
Task Hybrid Subsurface Model, (K Agarwal, J Var, conca

Chase, K Schuchardt, T Scheibe, B Palmer, T o
Elsethagen, PNNL, MTAGS 2011 at SC11. Min: -0/0002000

Contour
Var: concb

o

Max: 1,000
Min: 0.0000

Contour
Var: conce

— 0.02000

Max: 0.1328
Job status Min: -0.0001000

Visualization Provenance
Time taken

per task

Control
information

Iterate 1..MAX_ITER

Foreach [fixed |
variable] n runs of
[equal | unequal] size)

Credit: Karen Schuchardt , Bruce Palmer, Khushbu Agarwal, Tim Scheibe, PNNL

www.ci.uchicago.edu/swift 24Argonne°

NATIONALI LABORATORY




Swift app: econ/land use models for CIM-EARTH and RDCEP

The CIM-EARTH project develops a large-scale integrated modeling
framework for decision makers in climate and energy policy. (Foster,
Elliott)

Beagle is being used to study land use, land cover, and the impacts of
climate change on agriculture and the global food supply. Using a
DSSAT 4.0 (“Decision Support System for Agrotechnology Transfer”)
crop systems model ported from Windows, a parallel simulation
framework was implemented using Swift. Benchmarks of this
framework have been performed on a prototype simulation campaign,
measuring yield and climate impact for a single crop (maize) across
the conterminous USA with daily weather data and climate model
output spanning 120 years (1981-2100) and 16 different
configurations of local management (fertilizer and irrigation) and
cultivar choice.

Preliminary results of parallel DSSAT on Beagle have been presented
in an NSF/advisory board meeting of the CIM-EARTH project. At right,
top 2 maps: Preliminary results of parallel DSSAT: maize yields
across the USA with intensive nitrogen application and full irrigation;
bottom 2 maps show results with no irrigation. Each model run is
~120,000 DSSAT invocations.

www.ci.uchicago.edu/swift



Performance: Proteomics on BG/P

_ 3:[“] / --muE
£ )5m m ﬁuﬂ ﬂ{:\ hl 180 F
= —
S 2,000 1oy =
R AE
o I/ A R L1
o I 5 = W B
ot/ Newod
0 50 100 150
Time (seg)
2400
2,000 -
s 1,600 4 =
2 1,200 - g
& 800 - =
_.qﬂ[]_
() 0

4,127 PTMap jobs with Swift/Falkon on BG/P in 3 minutes

www.ci.uchicago.edu/swift ZGArgonneA

AAAAAAAAAAAAAAAAAA




Performance: SEM for fMRI on Sun Constellation “Ranger”

g 3000 7 60 2
E. 250 000 / 50 ,:;:.
S 200,000 90 2
o 150,000 / l, | | 1| | || 0 E
100.000 |L/ || 1 | J | | 0 .
50,000 - 10
0 -0
0 14400 28,800 43200 57,600 72000 6400 100200115200 129,600 144,000
Time (sec)
1,200
1,000 -
e 800 - £
600 w
£ 40- =
200 -
(b) 0

www.ci.uchicago.edu/swift 27Argonne°

AAAAAAAAAAAAAAAAAA




Swift work in progress

- ExM: extending Swift to the exascale realm
— Jets: Running multiple MPI jobs under Swift agents
— Turbine: Scaling up Swift with fully parallel evaluation

— Collective data management: adapting Swift data
management to best use storage hardware (broadcast,
local RAM disk, gather() primitives)

- GPSI web portal: enables Swift use without
programming

- Integration with Globus Online
— Swift as an execution service under GO
— Swift to use GO as a data transport service

www.ci.uchicago.edu/swift 28Argonne°

AAAAAAAAAAAAAAAAAA




ExM project: scaling many-task computing to exascale

- Sponsored under DOE ASCR X-Stack program
- Extend Swift: tasks can be lightweight functions

Use Swift for the high-level logic of exascale applications
Retain functional semantics of input-process-output

- Highly distributed program evaluation

Re-building Swift based on an intermediate representation (“TIC”)
that lends itself to highly parallel evaluation

Scales to massive computing complexes

Distributed future store accessible in the manner of global arrays
Highly distributed program evaluation

Optimizations to reduce access to global future store

- Transparent distributed local storagemanagement

MosaStore aggregates local/RAM filesystems, make access more
transparent through DHT methods

www.ci.uchicago.edu/swift ZgArgonneA

AAAAAAAAAAAAAAAAAA



ExM: Scaling the many-task model to exascale

Uk r-fast task

/ mmm Wﬂn

Eﬁphammr _

II-]rrerI! nu-l! ff-; ) e
Extrame-s5cale \ N /
comipting complex

Graph exantor |

AAAAAAAAAAAAAAAAAA



GPS/ science portal for Swift workflow

eno QOPS Science Portal = en0 QOPS Science Portal =

0OOPS Science Portal 0OOPS Science Portal Logged in as wilde Logout

INPUTS Run Simulation | View Results | |

Files Proteins Files Proteins

£ fasta 5 fasta
T1af7.fasta T1af?.fasta
Ti1b72.fasta T1b72.fasta

Ticsp.fasta
Tidcj.fasta

Ticsp.fasta
Tidcj.fasta

Tidi2.fasta Tidi2.fasta
Timky.fasta Timky.fasta
Tlo2f fasta T1o2f.fasta

T1ir69.fasta
Tishf.fasta

T1r69.fasta
Tishf.fasta

T1itif.fasta T1itif.fasta T1rG69
Titig.fasta Titig.fasta
Tiubg.fasta Tlubg.fasta \
|| native || native ',
=7 rama 5 rama (
T1af7.rama T1iaf7.rama

Tiaf7.rama_index T1af7.rama_index

g‘
Tiaf?.rama_map “cr(,—x,,-—\‘z‘ f
Tiaf7.secseq o~
Tib72.rama
Tib72.rama_index

AL

. WORKFLOWS

Tiaf7.rama_map
Tiaf7.secseq
Tib72.rama
Tib72.rama_index

Tl

WORKFLOWS

# %

<«[»(
PN

T1ubg
Consolev} HTML CS5 Script DOM  Net Q

Ccnsolev-] HTML (CS5 Script DOM  Net Q

concat?r.../ popup.js (line 379)
p POST htp:/ fcommunicado.ci.uchicago.edu: SEEBISIDGrldPorlaHOId =15 concat?r.../popup.js (line 379)

concat?r.../popupjs (line 379)
POST http:/ /communicado.ci.uchicago.edu: SEEBJSIDGrldPonaHCIId -J5 concat?r.../popup.js (line 379)

" Esas 9

www.ci.uchicago.edu/swift SlArgonneo

NATIONALI LABORATORY



Swift is a parallel scripting language for multicores, clusters, grids, clouds,
and supercomputers

— for loosely-coupled applications - application and utility programs linked by
exchanging files

— debug on a laptop, then run on a Cray

Swift is easy to write
— it’s a simple high-level functional language with C-like syntax
— Small Swift scripts can do large-scale work

Swift is easy to run: contains all services for running Grid workflow - in one
Java application

— untar and run — Swift acts as a self-contained grid or cloud client
— Swift automatically runs scripts in parallel — usually with no user input

Swift is fast: based on a powerful, efficient, scalable and flexible Java
execution engine

— scales readily to millions of tasks
Swift usage is growing:

— applications in neuroscience, proteomics, molecular dynamics, biochemistry,
economics, statistics, earth systems science, and more.

www.ci.uchicago.edu/swift 32Argonne°

AAAAAAAAAAAAAAAAAA



Farallel Computing 37 [2011] 633-652

Contents lists available at Sciencelirest  PARATIFL
CFMTUITIRG

Parallel Computing

journal homepage: www.elsavier_com/flocate/parce

Swift: A language for distributed parallel scripting

Michael Wilde*™*, Mihael Hategan®, Justin M. Wozniak ", Ben Clifford , Daniel 5. Katz?,
lan Foster *"°

* Coprrpuati e Insrure, Dhrsersily of Chicnge aod Arpoang Sationg! [aboratory, Unied Sraves
" Matkemarics and Computer Soence Division, Argonne Nationol Laboratory, Unided States

¢ Departmend of Computer Science, University of Chicoga, United Sraves

9 Dgprtrmenl of Addronoey gad Astropfrsics. Dnneersiy of Chicage, Weaned Seales

ARTICLE INFO ABSTERALCT

Artiche hrstory. Scienlisls, engineers, and statisticians must execule domain-spedilic application programs

Available caline 12 July 2011 many times an large collections of fle-based data, This activity requires complex orches-
tration and data managensent as data is passed Lo from, and among application invoca-

Keywords: fions. Distnbuted and parallel computing resources can accelerate such processing. but

Sl their use further inoreases programming complexity, The Swalt parallel scripting language

Farallel programmang
Scripting
Dt

reduces these complexities by making Rle system structures accessible wia language con-
structs and by allownng ordinary application pragrams to be campased into powerful par-
allel scripts that can ellicently utilize parallel and distributed resources. We presemt
swift’s imphcitly parallel and deterministc programming madel, which applies external
applicatians to lile collections using a functsonal style that abstracts and simplifies distrib-
uted parallel executian,

£ B0 Elsewier B, Al rights reserg@l



COVER FEATURE IInninnnnnmnm

| PARALLEL
SCRIPTING FOR
% S8l NPPLICATIONS AT

_ .S THE PETASCALE

IEEE COMPUTER, Nov 2009




