
1

Cloud Programming and Software Environments

The Swift parallel scripting language

Slides courtesy of Michael Wilde

Ioan Raicu

Computer Science Department
Illinois Institute of Technology

CS554: Data-Intensive Computing

September 30th, 2013

2
www.ci.uchicago.edu/swift

• Swift is a parallel scripting language for multicores, clusters, grids, clouds,
and supercomputers

– for loosely-coupled applications - application and utility programs linked by
exchanging files

– debug on a laptop, then run on a Cray

• Swift is easy to write
– it’s a simple high-level functional language with C-like syntax

– Small Swift scripts can do large-scale work

• Swift is easy to run: contains all services for running Grid workflow - in one
Java application

– untar and run – Swift acts as a self-contained grid or cloud client

– Swift automatically runs scripts in parallel – usually with no user input

• Swift is fast: based on a powerful, efficient, scalable and flexible Java
execution engine

– scales readily to millions of tasks

• Swift usage is growing:
– applications in neuroscience, proteomics, molecular dynamics, biochemistry,

economics, statistics, earth systems science, and more.

3
www.ci.uchicago.edu/swift

When do you need Swift?
Typical application: protein-ligand docking for drug screening

 2M+ ligands

(Mike Kubal, Benoit Roux, and others)

(B)

O(100K)
drug

candidates

Tens of fruitful
candidates for
wetlab & APS

O(10)
proteins
implicated
in a disease

1M
compute

jobs

X …

T1af7 T1r69 T1b72

4
www.ci.uchicago.edu/swift

Submit host
(Laptop, Linux login node…)

Workflow
status

and logs

Java application

Compute
nodes

f1

f2

f3

a1

a2

Data server

f1 f2 f3

Provenance
log

script
App
a1

App
a2

site
list

app
list

File
transport

Swift supports clusters, grids, and supercomputers.
Dowload, untar, and run

Solution: parallel scripting for high level parallellism

5
www.ci.uchicago.edu/swift

A simple Swift script: functions run programs

1 type image; // Declare a “file” type.
2
3 app (image output) rotate (image input) {
4 {
5 convert "-rotate" 180 @input @output ;
6 }
7
8 image oldimg <"orion.2008.0117.jpg">;
9 image newimg <"output.jpg">;
10
11 newimg = rotate(oldimg); // runs the “convert” app

5

6
www.ci.uchicago.edu/swift

A simple Swift script: functions run programs

1 type image; // Declare a “file” type.
2
3 app (image output) rotate (image input) {
4 {
5 convert "-rotate" 180 @input @output ;
6 }
7
8 image oldimg <"orion.2008.0117.jpg">;
9 image newimg <"output.jpg">;
10
11 newimg = rotate(oldimg); // runs the “convert” app

6

“application”
wrapping function

7
www.ci.uchicago.edu/swift

A simple Swift script: functions run programs

1 type image; // Declare a “file” type.
2
3 app (image output) rotate (image input) {
4 {
5 convert "-rotate" 180 @input @output ;
6 }
7
8 image oldimg <"orion.2008.0117.jpg">;
9 image newimg <"output.jpg">;
10
11 newimg = rotate(oldimg); // runs the “convert” app

7

Input file Output file

Actual files
to use

8
www.ci.uchicago.edu/swift

A simple Swift script: functions run programs

1 type image; // Declare a “file” type.
2
3 app (image output) rotate (image input) {
4 {
5 convert "-rotate" 180 @input @output ;
6 }
7
8 image oldimg <"orion.2008.0117.jpg">;
9 image newimg <"output.jpg">;
10
11 newimg = rotate(oldimg); // runs the “convert” app

8

Invoke the “rotate”
function to run the

“convert” application

9
www.ci.uchicago.edu/swift

Execution is driven by data flow

1 (int r) myproc (int i)
2 {
3 j = f(i);
4 k = g(i);
5 r = j + k;
6 }

7 f() and g() are computed in parallel
8 myproc() returns r when they are done

9 This parallelism is AUTOMATIC
10 Works recursively down the program’s call graph

9

10
www.ci.uchicago.edu/swift

Parallelism via foreach { }

1 type image;
2
3 (image output) flip(image input) {
4 app {
5 convert "-rotate" "180" @input @output;
6 }
7 }
8
9 image observations[] <simple_mapper; prefix=“orion”>;
10 image flipped[] <simple_mapper; prefix=“flipped”>;
11
12
13
14 foreach obs,i in observations {
15 flipped[i] = flip(obs);
16 }

10

Name outputs based on index

Process all dataset members in parallel

Map inputs from local directory

11
www.ci.uchicago.edu/swift

foreach sim in [1:1000] {
 (structure[sim], log[sim]) = predict(p, 100., 25.);
}
result = analyze(structure)

…
1000

Runs of the
“predict”

application

Analyze()

T1af
7

T1r6
9

T1b72

Large scale parallelization with simple loops

12
www.ci.uchicago.edu/swift

…
8760

Runs of the

“AMPL”

modeling

application

for DOE

power grid

transmission

simulation

Analyze()

Similar patterns handle diverse app domains

foreach hour in [0:365*24] {

 (structure[hour], log[hour]) =

 model(p, 100., 25.);

}

result = analyze(structure)

13
www.ci.uchicago.edu/swift

Nested loops generate massive parallelism

1. Sweep()
2. {
3. int nSim = 1000;
4. int maxRounds = 3;
5. Protein pSet[] <ext; exec="Protein.map">;
6. float startTemp[] = [100.0, 200.0];
7. float delT[] = [1.0, 1.5, 2.0, 5.0, 10.0];
8. foreach p, pn in pSet {
9. foreach t in startTemp {
10. foreach d in delT {
11. ItFix(p, nSim, maxRounds, t, d);
12. }
13. }
14. }
15. }
16.
17. Sweep(); 13

10 proteins x 1000 simulations x
3 rounds x 2 temps x 5 deltas

= 300K tasks

14
www.ci.uchicago.edu/swift

Complex parallel workflows can be easily expressed
 Example fMRI preprocessing script below is automatically parallelized

(Run snr) functional (Run r, NormAnat a,

 Air shrink)

{ Run yroRun = reorientRun(r , "y");

Run roRun = reorientRun(yroRun , "x");

Volume std = roRun[0];

Run rndr = random_select(roRun, 0.1);

AirVector rndAirVec = align_linearRun(rndr, std, 12, 1000, 1000, "81 3 3");

Run reslicedRndr = resliceRun(rndr, rndAirVec, "o", "k");

Volume meanRand = softmean(reslicedRndr, "y", "null");

Air mnQAAir = alignlinear(a.nHires, meanRand, 6, 1000, 4, "81 3 3");

Warp boldNormWarp = combinewarp(shrink, a.aWarp, mnQAAir);

Run nr = reslice_warp_run(boldNormWarp, roRun);

Volume meanAll = strictmean(nr, "y", "null")

Volume boldMask = binarize(meanAll, "y");

snr = gsmoothRun(nr, boldMask, "6 6 6");

}

(Run or) reorientRun (Run ir,
 string direction) {
 foreach Volume iv, i in ir.v {
 or.v[i] = reorient(iv, direction);
 }
 }

15
www.ci.uchicago.edu/swift

Spatial normalization of functional run

reorientRun

reorientRun

reslice_warpRun

random_select

alignlinearRun

resliceRun

softmean

alignlinear

combinewarp

strictmean

gsmoothRun

binarize

reorient/01

reorient/02

reslice_warp/22

alignlinear/03 alignlinear/07alignlinear/11

reorient/05

reorient/06

reslice_warp/23

reorient/09

reorient/10

reslice_warp/24

reorient/25

reorient/51

reslice_warp/26

reorient/27

reorient/52

reslice_warp/28

reorient/29

reorient/53

reslice_warp/30

reorient/31

reorient/54

reslice_warp/32

reorient/33

reorient/55

reslice_warp/34

reorient/35

reorient/56

reslice_warp/36

reorient/37

reorient/57

reslice_warp/38

reslice/04 reslice/08reslice/12

gsmooth/41

strictmean/39

gsmooth/42gsmooth/43gsmooth/44 gsmooth/45 gsmooth/46 gsmooth/47 gsmooth/48 gsmooth/49 gsmooth/50

softmean/13

alignlinear/17

combinewarp/21

binarize/40

reorient

reorient

alignlinear

reslice

softmean

alignlinear

combine_warp

reslice_warp

strictmean

binarize

gsmooth

Dataset-level
workflow

Expanded (10 volume) workflow

16
www.ci.uchicago.edu/swift

Submit host
(Laptop, Linux server, …)

Workflow
status

and logs

Java application

Compute
nodes

f1

f2

f3

a1

a2

Data server

f1 f2 f3

Provenance
log

script
App
a1

App
a2

site
list

app
list

File
transport

Swift supports clusters, grids, and supercomputers.
Dowload, untar, and run

Running Swift scripts

17
www.ci.uchicago.edu/swift

Running Swift at the ALCF

• Fully contained Java grid client

• Run swift on a BG/P login host

– Soon can run Swift from an external host

• Uses (and needs) ZeptoOS

– Code must be compiled for ZeptoOS compatibility

– Typically we use standard GNU toolchain

• “Jets” allows multiple socket-based MPICH2
apps to run across worker nodes

– Trying to extend this to enable higher performance
MPI stacks to run in same manner

18
www.ci.uchicago.edu/swift

Software stack for Swift on ALCF BG/Ps

Swift:
scripting language, task coordination,
throttling, data management, restart

Coaster/Falkon execution provider:
per-node agents for fast task dispatch
across all nodes in Cobalt job(s)

ZeptoOS:
complete, high performance Linux
compute node OS with full fork/exec

Swift
scripts

Shell
scripts

App
invocations

applications

19
www.ci.uchicago.edu/swift

Swift app: homology-free protein structure prediction

The laboratories of Karl Freed and Tobin Sosnick use Beagle to develop and
validate methods to predict protein structure using homology-free
approaches.

A. Adhikari (under K. Freed and T. Sosnick) has developed new structure
prediction
techniques based on Monte Carlo simulated annealing which
employ novel, compact molecular representations and innovative “moves” of
the protein backbone to achieve accurate prediction with far less computation
then previous methods. One of the applications of the method involves
rebuilding local regions in protein structures, called “loop modeling”, a
problem which the group tackled with considerable success in the CASP
protein folding tournament(shown in right).They are now testing further
algorithmic innovations using the computational power of Beagle.

Results: The group is now developing a new iterative algorithm for predicting
protein structure and folding pathway starting only from the amino acid
sequence. In progress, no publications yet from Beagle studies.

T0623, 25 res.
8.2Å to 6.3Å

 (excluding tail region)

T0585,45 res. 15.5Å to
9.1Å

Protein loop modeling. Courtesy A.
Adhikari

Native
OOPS modeling

Initial

20
www.ci.uchicago.edu/swift

Swift app: analysis & visualization of high-res climate models

Climate models are continuing to increase both their resolution and the
number of variables resulting in multi-terabyte model outputs. This
large volume of data overwhelms the series of processing steps used to
derive climate averages and produce visualizations. Since many of the
tasks in the post-processing sequence are independent, we have
applied task-parallel scripting to speed up the post-processing. We
have re-written portions of the complex shell script that process output
from the Community Atmosphere Model in Swift, a high-level implicitly-
parallel scripting langauge that uses data dependencies to
automatically parallelize a workflow. This has resulted in valuable
speedups in model analysis for this heavily-used procedure.

Work of: J Dennis, M Woitasek, S Mickelson, R Jacob, J Wozniak
K Schuchardt

AMWG Diagnostic Package Results:

 Rewriting the AMWG Diagnostic

Package in Swift created a 3X speedup.

(a) The AMWG Diagnostic Package was used to calculate the

climatological mean files for 5 years of 0.10 degree up-sampled data
from a 0.25 degree CAM-SE cubed sphere simulation. This was ran
on fusion, a cluster at Argonne, on 4 nodes using one core on each.

(b) The AMWG Diagnostic Package was used to compare two data sets.
The data consisted of two sets of 30 year, 1 degree monthly average
CAM files. This was ran on one data analysis cluster node on mirage
at NCAR.

(c) The AMWG Package was used to compare 10 years of 0.5 degree
resolution CAM monthly output files to observational data. This
comparison was also ran on one node on mirage.

21
www.ci.uchicago.edu/swift

Swift app: Protein-nucleic acid interaction modeling

M. Parisien (with T. Sosnick, T. Pan, and K. Freed) used Beagle to develop a first-generation algorithm for
the prediction of the RNA-protein interactome.

Non-coding RNAs often function in cells through specific interactions with their protein partners.
Experiments alone cannot provide a complete picture of the RNA-protein interactome. To complement
experimental methods, computational approaches are highly desirable. No existing method, however, can
provide genome-wide predictions of docked RNA-protein complexes.
the application of computational predictions, together with experimental methods, will provide a more
complete understanding on cellular networks and function of RNPs. The approach makes use of a rigid-
body docking algorithm and a scoring function custom- tailored for protein-tRNA interactions. Using Swift,
Beagle screened about 300 proteins per day on 80 nodes of 24 cores (11% of the total XE6’s power).

Results: the scoring function can identify the native docking conformation in large sets of decoys
(100,000) for many known protein-tRNA complexes (4TRA shown here). (left) Scores for true positive
complexes (●)(N=28) are compared to true negative ones of low (▼)(N=40) and high (▲) (N=40) isoelectric
points. (right) Because the density curve of the true positives, which have pI < 7, has minimal overlap with
the curve of the low pI true negatives (blue area), the scoring function has the specificity to identify tRNA-
binding proteins. Protein-DNA interactions are being similarly studied.

Systematic prediction and validation of RNA-protein interactome.
Parisien M, Sosnick TR, Pan T. Poster; Kyoto, June 12-19, 2011,
RNA Society. Manuscript in progress.

Protein-RNA interaction. Courtesy M. Parisien

Docked complexes: (L) tRNA docked
at many positions.

 (R) Many conformations in a docking
site testing site robustness.

22
www.ci.uchicago.edu/swift

Swift app: glass structure modeling (theoretical chemistry)

This project models of aspects of glass structure at a theoretical
chemistry level. (Hocky/Reichman)

Recent studies of the glass transition in model systems have focused
on calculating from theory or simulation what is known as the “mosaic
length”. This project evaluated a new “cavity method” for measuring
this length scale. Correlation functions are calculated at the interior
of cavities of varying sizes and averaged over many independent
simulations to determine a thermodynamic length. Using Swift on
Beagle, Hocky investigated whether this thermodynamic length
causes variations among seemingly identical systems. ~1M Beagle
CPU hours were used.

Results: Three simple models of glassy behavior were studied. All
appear the same (top, abc) but only two of which have particles
relaxing at the same rate for the same temperature (top, d). This
would imply that the glass structure does not dictate the dynamics. A
new computational technique was used to extract a length scale on
which the liquid is ordered in an otherwise undetectable way. Results
(bottom) showed that using this length we can distinguish the two
systems which have the same dynamics as separate from the third
which has faster dynamics than the other two.

A manuscript is in preparation for Physical Review Letters.

23
www.ci.uchicago.edu/swift

Swift app: modeling climate impact on watershed hydrology

Projecting biofuel production impact on hydrology (E. Yan, Y.
Demisie)

SWAT – model – Soil and Water Assessment Tool

This project studies the impact of global temperature
increase on the Upper Mississippi River Basin on water and
plant productivity. It is in the process of combining future
climate data obtained from a statistically downscaled global
circulation model (GCM) into the Upper Mississippi River
Basin model. The results from these models will be used in
the proposed study to evaluate the relative performance of
the proposed coupling of climate and hydrology models.

Results of this research demonstrate that plausible changes
in temperature and precipitation caused by increases in
atmospheric greenhouse gas concentrations could have
major impacts on both the timing and magnitude of runoff,
soil moisture, water quality,
water availability, and crop yield (including energy crops) in
important agricultural areas.

Visualization of multiple layers of SWAT
hydrology model. Courtesy E. Yan.

24
www.ci.uchicago.edu/swift

Swift app: hybrid multiscale subsurface modeling

Credit: Karen Schuchardt , Bruce Palmer, Khushbu Agarwal, Tim Scheibe, PNNL

Multiscale subsurface modeling using the STOMP
application

Integrates STOMP and SPH application codes

Executes MPI, serial, and viz apps form Swift on
NERSC Cray resources Franklin and Hopper

Design and Implementation of Many Parallel
Task Hybrid Subsurface Model, (K Agarwal, J
Chase, K Schuchardt, T Scheibe, B Palmer, T
Elsethagen, PNNL, MTAGS 2011 at SC11.

25
www.ci.uchicago.edu/swift

Swift app: econ/land use models for CIM-EARTH and RDCEP

The CIM-EARTH project develops a large-scale integrated modeling
framework for decision makers in climate and energy policy. (Foster,
Elliott)

Beagle is being used to study land use, land cover, and the impacts of
climate change on agriculture and the global food supply. Using a
DSSAT 4.0 (“Decision Support System for Agrotechnology Transfer”)
crop systems model ported from Windows, a parallel simulation
framework was implemented using Swift. Benchmarks of this
framework have been performed on a prototype simulation campaign,
measuring yield and climate impact for a single crop (maize) across
the conterminous USA with daily weather data and climate model
output spanning 120 years (1981-2100) and 16 different
configurations of local management (fertilizer and irrigation) and
cultivar choice.

Preliminary results of parallel DSSAT on Beagle have been presented
in an NSF/advisory board meeting of the CIM-EARTH project. At right,
top 2 maps: Preliminary results of parallel DSSAT: maize yields
across the USA with intensive nitrogen application and full irrigation;
bottom 2 maps show results with no irrigation. Each model run is
~120,000 DSSAT invocations.

 DSSAT models of corn
yield.
Courtesy J. Elliott and K.
Maheshwari

26
www.ci.uchicago.edu/swift

Performance: Proteomics on BG/P

26

4,127 PTMap jobs with Swift/Falkon on BG/P in 3 minutes

27
www.ci.uchicago.edu/swift

Performance: SEM for fMRI on Sun Constellation “Ranger”

27

Executing 418K SEM models in 41 hours running Swift with coasters on Ranger

28
www.ci.uchicago.edu/swift

Swift work in progress

• ExM: extending Swift to the exascale realm
– Jets: Running multiple MPI jobs under Swift agents

– Turbine: Scaling up Swift with fully parallel evaluation

– Collective data management: adapting Swift data
management to best use storage hardware (broadcast,
local RAM disk, gather() primitives)

• GPSI web portal: enables Swift use without
programming

• Integration with Globus Online
– Swift as an execution service under GO

– Swift to use GO as a data transport service

29
www.ci.uchicago.edu/swift

ExM project: scaling many-task computing to exascale

• Sponsored under DOE ASCR X-Stack program
• Extend Swift: tasks can be lightweight functions

– Use Swift for the high-level logic of exascale applications
– Retain functional semantics of input-process-output

• Highly distributed program evaluation
– Re-building Swift based on an intermediate representation (“TIC”)

that lends itself to highly parallel evaluation
– Scales to massive computing complexes
– Distributed future store accessible in the manner of global arrays
– Highly distributed program evaluation
– Optimizations to reduce access to global future store

• Transparent distributed local storagemanagement
– MosaStore aggregates local/RAM filesystems, make access more

transparent through DHT methods

29

30
www.ci.uchicago.edu/swift

ExM: Scaling the many-task model to exascale

30

31
www.ci.uchicago.edu/swift

Swift:
scripting language, task coordination,
throttling, data management, restart

Falkon:
ultra-fast task dispatch and load
balancing over psets

ZeptoOS:
complete, high performance
Linux with full fork/exec

Swift
scripts

Shell
scripts

Command
lists

applications

Swift:
scripting language, task coordination,
throttling, data management, restart

Falkon:
ultra-fast task dispatch and load
balancing over psets

ZeptoOS:
complete, high performance
Linux with full fork/exec

Swift
scripts

Shell
scripts

Command
lists

applications

GPSI science portal for Swift workflow

32
www.ci.uchicago.edu/swift

• Swift is a parallel scripting language for multicores, clusters, grids, clouds,
and supercomputers

– for loosely-coupled applications - application and utility programs linked by
exchanging files

– debug on a laptop, then run on a Cray

• Swift is easy to write
– it’s a simple high-level functional language with C-like syntax

– Small Swift scripts can do large-scale work

• Swift is easy to run: contains all services for running Grid workflow - in one
Java application

– untar and run – Swift acts as a self-contained grid or cloud client

– Swift automatically runs scripts in parallel – usually with no user input

• Swift is fast: based on a powerful, efficient, scalable and flexible Java
execution engine

– scales readily to millions of tasks

• Swift usage is growing:
– applications in neuroscience, proteomics, molecular dynamics, biochemistry,

economics, statistics, earth systems science, and more.

33

34 IEEE COMPUTER, Nov 2009

