Argonne°

NATIONAL LABORATORY

Parallel File Systems

lIT Course: Data-Intensive Computing
Guest Lecture

Samuel Lang
September 20, 2010

’f‘."\ U.S. DEPARTMENT OF
“Z2/ENERGY

Monday, September 20, 2010

What are Parallel File Systems?

iy ",\ . Computer Science Division / Argonne National Laboratory

O ,

Monday, September 20, 2010

Parallel File Systems

» Store application data persistently
usually extremely large datasets that can’t fit in memory

» Provide global shared namespace (files, directories)
» Designed for parallelism
Concurrent (often coordinated) access from many clients

» Designed for high-performance
Operate over high-speed networks (1B, Myrinet, Portals)
Optimized I/0O path for maximum bandwidth

Computer Science Division / Argonne National Laboratory

)

Monday, September 20, 2010

Parallel vs. Distributed

» How are Parallel File Systems different from Distributed File Systems?
» Data distribution

Distributed file systems often store entire objects (files) on a single storage node
Parallel file systems distribute data of a single object across multiple storage nodes
» Symmetry

Distributed file systems often run on architectures where the storage is co-located with the application
(not always, e.g. GoogleFS, Ceph)

- Parallel file systems are often run on architectures storage is physically separate from the compute system
(not always true here either)

» Fault-tolerance
- Distributed file systems take on fault-tolerance responsibilities
Parallel file systems run on enterprise shared storage
» Workloads
- Distributed file systems are geared for loosely coupled, distributed applications (think data-intensive)

Parallel file systems target HPC applications, which tend to perform highly coordinated I/O accesses, and
have massive bandwidth requirements

» Overloaded terms!
GlusterFS, Ceph claim to be both

* PVFS is often run in symmetric environments

Computer Science Division / Argonne National Laboratory

)

Monday, September 20, 2010

Parallel File Systems

L —

/bio

I
/pfs
/astro
HOI H78
HO02

HO04

checkpoint32.nc

= Provide a directory tree all nodes can see (the global name space)

HO3 protein04.seq

N

Compute Node

Compute Node

Compute Node

Compute Node

Application

Application

Application

Application

PFS Client

PFS Client

PFS Client

PFS Client

H42

protein37.seq

Communication
Network

PFS Server
:_l__>
/bio

HO3
>

PFS Server

h
HoI[

[
/astro

PFS Server

PFS Server

I —

/pfs

- >

= Map data across many servers and drives (parallelism of access)
= Coordinate access to data so certain access rules are followed (useful semantics)

Computer Science Division / Argonne National Laboratory

)

13

Monday, September 20, 2010

Who uses Parallel File Systems?

Pain ",\ . Computer Science Division / Argonne National Laboratory

O ,

Monday, September 20, 2010

Computational Science

= Use of computer simulation as a tool for greater
understanding of the real world

— Complements experimentation and theory

= Problems are increasingly computationally

challenging IBM Blue Gene/P system at

Argonne National Laboratory.
— Large parallel machines needed to perform

calculations
— Critical to leverage parallelism in all phases
= Data access is a huge challenge
— Using parallelism to obtain performance

— Finding usable, efficient, portable interfaces
— Understanding and tuning |/O

Visualization of entropy in Terascale
Supernova Initiative application. Image from
Kwan-Liu Ma’s visualization team at UC
Davis.

Computer Science Division / Argonne National Laboratory

P 3

Monday, September 20, 2010

Large-Scale Data Sets

Application teams are beginning to generate 10s of Thytes of data in a single simulation. For
example, a recent run on 29K processors on the XT4 generated over 54 Thytes of data in a 24
hour period [1].

Data requirements for select 2008 INCITE applications at ALCF

PI Project On-Line Data Off-Line Data
Lamb, Don FLASH: Buoyancy-Driven Turbulent Nuclear Burning 75TB 300TB
Fischer, Paul Reactor Core Hydrodynamics 2TB 5TB
Dean, David Computational Nuclear Structure 4TB 40TB
Baker, David Computational Protein Structure 1TB 2TB
Worley, Patrick H. Performance Evaluation and Analysis 1TB 1TB
Wolverton, Christopher ginetics and Thermodynamics of Metal and 5TB 100TB
Complex Hydride Nanoparticles
Washington, Warren Climate Science 10TB 345TB
Tsigelny, Igor Parkinson's Disease 2.5TB o0TB
Tang, William Plasma Microturbulence 2TB 10TB
Sugar, Robert Lattice QCD 1TB 44TB
Siegel, Andrew Thermal Striping in Sodium Cooled Reactors 4TB 8TB
Roux, Benoit Gating Mechanisms of Membrane Proteins 10TB 10TB

[1] S. Klasky, personal correspondence, June 19, 2008.

Computer Science Division / Argonne National Laboratory

o 4

Monday, September 20, 2010

Drilling Down on Selected Applications

Nuclear reactor | Climate modeling Astrophysics
simulation
Preliminary studies
of elements 4.5 million 3 million 70-500 million grid points
of variables 7 100 (30 are vectors) 4 (I is a vector)
of timesteps 20,000 200,000-400,000 1,800
Total data size 2.5 Tbytes 30-120 Tbytes 80 Tbytes
Science runs
of elements 120 million 6 million 4.3 billion grid points
of timesteps 90,000 4 million 1,800
Total data size 900-1200 Tbytes |.2 Pbytes 50 Tbytes

Computer Science Division / Argonne National Laboratory

)

Monday, September 20, 2010

Application and Storage Data Models

= Applications have data models appropriate to
domain

— Multidimensional typed arrays, images
composed of scan lines, variable length
records

— Headers, attributes on data

= |/O systems have very simple data models Graphic from J. Tannahil, LLNL
— Tree-based hierarchy of containers

— Some containers have streams of bytes (files) ; !

— Others hold collections of other containers
(directories or folders)

= High-level I/O libraries help map between these
data models

gme = 30012 p» r {em) : P
- k- s Graphic from A. Siegel, ANL

Computer Science Division / Argonne National Laboratory

-

Monday, September 20, 2010

Shared-file vs. File-per-process

= Scientific applications perform |I/O to parallel file system in primarily one of two ways:

— Shared-file (N-to-1): A single file is created, and all application tasks write to that file (usually
to completely disjoint regions)

e |ncreases usability: only one file to keep of by application
e Can create lock contention and hinder performance on some systems

— File-per-process (N-to-N): Each application task creates a separate file, and writes to that only
that file.

e Avoids lock contention on file systems that use locks to maintain POSIX consistency
e Applications running today create as many as 100,000 tasks
e Impossible to restart application with different number of tasks

Computer Science Division / Argonne National Laboratory

-

Monday, September 20, 2010

Where are Parallel File Systems deployed?

Computer Science Division / Argonne National Laboratory

Monday, September 20, 2010

Intrepid Parallel Storage System
BG/P Tree Ethernet InfiniBand Serial ATA ®

6.8 Gbit/sec |10 Gbit/sec

|6 Gbit/sec 3.0 Gbit/sec

HW bottleneck is

LI

here. Controllers

can manage only

4.6 Gbyte/sec.

Peak I/O system

bandwidth is
78.2 Gbyte/sec.

|

u — ~

. ~ ~

. n ~

u ~ ~

a ~ n

n - N

n - -

. - -

u ~ ~

. ~ n

u n n

u n n

a ~ ~

a - ~

1
| |

Gateway nodes Commodity
run parallel file system network primarily
client software and carries storage traffic.

forward I/O operations
from HPC clients.

640 Quad core PowerPC 900+ port |10 Gigabit
450 nodes with 2 Gbytes Ethernet Myricom
of RAM each switch complex

Storage nodes

run parallel file system
software and manage
incoming FS traffic
from gateway nodes.

| 36 two dual core

Opteron servers with
8 Gbytes of RAM each

l
Enterprise storage
controllers and large racks
of disks are connected via

InfiniBand or Fibre
Channel.

| 7 DataDirect S2A9900
controller pairs with 480
| Tbyte drives and 8

InfiniBand ports per pair

Architectural diagram of the 557 TFlop IBM Blue Gene/P system at the Argonne Leadership Computing Facility.

Computer Science Division / Argonne National Laboratory

-

11

Monday, September 20, 2010

iraicu
Sticky Note
BG/P Tree => 6.8x640 = 4352Gb/s
Ethernet => 10x900 = 9000Gb/s
Infiniband => 16x136 = 2176Gb/s
Enterprise Storage => 4.6x17 = 78.2Gbs/

/0 Software Stack on Intrepid

High Level 1/0 Library [Application]

maps application abstractions
onto storage abstractions and
provides data portability

HDFS5, Parallel NetCDF

1/0 Middleware

— Organizes st

many processes, especially
those using collective /O

1/0 Forwarding | MPI-10
Bridges between application
tasks and storage system |
~ ™
IBM ciod Parallel File System
Parallel File System I Maintains logical space and
. - provides efficient access to data
4)
I/0 Hardware PVFS
. v
I
I I
| O
‘ -
‘ -
s o
l =
| O
| m
| a
| o
: 2
: |
I |
Compute nodes Gateway nodes Commodity network Storage nodes Enterprise storage

‘ Computer Science Division / Argonne National Laboratory
A————— ’

Monday, September 20, 2010

Jaguar Storage System

XT5

Serial ATA InfiniBand
3 Gbit/sec 16 Gbit/ selc Se;.Sg:aGrg;th/Iggus
366 364
Gbytes/s 384 384 bytes/s - -
B ———
-\
" Jaguar XT5
\
-
ﬁ
‘ < 4 ~\
— / —_g Jaguar XT4
i -
- Other Systems
(Viz, Clusters)

Enterprise Ltorage

controllers and large

racks of disks are connected

via InfiniBand.

48 DataDirect 52A9900
controller pairs with
1 Tbyte drives
and 4 InifiniBand
connections per pair

Storage Nodes
run parallel file system
software and manage
incoming FS traffic.

192 dual quad core
Xeon servers with
16 Gbytes of RAM each

Computer Science Division / Argonne National Laboratory

)

SION N;twork
provides connectivity
between OLCF
resources and
primarily carries
storage traffic.

3000+ port 16 Gbit/sec
InfiniBand switch
complex

Lustre Router Nodes
run parallel file system
client software and
forward 1/0 operations
from HPC clients.

192 (XT5) and 48 (XT4)
one dual core
Opteron nodes with
8 GB of RAM each

Monday, September 20, 2010

Blue Waters Storage System

» File System (GPFS) runs directly
on compute nodes

» Storage nodes and physical

: Storage Drawer
storage embedded in compute 9 .

SAS HDD for data
SAS 550 for metadata

racks
JBOD with software RAID AS Interconnect
Metadata embedded as well | R @~ Storage Node
» All I/O messages use internal ’
. Compute Nodes
fabric

lower latency to storage

reduced cost

PERCS Low-latency

may cause contention between
Interconnect

I/O heavy and communication
heavy applications Tape

» 1.5 TB/s peak bandwidth Fibre Channel
» 18 Petabytes of Storage

AS Interconnect

Computer Science Division / Argonne National Laboratory

)

Monday, September 20, 2010

How are Parallel File Systems designed?

Computer Science Division / Argonne National Laboratory

Monday, September 20, 2010

Data distribution in parallel file systems

Logically a file is an

extendable sequence Eheckpointsac Offset in File >

of byt_es that can be ~ ||HOI|HO02| HO3||HO4 'EOO | |EO2 [EO3| EO6 EO8 |[EO9 [EIO [EIl

referenced by offset | |

into the sequence. " [PFS Server ' . - Space is allocated on demand, so
L unwritten "holes" in the logical

Metadata associated file do not consume disk space.

with the file specifies —

a mapping of this PES Server

sequence of bytes —

into a set of objects Il 'EOI [EO5 | EO9 | A static mapping from logical file

on PFS servers. —

to objects allows clients to easily
calculate server(s) to contact for

: PFS Server . . T

Extents in the byte sequence specific regions, eliminating need

are mapped into objects on | to interact with a metadata
: .. HO3 0
PFS servers.This mapping is St server on each |/O operation.

usually determined at file
creation time and is often a
round-robin distribution of a HO04 "EO3 [EO7 [EIT
fixed extent size over the ‘
allocated objects.

PFS Server

I

Computer Science Division / Argonne National Laboratory

17

)

Monday, September 20, 2010

Data Distribution

= Round-round is a reasonable default solution

— Works consistently for a variety of workloads

— Works well on most systems

— Who uses it? GPFS, Lustre, PVFS...

— Can you think of a system where this might not work so well?
— What other distributions could be used?

Logical File
*

o I 2 3 4 5 6 7 8 9 10 I 12 13 4
- Stripe Size
Striping Unit

Server | Server 2 Server 3 Server 4

0 4 8 | 5 9 2 6 |0 3 |l

Computer Science Division / Argonne National Laboratory
)

15

18

Monday, September 20, 2010

Data Distribution

= Clients perform writes/reads of file at various regions

— Usually depends on application workload and number of tasks

Client I: 512K write, offset 0
0 | 2

3

4

5

6

1

U RN N]

Client 2: 512K write, offset 512K
8 9 10 Il

12

13

14

5

Server |

0 4

8

12

Server 2

13

Server 3

2

6

Server 4

0 14 3

1

5

-

Computer Science Division / Argonne National Laboratory

19

Monday, September 20, 2010

Data Distribution

= Sjzes of requests, alignment to striping unit is important

Client |: 400K write, offset 0 Client 2: 400K write, offset 400K
0 | 2 3 4 5 7 8 9 10 |l

\ \I \2- \3 8./9/ IO/ 7/ I

0 4 5
Server | Server 2 Server 3 Server 4
0 4 8 12 5 9 B ({2 6 10 14 | 3 7T Il IS
Computer Science Division / Argonne National Laboratory
)

Monday, September 20, 2010

Data Distribution continued...

= What happens when we have many servers (hundreds)?
= Two-dimensional distributions help

= Can also limit number of servers per file

Logical File
0 I 2 3 4 5 6 7 8 9 10

12 13 |4 I5 16 |7 18 19 20 2I 22 23
Server | Server 2 Server 3 Server 4
0 2 4 I 3 5 6 8 10 7 9 |
2 6 10 3 7 | 18 20 22 19 2i 23
Group Size =2
Computer Science Division / Argonne National Laboratory
o 21

Monday, September 20, 2010

Classes of Parallel File Systems: Blocks vs. Objects

= Block-Based Parallel File Systems (AKA “Shared-disk”)

Blocks are fixed-width
File growth requires more blocks
Blocks distributed over storage nodes

Suffer from block allocation issues, lock managers
Example: GPFS

= (QObject-based Parallel File Systems

Variable-length regions of the file

A file has a constant number of objects

Objects are given global identifiers (object-ids, handles, etc.)
File growth increases the size of object(s)

Objects are easier to manage and distribute

Space allocation is managed locally on a per-object basis
Examples: Lustre, PVFS

Computer Science Division / Argonne National Laboratory

-

15

Monday, September 20, 2010

Blocks vs. Objects

» Metadata for a file includes distribution information

» Block-based file systems (Shared-disk) require dynamic metadata for distribution

information Blocks on Server 1
- N

< > Blocks on Server 2

S) Blocks on Server 3

File Metadata \

File metadata changes with file size
» Object-based file systems only need static metadata for distribution information

Object on Server 1

“—— Per-object

Object on Server 2 metadata
y changes with
S Object on Server 3 e file size

File Metadata
File metadata fixed at file creation

Computer Science Division / Argonne National Laboratory

)

Monday, September 20, 2010

What is POSIX 1/0?

= A set of interfaces defined in 1970s:
— fd = open(filename, mode);
— read(fd, buffer, size);
— write(fd, buffer, size);
= Specification also defines rules for maintaining consistency

— Two processes writing to overlapping regions must get consistent results from /O
system

— Easy on local file systems

— Distributed/Parallel file systems must manage consistency via locks
— Other alternatives exist

= Note: NFS uses relaxed close-to-open semantics, not POSIX

Computer Science Division / Argonne National Laboratory

-

22

Monday, September 20, 2010

Overlapping Regions: Scenario 1

Server 1 | g . Server 2

o2

'\ . Computer Science Division / Argonne National Laboratory
G, A

Ky))
W)
\ - —
A -
Y

"
h —

Monday, September 20, 2010

Overlapping Regions: Scenario 1

Server 1

Monday, September 20, 2010

Overlapping Regions: Scenario 1

Consistent!

&\ ",\ . Computer Science Division / Argonne National Laboratory

O ,

Monday, September 20, 2010

Overlapping Regions: Scenario 2

Server 1 | g . Server 2

o2

'\ . Computer Science Division / Argonne National Laboratory
G, A

Ky))
W)
\ - —
A -
Y

"
h —

Monday, September 20, 2010

Overlapping Regions: Scenario 2

4. . Computer Science Division / Argonne National Laboratory

Monday, September 20, 2010

Overlapping Regions: Scenario 2

Consistent!

Monday, September 20, 2010

Overlapping Regions: Scenario 3

Server 1 | g . Server 2

o

'\ . Computer Science Division / Argonne National Laboratory
G, A

Ky))
e ¢
L A
N - —
' -
L}

"
h —

Monday, September 20, 2010

Overlapping Regions: Scenario 3

Server 1

,(,F‘\« . ComputerS D / Argonne National Laboratory
W .,\'4(.
":. h,

&

Monday,.September 20, 2010

Overlapping Regions: Scenario 3

Inconsistent!

&

Monday,.September 20, 2010

Overlapping Regions: Scenario 4

Server 1 | g . Server 2

o

'\ . Computer Science Division / Argonne National Laboratory
G, A

Ky))
e ¢
L A
N - —
' -
L}

"
h —

Monday, September 20, 2010

Overlapping Regions: Scenario 4

a —

Monday, September 20, 2010

Overlapping Regions: Scenario 4

Inconsistent!

&

Monday,.September 20, 2010

How do POSIX interfaces/semantics
affect Parallel File Systems?

» Overlapping regions create a major problem

» How does the Parallel File System provide POSIX consistency
semantics?

» Two Choices:

Centralized Management - All client requests are made to a
broker server, which can serialize the requests to overlapping
regions of a file and perform them in isolation where necessary

0000000

Distributed Locking - Clients request a lock from a lock manager
for the region of data they wish to access. Once a lock has been
granted, clients can write exclusively to the region. This requires
a Distributed Lock Manager (DLM): a server that hands out locks
to clients as they request them.

Computer Science Division / Argonne National Laboratory

)

Monday, September 20, 2010

Locking in Parallel File Systems

Most parallel file systems use locks to manage concurrent access to files
» Files are broken up into lock units

» Clients obtain locks on units that they will access before
|/O occurs

» Enables caching on clients as well (as long as client has a lock, it knows its cached data is
valid)

* Client can optimize small I/O with readahead
» Locks are reclaimed from clients when others desire access
» Locks are delegated and revoked through distributed lock managers

If an access touches any Offset in File
data in a lock unit, the
lock for that region) |
: oo Lock Lock File Access
must be obtained . Boundary Unit

before access occurs.

Computer Science Division / Argonne National Laboratory

)

Monday, September 20, 2010

Locks and the DLM

DLM

Lock
Granted

— 1 P | ST

Client

Computer Science Division / Argonne National Laboratory

-

Monday, September 20, 2010

Locks and the DLM

DLM

ock
Granted

&

Monday,.September 20, 2010

Distributed Lock Managers

» Implementation burden
DLMs add complexity to file system
What if the DLM node fails?
» Locks are expensive!
Round-trip latencies between clients and DLM
What happens on client failure?
» |dea: Lets just not write to overlapping regions!

Most applications don’t write to overlapping regions concurrently anyway

Computer Science Division / Argonne National Laboratory

-

Monday, September 20, 2010

Locking and Concurrent Access

The left diagram shows a row-
block distribution of data for ——
three processes. On the right

we see how these accesses

map onto locking units in the
file.

In this example a header
(black) has been prepended to
the data. If the header is not
aligned with lock boundaries,
false sharing will occur.

In this example, processes
exhibit a block-block access
pattern (e.g.accessing a
subarray). This results in many
interleaved accesses in the file.

Computer Science Division / Argonne National Laboratory

)

2D View of Data

{ Il |

Offset in File

" -

When accesses are to large contiguous
regions, and aligned with lock boundaries,
locking overhead is minimal.

—— ==
|

These two regions exhibit false sharing:

no bytes are accessed by both processes, but

because each block is accessed by more than
one process, there is contention for locks.

When a block distribution is used, sub-rows
cause a higher degree of false sharing,
especially if data is not aligned with lock
boundaries.

24

Monday, September 20, 2010

What does PVFS do?

» Simply doesn’t provide POSIX consistency guarantees
» If two clients write to overlapping regions concurrently, undefined results!

» Oh no! Not POSIX!

» Which applications perform this pattern of access (overwrite overlapping regions)?
Applications using the file system to update shared state, e.g. current value is 42
Event notification
Changes to a file: new configuration, editing, etc.

» Computational Science doesn’t often access overlapping regions
Better to use MPI to communicate shared state in a distributed fashion
Event notification shouldn’t be implemented in the file system
Editing files is done interactively, not by clients accessing regions concurrently

» What about appending records to a file?
Don’t care about offset, just want to append
Requires (atomically) updated file size information
Shared file pointers?
Google FS uses record append

Computer Science Division / Argonne National Laboratory

)

Monday, September 20, 2010

Metadata in Parallel File Systems

» A single metadata server creates a single point of contention (hotspot)
Many clients try to open the same file at the same time: Creates an N-to-1 pattern of lookup requests

Many clients try to create new files at once: Creates an N-to-1 pattern of create requests (requires
disk access too!)

» How can metadata be distributed across metadata servers?
Depends on underlying design (blocks vs. objects)

Single Metadata Server

Clients

‘ ‘ Computer Science Division / Argonne National Laboratory

Monday, September 20, 2010

Distributing Directories in PVFS

Metadata Server 1

- -
——
-
-— -
-‘__._
-
=
——
-
- -

OldPhotos

|0 Server1 .-’

L
-
-

7’
s
-
-
”
-
4
-

.7 Computer Science Division / Argonne National Laboratory

Monday, September 20, 2010

Distributing Metadata in GPFS

» PVEFS distributes metadata by placing directories on different metadata servers

» What about a single directory with millions (or billions!) of entries?

» GPFS stores directory entries in essentially a sparse file

» The sparse file (directory entries) is distributed across blocks on different storage servers

» GPFS determines block accesses using

Directory Leaf Pages
2
Depth d 3 hi~] =00 « +

000 pointer]
w’ . ‘/ 3
010 * 1

0" : 1.\’
'm L) N 3

‘o' . !
110 - " hi~}=011. ..

hi~}=1---

hi~)=010- - -

/

Computer Science Division / Argonne National Laboratory

-

Monday, September 20, 2010

Parallel File System Comparisons

PVFS Lustre Ceph

Production Ready yes yes yes no no
Noncontiguous |/O yes no yes* no no
Stateless Clients yes no no no no
High Performance Shared File Writes yes yes no* no no
Fully Decentralized Metadata yes yes no no no
Software Redundancy no yes* no yes yes
Conserves Client BW when Replicating no no no yes no
App.-Level Object Abstraction no no no yes yes
Scalable Failure Detection no no no no no
Reads from Multiple Replicas no no* no no no*

‘ Computer Science Division / Argonne National Laboratory
e s

Monday, September 20, 2010

Thanks!

“ Computer Science Division / Argonne National Laboratory

49

Monday, September 20, 2010

