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ABSTRACT 

 

Hadoop is an open-source software framework for 

distributed storage and distributed processing of massive 

data sets on large computer clusters [1]. Hadoop stores all 

the files on Hadoop Distributed File System (HDFS [2]). The 

major drawback of HDFS is that it stores all the metadata of 

its files on a single node called Name Node. When we have 

large number of small files the size of metadata might 

increase in such a way that it may not fit on a single node. 

And also if there are thousands of meta-data requests from 

the user, then the server might not be able to handle all of 

them. So HDFS cannot be used for many modern scientific 

applications like climatology, astronomy [3] are becoming 

metadata intensive and requires more support from the 

storage subsystem [4]. Therefore we use FusionFs [5], a 

Distributed File System which was designed to handle 

metadata intensive workloads efficiently. In this paper we 

are going to use FusionFS as our distributed storage engine 

and implement Toy Hadoop - a MapReduce framework to 

process small files efficiently. 
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1.1 INTRODUCTION 

 

The conventional Hadoop doesn’t support many modern 

scientific metadata intensive applications and it has a 

limitation dealing with something called small files problem. 

This problem drastically reduces the efficiency of Hadoop 

when dealing with files of size less than 10MB. 

Fig.-1 shows the time taken to run a typical MapReduce-

WordCount program on a dataset of 10GB which was 

divided into equal files of size 1KB, 10KB, 100KB, 1MB, 

10MB etc. The observation was that as the size of files 

decreases, the time taken to run the program increases. 

Fig.-2 shows that as the size of files decreases, the no. of 

mappers assigned by the Job Tracker increases and the 

communication overhead between Job Tracker and Task 

Trackers also increases. This degrades the performance of 

Hadoop significantly. Therefore we came up with a novel 

approach i.e., implementation of system called ToyHadoop 

to efficiently deal with small files problem. 

 

Fig.-1: Effect of Small Files Problem 

 

 

Fig.-2: Reason behind Small Files Problem 

1.2 BACKGROUND 

 

Hadoop is an open source implementation of MapReduce [6] 

which uses the HDFS as its underlying layer. Basically the 
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Hadoop core is divided into two fundamental layers: 

MapReduce and HDFS. MapReduce is the computation 

engine running on top of HDFS, which is its data store 

manager. An important characteristic of Hadoop is 

partitioning of data and computation across many thousands 

of hosts and executing application computations in parallel 

close to their data. 

HDFS, which is an inspiration from Google File System [7], 

is the file system component of Hadoop. It stores file 

metadata and application data separately on Name Node and 

Data Node. Name Node contains the namespaces of 

hierarchy of files, directories and their mapping. Data Node 

connects to Name Node and performs handshake to verify 

NameSpaceID. 

Where FusionFS is a Distributed File System designed in 

such a way that it contains a distributed storage layer local 

to compute node and enables every compute node to actively 

participate in both the metadata and data movement. The 

Client or application will be able to access global namespace 

of the file system with a distributed metadata service on 

same node. FusionFS has different data structures for 

managing regular files and directories. For a regular file, the 

field addr stores the node where this file resides. For a 

directory, the field filelist records all the entries under this 

directory. This filelist field is particularly useful for 

providing in-memory speed for directory read, the idea is to 

save extreme amount of data movement between storage and 

compute node during I/O operations. It a Distributed Hash 

Table (DHT [8]) called Zero-Hop Distributed Hash Table 

(ZHT [9]) as its underlying building block for metadata 

management which is basically a Key-Value Store [10]. It 

also maintains consistency, because the first replica is 

strongly consistent with primary copy while the other 

replicas are asynchronously updated.     

1.3 MOTIVATION 

 

In Hadoop, the data is divided into chunks of size 64MB. 

Suppose if the files sizes are very less, say around 10KB and 

there are a lot of such files, then the problem is that Hadoop 

can’t handle lots of such files efficiently. It was designed to 

handle only large datasets. In general, each map task can 

process only one block of input at a time. Here in our case, 

as shown in Fig.-3, each map task processes very small input 

and requires a lot of map tasks. Which results in extra 

bookkeeping overhead. Moreover, retrieving each small file 

incurs lots of seeks and hops from data node to data node 

[11]. The time taken to finish smaller jobs will be higher 

when compared to larger ones and this is called Small Files 

Problem in Hadoop. So in this paper we handle this situation 

in such a way that the performance increases even if the files 

are small. 

 
Fig.-3: Small Files Problem 

2.1 PROPOSED SOLUTION 

 

In this paper we are going to introduce a new distributed 

compute engine called ToyHadoop, which can run on any 

distributed file system. The purpose of this implementation 

is current Apache Hadoop project suffers handling files with 

size less than 10 MB. The Apache Hadoop project was 

implemented with assumption to run on large files, at least 

of size 64MB. But many scientific applications has files less 

than this size. To solve this issue we are going to implement 

our own compute engine called ToyHadoop (T-Hadoop). 

We call it as ToyHadoop because it doesn’t have all the 

features Apache Hadoop has. For e.g. Hive, Pig, Failure 

Handling, Security etc. Adding these components to our T-

Hadoop will be our future work. To keep our project simple 

we are going to follow the same design as of Apache Hadoop 

but, do modifications which makes our T-Hadoop run faster 

for small files. Our expectation is, T-Hadoop will 

outperform Apache Hadoop on datasets with smaller file 

size.  

 

Fig.-4: Grouping Files - Solution to Small Files Problem 



We are going to use FusionFs - a distributed file store as our 

underlying distributed storage system. The reason being 

FusionFs is that it is built for meta-data intensive 

applications, as we are going to have large number of small 

files our compute engine needs to query distributed storage 

FusionFs, often to get information about files. 

2.2 ARCHITECTURE 

 

 

Fig.-5: System Architecture 

 

As stated before, the main goal of T-Hadoop is to deal with 

small files problem efficiently. In Apache Hadoop 

implementation mappers are mapped one to one to 64MB 

file blocks. We can’t do the same in this situation as it would 

put more workload on Job Tracker. So we came up with 

something called Grouping Algorithm to handle this 

problem. Let’s say a user submits a job request to Job 

Tracker. Next the Job Tracker queries for metadata 

information from FusionFS. Once it has all information 

about the files it needs to process, instead of launching one 

Task Tracker for each file or block, it will assign 

Map/Reduce tasks on sets of Files, as shown in Fig.-4. This 

will considerably reduce the traffic between Job Tracker and 

Task Tracker. Hence Task Tracker will now respond to Job 

Tracker only after completion of all files assigned to it. This 

increases the performance of the entire system. The whole 

Architecture of the system is illustrated in Fig.-5. Once the 

Task Tracker completes its tasks, then it reports to Job 

Tracker and waits for assignment of another task. 

The three main components of our system are: 

a. JOB TRACKER:  

This is the Master server of our T-Hadoop. Client submits 

jobs to Job Tracker and it is responsible for executing the job 

and produce the output. There will be only one Job Tracker 

for a cluster. 

 

b. TASK TRACKER:  

There can be up to N Task Trackers in a cluster, where N 

corresponds to number of nodes in a cluster. Task Tracker is 

responsible for running Map/Reduce on the assigned to 

them. It reports to Job Tracker after the completion of tasks. 

Typically a task can be a Mapper or a Reducer task. 

 

c. GROUPING ALGORITHM:  

 Query for available nodes. 

 Compute Total size of files from the fetched 

metadata. 

 Compute required number of nodes. 

 If required nodes < available nodes 

Then pick nodes based on the availability of the 

data. 

 If required nodes > available nodes 

Then perform computation on available nodes and 

wait until the nodes are available. 

 

IMPLEMENTATION: 

 

The implementation of Toy Hadoop was done from the 

scratch in Java and FusionFS was implemented in C/C++. 

So, to integrate Toy Hadoop and FusionFS we had to write 

a Java wrapper class in order to invoke required methods in 

FusionFS. And we have used GitHub for version control. 

3. EVALUATION 

 

We have evaluated Toy Hadoop against Apache Hadoop 

using a dataset of 10GB. We did split that dataset into 

different datasets with files of size 1KB, 10KB, 100KB, 10 

MB and 100MB. Then we ran MapReduce-WordCount 

program on those five datasets on Amazon EC2 on different 

nodes up to 64. 

 

Test Bed Amazon EC2 

Scaling 2, 4, 8, 16, 32, 64 

Instance Type (Master) M3.large 

Instance Type (Worker) M3.medium 



We have also evaluated Toy Hadoop in three categories: 

 Apache Hadoop Vs Toy Hadoop on different 

datasets 

 Toy Hadoop with different file systems FusionFS 

Vs HDFS Vs S3FS 

 No. of Mappers in Toy Hadoop Vs Apache Hadoop 

 

1. Apache Hadoop Vs Toy Hadoop on different dataset 

 

Fig.-6.1: Apache Hadoop Vs Toy Hadoop - 1KB 

 

 

Fig.-6.2: Apache Hadoop Vs Toy Hadoop - 10KB 

 

 

Fig.-6.3: Apache Hadoop Vs Toy Hadoop - 100KB 

 

Fig.-6.4: Apache Hadoop Vs Toy Hadoop - 10MB 

 

 

Fig.-6.5: Apache Hadoop Vs Toy Hadoop - 100MB 

 

From Fig.-6.1 we can observe that, when the file size is 1KB, 

the time taken by Apache Hadoop is 1200 minutes on 2 

nodes whereas the Time taken by Toy Hadoop is only 100 

minutes. We can observe the same scenario from Fig. [6.2-

6.4] as well. The thing to observe here is, as the file size 

increases, the time taken by Apache Hadoop decreases. In 

Fig.-6.2 when the file size is 10 KB, it took 698 minutes on 

2 nodes. In Fig.-6.3 also, when the file size is 100KB, it took 

377 minutes. But in Fig.-6.4 i.e., when the size of files is 

greater than 64 MB, Apache Hadoop took very less. 

Therefore it was designed only to handle large datasets 

efficiently. But if you observe from Fig.-[6.1-6.5], 

ToyHadoop took almost the same amount of time for files of 

all sizes. Hence we can say that, our Toy Hadoop works 

efficiently regardless of the file size. Therefore through our 

implementation, we handled the small files problem in 

Apache Hadoop by grouping the files efficiently.  

 

2. Toy Hadoop with different file systems FusionFS Vs 

HDFS Vs S3FS 

Below graphs show the comparison of Toy Hadoop on top 

of FusionFS, HDFS and S3FS.  
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Fig.-7.1: Comparing Toy Hadoop with FusionFS, HDFS, 

S3FS - 1KB 

 

 

Fig.-7.2: Comparing Toy Hadoop with FusionFS, HDFS, 

S3FS - 10KB 

 

 

Fig.-7.3: Comparing Toy Hadoop with FusionFS, HDFS, 

S3FS - 100KB 

 

Fig.-7.4: Comparing Toy Hadoop with FusionFS, HDFS, 

S3FS - 10MB 

 

 

Fig.-7.5: Comparing Toy Hadoop with FusionFS, HDFS, 

S3FS - 100MB 

 

The graphs from Fig. [7.1- 7.5] shows the time taken to run 

Map Reduce program on different file system The 

observation from the above graphs is that Values for Toy-

Hadoop – Fusionfs on the following datasets 

1kb,10kb,100kb,10 mb works very efficiently  on all nodes 

because Fusion fs has metadata management 

But Values of Toy-Hadoop –S3 and Toy-Hadoop-HDFS are 

similar when compared for all data sets except 100MB 

because   From 

100Mb the metadata management is efficient and So T-

Hadoop –with all file Systems works similarly. 

 

Implementation File 

System 

Will Work better for 

smaller files less than 

64MB? And Why? 
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Toy Hadoop Fusion 

FS 

Yes. Because of Grouping 

Algorithm and Metadata 

intensive file system 

Toy Hadoop HDFS/S3 Yes. Because of Grouping 

Algorithm 

Apache 

Hadoop 

HDFS No. Because of Fixed 

64MB Chunked size.  

 

3. No. of Mappers in Apache Hadoop Vs Toy Hadoop 

 

Fig.-8: Comparing No. of Mappers: Apache Hadoop Vs 

Toy Hadoop 

In Fig.-8 we compare number of mappers launched on 

THadoop vs Apache Hadoop. 

The number of mappers launched for Toy Hadoop is very 

less compared to Apache Hadoop. For a file size of 1 kb our 

Toy Hadoop launches 157 mappers. This continues for files 

with size 10 kb, 100 kb and 10 MB. But on the other hand 

Apache Hadoop launches 13000000 mappers for 1kb files 

and it get reduced on increase in file size.  

For file size of 100MB our Toy Hadoop launches 100 

mappers. This directly maps to number of files itself. 

In all cases the number of mappers launched by our Toy 

Hadoop is lesser. This increase performance of the whole 

system by reducing communication overhead between job 

tracker and task tracker. 

4. RELATED WORK 

 

There are several approaches to deal with small files 

problem in Hadoop, such as Hadoop Archives (HAR) [12], 

SequenceFile [13], MapFile [14] etc. 

HAR files was introduced to facilitate archiving small files 

together into HDFS blocks with .har as extension. These 

HAR files work as a layered file system on top of HDFS. 

This handles NameNode’s memory usage problems but the 

major issue with HAR files is the Read operation. This 

makes it less efficient and much slower than HDFS, as it 

requires two index-file read and two data-file read 

operations. Moreover, creating an archive file generates a 

copy of original files and increases the consumption of disk 

space. Another issue is that, once an archive is created, we 

can’t make any insertions to it and it involves recreation of a 

new HAR file. 

SequenceFile is a persistent data structure for binary key-

value pairs where the filename is used as a Key and its 

contents are used as Value. It converts all the existing small 

files into sequence files and they can be processed in a 

streaming fashion. The primary advantage of using 

SequenceFile is that, they can be split into chunks and can 

run MapReduce jobs on the chunks independently. 

Moreover, SequenceFile supports compression and 

decompression of files unlike HAR. But the problem is that, 

SequenceFile is Java-Centri and doesn’t support cross-

platform applications. Converting the existing files into 

SequenceFile is a time consuming process and there is no 

way to list all the keys in a SequenceFile.  

A MapFile is nothing but a SequenceFile with sorted keys 

and maintains a partial index. It consists of an Index File and 

a Data File. The data file stores Key-Value pairs as records 

and are sorted in key order. The index file stores key location 

information, which is an offset of the first record containing 

the key which is located in the data file [15]. 

As all the above mentioned approaches have their own 

disadvantages, we came up with our own implementation of 

Toy Hadoop to handle small files problem. 

Since, HDFS has several issues regarding metadata 

management, we need to use other distributed file systems 

such as Ceph [16], Luster [17], Sector [18] etc. But these file 

systems are tightly coupled with MapReduce framework and 

do not offer a POSIX interface, which is implemented with 

Fuse framework [19]. Moreover, the file systems that do not 

support POSIX interface are not designed for metadata-

intensive operations.  

So, we need other file systems such as xFS [20], FDS [21] 

etc. that came up with the idea of distributed metadata 

management. In xFS, though the metadata is distributed, it 

requires a central manager to locate a particular file. 

Whereas FDS maintains lightweight metadata server and 

offloads the metadata to available nodes in a distributed 

manner. In contrast, the metadata in FusionFS is completely 

distributed and was designed exclusively for metadata-

intensive applications.  

Therefore, we implemented Toy Hadoop on top of FusionFs, 

which is our underlying storage manager. 
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5. CONCLUSION 

In this paper we have proposed a solution to handle small 

files problem efficiently through the implementation of Toy 

Hadoop - a MapReduce framework. We have identified the 

challenges faced by Apache Hadoop in dealing with small 

files and came up with Grouping Algorithm - a novel 

approach to group all small files together logically. We have 

also identified the challenges faced by HDFS in dealing with 

metadata management and learnt about various other 

distributed file systems and their approaches for distributed 

metadata management. Then we have implemented our Toy 

Hadoop on top of FusionFS to handle the problems faced by 

Hadoop and HDFS. Finally we have evaluated Toy Hadoop 

against Apache Hadoop and succeeded in outperforming 

Apache Hadoop while dealing with small files problem. 

As part of our future work, the implementation of Toy 

Hadoop can be extended by including all the features 

supported by Apache Hadoop such as Failure Handling, 

Security Enhancements, Pig, Hive etc. 
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