
T-FUSE

IMPROVING HADOOP THROUGH FUSIONFS
Alekya Thalari, Krishnaja Kethireddy, Nirmal Kumar Ravi, Prathamesh Mantri

{athalari, kkethire, nravi, pmantri2}@hawk.iit.edu

Department of Computer Science

Illinois Institute of Technology

Chicago, IL

ABSTRACT

Hadoop is an open-source software framework for

distributed storage and distributed processing of massive

data sets on large computer clusters [1]. Hadoop stores all

the files on Hadoop Distributed File System (HDFS [2]). The

major drawback of HDFS is that it stores all the metadata of

its files on a single node called Name Node. When we have

large number of small files the size of metadata might

increase in such a way that it may not fit on a single node.

And also if there are thousands of meta-data requests from

the user, then the server might not be able to handle all of

them. So HDFS cannot be used for many modern scientific

applications like climatology, astronomy [3] are becoming

metadata intensive and requires more support from the

storage subsystem [4]. Therefore we use FusionFs [5], a

Distributed File System which was designed to handle

metadata intensive workloads efficiently. In this paper we

are going to use FusionFS as our distributed storage engine

and implement Toy Hadoop - a MapReduce framework to

process small files efficiently.

Keywords

Hadoop, HDFS, MapReduce, FusionFS, Metadata, Name

Node

1.1 INTRODUCTION

The conventional Hadoop doesn’t support many modern

scientific metadata intensive applications and it has a

limitation dealing with something called small files problem.

This problem drastically reduces the efficiency of Hadoop

when dealing with files of size less than 10MB.

Fig.-1 shows the time taken to run a typical MapReduce-

WordCount program on a dataset of 10GB which was

divided into equal files of size 1KB, 10KB, 100KB, 1MB,

10MB etc. The observation was that as the size of files

decreases, the time taken to run the program increases.

Fig.-2 shows that as the size of files decreases, the no. of

mappers assigned by the Job Tracker increases and the

communication overhead between Job Tracker and Task

Trackers also increases. This degrades the performance of

Hadoop significantly. Therefore we came up with a novel

approach i.e., implementation of system called ToyHadoop

to efficiently deal with small files problem.

Fig.-1: Effect of Small Files Problem

Fig.-2: Reason behind Small Files Problem

1.2 BACKGROUND

Hadoop is an open source implementation of MapReduce [6]

which uses the HDFS as its underlying layer. Basically the

0

200

400

600

800

1000

1200

1400

2 NODES 4 NODES 8 NODES 16 NODES 32 NODES 64 NODES

Ti
m

e
in

 m
in

u
te

s

No. of Nodes

Map Reduce – Word Count

1KB 10KB 100KB

10MB 100MB

13000000

1500000

170000 1600 200
0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

1KB 10KB 100KB 10MB 100MB

No. of Mappers

Mappers

Hadoop core is divided into two fundamental layers:

MapReduce and HDFS. MapReduce is the computation

engine running on top of HDFS, which is its data store

manager. An important characteristic of Hadoop is

partitioning of data and computation across many thousands

of hosts and executing application computations in parallel

close to their data.

HDFS, which is an inspiration from Google File System [7],

is the file system component of Hadoop. It stores file

metadata and application data separately on Name Node and

Data Node. Name Node contains the namespaces of

hierarchy of files, directories and their mapping. Data Node

connects to Name Node and performs handshake to verify

NameSpaceID.

Where FusionFS is a Distributed File System designed in

such a way that it contains a distributed storage layer local

to compute node and enables every compute node to actively

participate in both the metadata and data movement. The

Client or application will be able to access global namespace

of the file system with a distributed metadata service on

same node. FusionFS has different data structures for

managing regular files and directories. For a regular file, the

field addr stores the node where this file resides. For a

directory, the field filelist records all the entries under this

directory. This filelist field is particularly useful for

providing in-memory speed for directory read, the idea is to

save extreme amount of data movement between storage and

compute node during I/O operations. It a Distributed Hash

Table (DHT [8]) called Zero-Hop Distributed Hash Table

(ZHT [9]) as its underlying building block for metadata

management which is basically a Key-Value Store [10]. It

also maintains consistency, because the first replica is

strongly consistent with primary copy while the other

replicas are asynchronously updated.

1.3 MOTIVATION

In Hadoop, the data is divided into chunks of size 64MB.

Suppose if the files sizes are very less, say around 10KB and

there are a lot of such files, then the problem is that Hadoop

can’t handle lots of such files efficiently. It was designed to

handle only large datasets. In general, each map task can

process only one block of input at a time. Here in our case,

as shown in Fig.-3, each map task processes very small input

and requires a lot of map tasks. Which results in extra

bookkeeping overhead. Moreover, retrieving each small file

incurs lots of seeks and hops from data node to data node

[11]. The time taken to finish smaller jobs will be higher

when compared to larger ones and this is called Small Files

Problem in Hadoop. So in this paper we handle this situation

in such a way that the performance increases even if the files

are small.

Fig.-3: Small Files Problem

2.1 PROPOSED SOLUTION

In this paper we are going to introduce a new distributed

compute engine called ToyHadoop, which can run on any

distributed file system. The purpose of this implementation

is current Apache Hadoop project suffers handling files with

size less than 10 MB. The Apache Hadoop project was

implemented with assumption to run on large files, at least

of size 64MB. But many scientific applications has files less

than this size. To solve this issue we are going to implement

our own compute engine called ToyHadoop (T-Hadoop).

We call it as ToyHadoop because it doesn’t have all the

features Apache Hadoop has. For e.g. Hive, Pig, Failure

Handling, Security etc. Adding these components to our T-

Hadoop will be our future work. To keep our project simple

we are going to follow the same design as of Apache Hadoop

but, do modifications which makes our T-Hadoop run faster

for small files. Our expectation is, T-Hadoop will

outperform Apache Hadoop on datasets with smaller file

size.

Fig.-4: Grouping Files - Solution to Small Files Problem

We are going to use FusionFs - a distributed file store as our

underlying distributed storage system. The reason being

FusionFs is that it is built for meta-data intensive

applications, as we are going to have large number of small

files our compute engine needs to query distributed storage

FusionFs, often to get information about files.

2.2 ARCHITECTURE

Fig.-5: System Architecture

As stated before, the main goal of T-Hadoop is to deal with

small files problem efficiently. In Apache Hadoop

implementation mappers are mapped one to one to 64MB

file blocks. We can’t do the same in this situation as it would

put more workload on Job Tracker. So we came up with

something called Grouping Algorithm to handle this

problem. Let’s say a user submits a job request to Job

Tracker. Next the Job Tracker queries for metadata

information from FusionFS. Once it has all information

about the files it needs to process, instead of launching one

Task Tracker for each file or block, it will assign

Map/Reduce tasks on sets of Files, as shown in Fig.-4. This

will considerably reduce the traffic between Job Tracker and

Task Tracker. Hence Task Tracker will now respond to Job

Tracker only after completion of all files assigned to it. This

increases the performance of the entire system. The whole

Architecture of the system is illustrated in Fig.-5. Once the

Task Tracker completes its tasks, then it reports to Job

Tracker and waits for assignment of another task.

The three main components of our system are:

a. JOB TRACKER:

This is the Master server of our T-Hadoop. Client submits

jobs to Job Tracker and it is responsible for executing the job

and produce the output. There will be only one Job Tracker

for a cluster.

b. TASK TRACKER:

There can be up to N Task Trackers in a cluster, where N

corresponds to number of nodes in a cluster. Task Tracker is

responsible for running Map/Reduce on the assigned to

them. It reports to Job Tracker after the completion of tasks.

Typically a task can be a Mapper or a Reducer task.

c. GROUPING ALGORITHM:

 Query for available nodes.

 Compute Total size of files from the fetched

metadata.

 Compute required number of nodes.

 If required nodes < available nodes

Then pick nodes based on the availability of the

data.

 If required nodes > available nodes

Then perform computation on available nodes and

wait until the nodes are available.

IMPLEMENTATION:

The implementation of Toy Hadoop was done from the

scratch in Java and FusionFS was implemented in C/C++.

So, to integrate Toy Hadoop and FusionFS we had to write

a Java wrapper class in order to invoke required methods in

FusionFS. And we have used GitHub for version control.

3. EVALUATION

We have evaluated Toy Hadoop against Apache Hadoop

using a dataset of 10GB. We did split that dataset into

different datasets with files of size 1KB, 10KB, 100KB, 10

MB and 100MB. Then we ran MapReduce-WordCount

program on those five datasets on Amazon EC2 on different

nodes up to 64.

Test Bed Amazon EC2

Scaling 2, 4, 8, 16, 32, 64

Instance Type (Master) M3.large

Instance Type (Worker) M3.medium

We have also evaluated Toy Hadoop in three categories:

 Apache Hadoop Vs Toy Hadoop on different

datasets

 Toy Hadoop with different file systems FusionFS

Vs HDFS Vs S3FS

 No. of Mappers in Toy Hadoop Vs Apache Hadoop

1. Apache Hadoop Vs Toy Hadoop on different dataset

Fig.-6.1: Apache Hadoop Vs Toy Hadoop - 1KB

Fig.-6.2: Apache Hadoop Vs Toy Hadoop - 10KB

Fig.-6.3: Apache Hadoop Vs Toy Hadoop - 100KB

Fig.-6.4: Apache Hadoop Vs Toy Hadoop - 10MB

Fig.-6.5: Apache Hadoop Vs Toy Hadoop - 100MB

From Fig.-6.1 we can observe that, when the file size is 1KB,

the time taken by Apache Hadoop is 1200 minutes on 2

nodes whereas the Time taken by Toy Hadoop is only 100

minutes. We can observe the same scenario from Fig. [6.2-

6.4] as well. The thing to observe here is, as the file size

increases, the time taken by Apache Hadoop decreases. In

Fig.-6.2 when the file size is 10 KB, it took 698 minutes on

2 nodes. In Fig.-6.3 also, when the file size is 100KB, it took

377 minutes. But in Fig.-6.4 i.e., when the size of files is

greater than 64 MB, Apache Hadoop took very less.

Therefore it was designed only to handle large datasets

efficiently. But if you observe from Fig.-[6.1-6.5],

ToyHadoop took almost the same amount of time for files of

all sizes. Hence we can say that, our Toy Hadoop works

efficiently regardless of the file size. Therefore through our

implementation, we handled the small files problem in

Apache Hadoop by grouping the files efficiently.

2. Toy Hadoop with different file systems FusionFS Vs

HDFS Vs S3FS

Below graphs show the comparison of Toy Hadoop on top

of FusionFS, HDFS and S3FS.

0
200
400
600
800

1000
1200
1400

2 NODES 4 NODES 8 NODES 16 NODES32 NODES64 NODES

Ti
m

e
in

 M
in

u
te

s

No. of Nodes

Apache Hadoop Vs Toy Hadoop on1KB

 Apache Hadoop - HDFS Toy Hadoop - Fusion FS

0

100

200

300

400

500

600

700

800

2 NODES 4 NODES 8 NODES 16 NODES 32 NODES 64 NODES

Ti
m

e
in

 M
in

u
te

s

No. of Nodes

Apache Hadoop VS Toy Hadoop on 10KB

 Apache Hadoop - HDFS Toy Hadoop - Fusion FS

0
50

100
150
200
250
300
350
400

2 NODES 4 NODES 8 NODES 16 NODES 32 NODES 64 NODES

Tm
e

in
 M

In
u

te
s

No. of Nodes

Apache Hadoop Vs Toy Hadoop on 100KB

 Apache Hadoop - HDFS Toy Hadoop - Fusion FS

0

50

100

150

200

250

2 NODES 4 NODES 8 NODES 16 NODES 32 NODES 64 NODES

Ti
m

e
in

 M
in

u
te

s

No. of Nodes

Apache Hadoop Vs Toy Hadoop on 10MB

 Apache Hadoop - HDFS Toy Hadoop - Fusion FS

0

10

20

30

40

50

60

70

2 NODES 4 NODES 8 NODES 16 NODES 32 NODES 64 NODES

Ti
m

e
in

 m
in

u
te

s

No. of Nodes

Apache Hadoop VS Toy Hadoop on 100MB

Apache Hadoop - HDFS Toy Hadoop - Fusion FS

Fig.-7.1: Comparing Toy Hadoop with FusionFS, HDFS,

S3FS - 1KB

Fig.-7.2: Comparing Toy Hadoop with FusionFS, HDFS,

S3FS - 10KB

Fig.-7.3: Comparing Toy Hadoop with FusionFS, HDFS,

S3FS - 100KB

Fig.-7.4: Comparing Toy Hadoop with FusionFS, HDFS,

S3FS - 10MB

Fig.-7.5: Comparing Toy Hadoop with FusionFS, HDFS,

S3FS - 100MB

The graphs from Fig. [7.1- 7.5] shows the time taken to run

Map Reduce program on different file system The

observation from the above graphs is that Values for Toy-

Hadoop – Fusionfs on the following datasets

1kb,10kb,100kb,10 mb works very efficiently on all nodes

because Fusion fs has metadata management

But Values of Toy-Hadoop –S3 and Toy-Hadoop-HDFS are

similar when compared for all data sets except 100MB

because From

100Mb the metadata management is efficient and So T-

Hadoop –with all file Systems works similarly.

Implementation File

System

Will Work better for

smaller files less than

64MB? And Why?

0

100

200

300

400

500

600

2 NODES 4 NODES 8 NODES 16 NODES 32 NODES 64 NODES

Ti
m

e
in

 M
in

u
te

s

No. of Nodes

Toy Hadoop Comparision with Different File
Systems on 1KB

 Toy Hadoop - Fusion FS
Toy Hadoop - HDFS
Toy Hadoop - S3

0

50

100

150

200

250

300

350

400

450

2 NODES 4 NODES 8 NODES 16 NODES 32 NODES 64 NODES

Ti
m

e
in

 m
in

u
te

s

No. of Nodes

Toy Hadoop Comaprision with Different File
Systems on10KB

 Toy Hadoop - Fusion FS
Toy Hadoop - HDFS
Toy Hadoop - S3

0

50

100

150

200

250

300

2 NODES 4 NODES 8 NODES 16 NODES 32 NODES 64 NODES

Ti
m

e
in

 m
In

u
te

s

No. of Nodes

Toy Hadoop Comparision with Different File
Systems on 100KB

 Toy Hadoop - Fusion FS

Toy Hadoop - HDFS

Toy Hadoop - S3

0

50

100

150

200

2 NODES 4 NODES 8 NODES 16 NODES 32 NODES 64 NODES

Ti
m

e
in

 m
in

u
te

s

No. of Nodes

Toy Hadoop Comaprision with Different File
Systems on10MB

 Toy Hadoop - Fusion FS
Toy Hadoop - HDFS
Toy Hadoop - S3

0

10

20

30

40

50

60

70

2 NODES 4 NODES 8 NODES 16 NODES 32 NODES 64 NODES

Ti
m

e
in

 M
in

u
te

s

No. of Nodes

Toy Hadoop Comparision with Different File
Systems on 100MB

 Toy Hadoop - Fusion FS

Toy Hadoop - HDFS

Toy Hadoop - S3

Toy Hadoop Fusion

FS

Yes. Because of Grouping

Algorithm and Metadata

intensive file system

Toy Hadoop HDFS/S3 Yes. Because of Grouping

Algorithm

Apache

Hadoop

HDFS No. Because of Fixed

64MB Chunked size.

3. No. of Mappers in Apache Hadoop Vs Toy Hadoop

Fig.-8: Comparing No. of Mappers: Apache Hadoop Vs

Toy Hadoop

In Fig.-8 we compare number of mappers launched on

THadoop vs Apache Hadoop.

The number of mappers launched for Toy Hadoop is very

less compared to Apache Hadoop. For a file size of 1 kb our

Toy Hadoop launches 157 mappers. This continues for files

with size 10 kb, 100 kb and 10 MB. But on the other hand

Apache Hadoop launches 13000000 mappers for 1kb files

and it get reduced on increase in file size.

For file size of 100MB our Toy Hadoop launches 100

mappers. This directly maps to number of files itself.

In all cases the number of mappers launched by our Toy

Hadoop is lesser. This increase performance of the whole

system by reducing communication overhead between job

tracker and task tracker.

4. RELATED WORK

There are several approaches to deal with small files

problem in Hadoop, such as Hadoop Archives (HAR) [12],

SequenceFile [13], MapFile [14] etc.

HAR files was introduced to facilitate archiving small files

together into HDFS blocks with .har as extension. These

HAR files work as a layered file system on top of HDFS.

This handles NameNode’s memory usage problems but the

major issue with HAR files is the Read operation. This

makes it less efficient and much slower than HDFS, as it

requires two index-file read and two data-file read

operations. Moreover, creating an archive file generates a

copy of original files and increases the consumption of disk

space. Another issue is that, once an archive is created, we

can’t make any insertions to it and it involves recreation of a

new HAR file.

SequenceFile is a persistent data structure for binary key-

value pairs where the filename is used as a Key and its

contents are used as Value. It converts all the existing small

files into sequence files and they can be processed in a

streaming fashion. The primary advantage of using

SequenceFile is that, they can be split into chunks and can

run MapReduce jobs on the chunks independently.

Moreover, SequenceFile supports compression and

decompression of files unlike HAR. But the problem is that,

SequenceFile is Java-Centri and doesn’t support cross-

platform applications. Converting the existing files into

SequenceFile is a time consuming process and there is no

way to list all the keys in a SequenceFile.

A MapFile is nothing but a SequenceFile with sorted keys

and maintains a partial index. It consists of an Index File and

a Data File. The data file stores Key-Value pairs as records

and are sorted in key order. The index file stores key location

information, which is an offset of the first record containing

the key which is located in the data file [15].

As all the above mentioned approaches have their own

disadvantages, we came up with our own implementation of

Toy Hadoop to handle small files problem.

Since, HDFS has several issues regarding metadata

management, we need to use other distributed file systems

such as Ceph [16], Luster [17], Sector [18] etc. But these file

systems are tightly coupled with MapReduce framework and

do not offer a POSIX interface, which is implemented with

Fuse framework [19]. Moreover, the file systems that do not

support POSIX interface are not designed for metadata-

intensive operations.

So, we need other file systems such as xFS [20], FDS [21]

etc. that came up with the idea of distributed metadata

management. In xFS, though the metadata is distributed, it

requires a central manager to locate a particular file.

Whereas FDS maintains lightweight metadata server and

offloads the metadata to available nodes in a distributed

manner. In contrast, the metadata in FusionFS is completely

distributed and was designed exclusively for metadata-

intensive applications.

Therefore, we implemented Toy Hadoop on top of FusionFs,

which is our underlying storage manager.

0%

20%

40%

60%

80%

100%

1 K B 1 0 K B 1 0 0 K B 1 0 M B 1 0 0 M B

130000001500000 170000 1600

200

157 157 157 157

100

U
TI

LI
ZA

TI
O

N

DATASETS

N O . O F M A P P ER S C O M P A R I S I O N :
A P A C H E H A D O O P V S T O Y H A D O O P

Apache Hadoop - HDFS Toy Hadoop - Fusion FS

5. CONCLUSION

In this paper we have proposed a solution to handle small

files problem efficiently through the implementation of Toy

Hadoop - a MapReduce framework. We have identified the

challenges faced by Apache Hadoop in dealing with small

files and came up with Grouping Algorithm - a novel

approach to group all small files together logically. We have

also identified the challenges faced by HDFS in dealing with

metadata management and learnt about various other

distributed file systems and their approaches for distributed

metadata management. Then we have implemented our Toy

Hadoop on top of FusionFS to handle the problems faced by

Hadoop and HDFS. Finally we have evaluated Toy Hadoop

against Apache Hadoop and succeeded in outperforming

Apache Hadoop while dealing with small files problem.

As part of our future work, the implementation of Toy

Hadoop can be extended by including all the features

supported by Apache Hadoop such as Failure Handling,

Security Enhancements, Pig, Hive etc.

6. REFERENCES

[1] “Hadoop”, https://hadoop.apache.org/

[2] K. Shvachko, H. Kuang, S. Radia and R. Chansler.

“The Hadoop Distributed File System”, in Proceedings

of IEEE Symposium on Mass Storage Systems and

Technologies, 2010.

[3] I. Raicu, I.Foster, A. Szalay and G. Turcu,

“AstroPortal: A science gate-way for large-scale

astronomy data analysis”, in TeraGrid Conference,

June 2006.

[4] P. Freeman, D. Crawford, S. Kim and J.Munoz,

“Cyberinfrastructure for science and engineering:

Promises and challenges”, Proceedings of the IEEE,

vol. 93, no. 3, 2005.

[5] D. Zhao, Z. Zhang, X. Zhou, T. Li, C. Shou and I.

Raicu. “FusionFS: A Distributed File System for

Extreme Scale Data-Intensive Computing”, Under

MSST13 review, 2013.

[6] J. Dean and S. Ghemawat. “MapReduce: Simplified

Data Processing on Large Clusters”, in proceedings of

USENIX Sysmposium on Operating Systems Design

& Implementation, 2004.

[7] S. Ghemawat, H. Gobioff and S.-T. Leung “The

Google File System”, in Proceedings of the Nineteenth

ACM Symposium on Operating Systems Principles,

2003.

[8] T. Li, R. Verma, X. Duan, H. Jin and I. Raicu.

“Exploring Distributed Hash Tables in Highend

Computing”, SIGMETRICS Perform. Eval. Rev., vol.

39, no. 3, Dec. 2011.

[9] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A.

Rajendran, Z. Zhang and I. Raicu. “ZHT: A Light-

weight Reliable Persistent Dynamic Scalable Zero-hop

Distributed Hash Table”, in Proceedings of IEEE

International Symposium on Parallel and Distributed

Processing, 2013.

[10] D. Zhao, K. Burlingame, C. Debains, P. Alvarez-Tabio

and I. Raicu. “Towards High-Performance and Cost-

Effective Distributed Storage Systems with

Information Dispersal Algorithms”, in Cluster

Computing, IEEE International Conference on, 2013.

[11] T. White. “The Small Files Problem”

http://blog.cloudera.com/blog/2009/02/the-small-files-

problem/

[12] “Hadoop Archives”

http://hadoop.apache.org/docs/r1.2.1/hadoop_archives.

html

[13] “SequenceFile”

http://wiki.apache.org/hadoop/SequenceFile

[14] “MapFile”

https://hadoop.apache.org/docs/current/api/org/apache/

hadoop/io/MapFile.html

[15] J. Venner. “Pro Hadoop”, Apress. June 209.

[16] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long

and C. Maltzahn. “Ceph: A Scalable, High-

Performance Distributed File System”, in Proceedings

of the 7th Symposium on Operating Systems Design

and Implementation, 2006.

[17] P. Schwan. “Lustre: Building a file system for 1,000-

node clusters”, in Proceedings of linux symposium,

2003.

[18] Y. Gu, R. L. Grossman, A. Szalay and A. Thakar.

“Distributing the Sloan Digital Sky Survey using UDT

and Sector”, in Proceedings of IEEE International

Conference on e-Science and Grid Computing, 2006.

[19] “FUSE”, http://fuse.sourceforge.net/

[20] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A.

Patterson, D. S. Roselli and R. Y. Wang. “Serverless

network file systems”, in Proceedings of ACM

symposium on Operating systems principles, 1995.

[21] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann, J.

Howell and Y. Suzue. “Flat Datacenter Storage”, in

Proceedings of USENIX Symposium on Operating

Systems Design and Implementation, 2012.

APPENDIX

Contribution:

a. Design: Krishnaja Kethireddy, Nirmal Kumar

Ravi, Prathamesh Mantri

b. Implementation: Toy Hadoop: Nirmal Kumar

Ravi, Prathamesh Mantri

FusionFS: Alekya Thalari

c. Evaluation: Alekya Thalari, Krishnaja

Kethireddy, Nirmal Kumar Ravi, Prathamesh

Mantri

d. Documentation: Alekya, Krishnaja Kethireddy

