Slurm++; a Distributed Workload
Manager for Extreme-Scale
High-Performance Computing
Systems

Ke Wang
Data-Intensive Distributed Systems Laboratory

Computer Science Department
llinois Institute of Technology

CS664: Data-Intensive Computing, IIT
February 9%, 2015

Outline

Introduction & Motivation
Problem Statement
Proposed Work
Evaluation

Conclusions

Future Work

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

* Introduction & Motivation

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Distributed Systems

A
Scale

Distributed Systems

Clouds

-
Application Services

Oriented Oriented

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Exascale Computing

PERFORMANCE DEVELOPMENT PROJECTED

http://s.top500.org/static/lists/2014/06/TOP500_201406_Poster.pdf

http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Resource Manager

° Manages resources
— compute
— storage
— network

» Job scheduling
— resource allocation
— job launch

« Data management

— data movement
— caching

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Motivation

DEMédical Image Processing: Functional Magnetic Resonance
19708 Ensemble simulations are important for
Chemist@ Domain: Mbibyig exascale platforms

198Molecular DYFARIES, HOCK. . o onee

Modeling and

OVVUG‘VO) Wlth vau'uuc bUIIIbI'IlatI.UIID Uf th!:' :nmulaluo? atthe
- im . = xascale for
Production RumrsirrBDrug Desigrrrace of EsoTRRTS
1990s parameters will be of high dimension, we will ksl
. ave tag addres enges of designing
Economic N&é ﬁgmm&g/p methods for highdi-
arge-scale Mtr@ﬁ@rf?%g? Heation methods,
200 N e such as sparse drids, offer new approaches to
valuation ;s problem. Furthermore, recent results in
approximation theory can be used to guide us in
sing exgscale compyting power to search for
AstTonomy Demalo;Montage
2010s
Jlal% Anal i§9“.’ 'GPES%?YEP' Waér (0793 eove
alyt imuI;%on at the xascage gr(zf;dlergy and the GA::::E

environment) Gauls-Allilanz

http://eIiA.dIr.de/64768/1 /[EnSIM_- Ensemble_Simulation_on HPC Computes EN.pdf

* Problem Statement

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Problem Staiement
Job Scheduling System Challenges

« Scalability
— System scale is increasing
— Workload size is increasing
— Processing capacity needs to increase

- Efficiency
— Allocating resources fast

— Making fast enough scheduling decisions
— Maintaining a high system utilization

* Reliability

— Still functioning well under failures

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

* Proposed Work

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Clients

&

in

MTC Central zed Scheduling- | M C Distribuf

! !
\

\ ’ Executor KVS seMA I RI zecutor Y.
N\ //
\\ //

h Compute Node _.~~

User commands Controller daemons

(partial list)
3 slurmctld

e : (backup) : :

dbd ,(_, Other
clusters

Controller and
KVS Server

Controller and
KVS Server

Controller and
KVS server

|slurmd ”slurmdl ,,,,,, slurmd 4/l\; ‘/l\‘
Compute node daemons
l E=
od o

Figure 1. SLURM components

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Slurm++ Architecture

Slurm workload manager Slurm++: extension to Slurm
User co-mn!ands Controller daemons @ @ @
(partial list)
scontrol |< slurmectld -slurmctld
(primary) (backup)
B, A B
e /[seNe.,
Slurmdbd '(—’ Other ontroller an ontroller an on roller ans
scancel (optlonal) clusters CKVtS Llerverd CKVtS gerverd M
sacct —>
— llllll
]
...... sl

slurmd | | slurmd

« Distributed

« Partition-based

« Resource sharing

« Distributed metadata management

Compute node daemons

Figure 1. SLURM components

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

User

cmd

exit

srun slurmctld
register job step
reqister job step reply

run job step req

slurmd

run job st&a reply

Pprolog
j.ob mgr

connect(stdout/err)

s_e'ssion_mgr

task exit msg

release allocation

run epilog req

status

(]
\\\‘\\\\\\\\\\\\\\\\L?\\

run epilog reply

Fig. 5. Interactive job initiation. srun simultaneously allocates nodes and a job step from
slurmctld then sends a run request to all slurmds in job. Dashed arrows indicate a periodic

request that may or may not occur during the lifetime of the job

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Distributed Metadata Management

Key Value Description
controller id free node list Free nodes in a partition
c ki original The original controller that is responsible for
job id controller id J a submitted job P
job id + original controller id COIR’[\Fglllveerdlist The controllers that pj%rglcnpate in launching a

job id + original controller id +

¢ The nodes in each partition that are involved
involved controller id

participated node list in launching a job

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Dynamic Resource Balancing

« Balancing resources among all the partitions
 Trivial for centralized architecture

« Challenging for distributed architecture
— No global state information
— Need to be achieved dynamically
— Resource conflict may happen
— Distributed resource stealing

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Resource Conilict

* Different controllers may modify the same
resource concurrently

 Resolved through atomic operation

ALGORITHM 1: COMPARE AND SWAP

Input: key (key), value seen before (seen_value), new value intended to insert (new_value), and the
storage hash map (map) of a ZHT server.

Output: A Boolean indicates success (TRUE) or failure (FALSE), and the current actual value
current_value).

current_value = map.get(key);

if (current_value == seen_value) then
map.put(key, new_value);
return TRUE,;

else
return FALSE, current value

end

—~

N o 0ok W DN -~

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Random Resource Siealing

ALGORITHM 2: RANDOM RESOURCE STEALING

Input: number of nodes required (num_node_req), number of nodes allocated (*num_node_alloc), number of controllers/partitions (num_ctl),
controller membership list (ctl_id[num_ctl), sleep length (sleep_length), number of reties (num_retry).

Output: list of involved controller ids (list_ctl_id_inv), participated nodes of each involved controller (part_nodel]).
1 num_try = 0; num_ctl_inv = 0; default_sleep_length = sleep_length;

2 while *num_node_alloc < num_node_req do

3 sel_ctl_idx = ct|_id[Random(num_ctl)]; sel_ctl_node = zht_lookup(sel_ctl_id);

4 if (sel_ctl_node != NULL) then

5 num_more_node = nhum_node_req — *num_node_alloc;

6

7

8

again: num_free_node = sel_ctl_node.num_free node;
if (num_free_node > 0) then
num_try = 0; sleep_length = default_sleep_length;

9 num_node_try = num_free_node > num_more_node ? num_more_node : num_free_node;

10 list_node = allocate(sel_ctl_node, num_node_try);

11 if (list_node '= NULL) then

12 *num_node_alloc += num_node_try; part_node[num_ctl_inv++] = list_node; list_ctl_id_inv.add(remote_ctl_id);
13 else

14 goto again;

15 end

16 else if (++num_try > num_retry) do

17 release(list_ctl_id_inv, part_node); *num_node_alloc= 0; sleep_length = default_sleep_length;
18 else

19 sleep(sleep_length); sleep_length *= 2;

20 end

21 end

22 end

23 return list_ctl_id_inv, part_node;

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Limitations

Poor performance (resource deadlock)
— For big jobs (e.g. full-scale, half-scale)

— Under high system utilization

9000
8000
[7,]
§ 7000
®
& 6000
)
o, 5000
£
® 4000
g
2 3000
(o]

é’ 2000

1000
0

NS N caf
AO2% o 0% ga0% B 116 270!

Scale (No. of nodes)

(j,u)=(1,0)
(j,u)=(0.75,0)
(j,u)=(0.5,0)
(j,u)=(0.25,0)
—— (j,u)=(0.75,0.25)
—=— (j,u)=(0.5,0.25)
—— (j,u)=(0.25,0.25)
—+—(},u)=(0.5,0.5)
——(},u)=(0.25,0.5)

+ »- &

%

bd

Linearly increasing
as the system scale
linearly with the
system scales
Exponentially
increasing with
both the job size
and utilization

At 1M-node scale, a
full-scale job needs
about 8000 stealing
operations

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Weakly-Consistent Monitoring based
Resource Stealing Technigue

* Monitoring-based weakly consistent

* A centralized monitoring service
— collect all the resources of all partitions periodically
(global view)
« Controllers: Two phase tuning
— pull all the resources periodically (macro-tuning)

— store the resources in a binary-search-tree (BST)
(local view)

— find the most suitable partition according to BST
— lookup the resource of that partition
— update the BST (micro-tuning, not consistent)

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Monitoring Service

ALGORITHM 3. MONITORING SERVICE LOGIC

Input: number of controllers or partitions (num__ctl), controller membership list
(ctl_id[num__ctl]), update frequency (sleep_length).

Output: void.

1 global key = “global resource specification”; global value = “”;

2 while TRUE do

3 global value =",

4 for eachiin 0 to num ctl—1; do

) cur_ctl_res = zht_lookup(ctl_id[i]);
6 if (cur_ctl_res == NULL) then

14 exit(1);

8 else

9 global value += cur _ctl _res;
10 end

11 end

12 zht_insert(global _key, global value); sleep(sleep length);
13 end

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Binary-Search Tree (BST)

* Property

— left child <= root <= right
child

 Operations
— BST insert(BST™, char™, int)
— BST delete(BST™, char®, int)
— BST delete _al(BST™)
— BST search best(BST*, int)

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Two-phase Tuning

PHASE 1: PULL-BASED MACRO-TUNING

Input: number of controllers or partitions (num__ctl), controller membership list
(ctl_id[num _ctl]), update frequency (sleep length), binary search tree of the number of
free nodes of each partition (*bst)

Output: void.

1 global key = “global resource specification”; global value = *”;

2 while TRUE do

3 global value = zht_lookup(global _key);

4 global _res[num_ctl] = split(global value);

5 pthread_mutex_lock(&bst lock);

6 BST_delete_all(bst);

7 foreachiin 0 to num ctl-1; do

8 BST insert(bst, ctl_id[i], global res[il.num_free node);
9 end

10 pthread_mutex_unlock(&bst lock);

11 sleep(sleep_length);

12 end

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Two-phase Tuning

_PHASE 2: MICRO-TUNING RESOURCE ALLOCATION

Input: number of nodes required (num_node_req), number of nodes allocated (*num_node_alloc), self id (self_id), sleep length (sleep_length),
number of reties (num_retry), binary search tree of the number of free nodes of each partition (*BST)

Output: list of nodes allocated to the job

1 *num_node_alloc = 0; num_try = 0; alloc_node_list = NULL,; target_ctl = self id,

2 while *num_node_alloc < num_node req do

3 resource = zht_lookup(target_ctl); nodelist = allocate_resource(target_ctl, resource, num_node_req — *num_node_alloc);
4 if (nodelist '= NULL) then

5 num_try = 0; alloc_node_list += nodelist; *num_node_alloc += nodelist.size(); new_resource = resource — nodelist,
6 pthread_mutex_lock(&bst lock);

7 old_resource = BST_search_exact(bst, target_ctl);

8 if (old_resource '= NULL) then

9 BST_delete(bst, target_ctl, old_resource.size());

10 end

11 BST _insert(bst, target_ctl, updated_resource.size());

12 pthread_mutex_unlock(&bst_lock);

13 else if (num_try++ > num_retry) then

14 release_nodes(nodelist); alloc_node_list = NULL; *num_node_alloc = 0; num_try = O; sleep(sleep_length);
15 end

16 if (*num_node_alloc < num_node_req) then

17 pthread_mutex_lock(&bst lock);

18 if ((data_item = BST_search_best(bst, num_node_req —*num_node_alloc) = NULL) then

19 target_ctl = data_item.ctl_id, BST_delete(bst, target_ctl, data_item.size());

20 else

21 target ctl = self id,;

22 end

23 end

24 end

25 return alloc_node_list;

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Implementation Details

 Code Available (developed in c)
— https://github.com/kwangiit/SLURMPP_V?2

« Code Complexity
— 5K lines of new code
— Plus 500K lines of SLURM code
— 8K lines of ZHT code
— 1K lines of auto-generated code by Google Protocol Buffer

 Dependencies
— Google Protocol Buffer
— ZHT key value store
— Slurm resource manager

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Evaluation

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Evaluation

e Test-bed
— The Probe 500-node Kodiak Cluster at LANL

— Each node has two AMD Opteron (tm) processers with 252
(2.6GHZ), and has 8GB memory

— The network supports both Ethernet and Infini-Band.

— Our experiments use 10Gbits Ethernet (default configuration of
Kodiak).

— Experiments up to 500 nodes

« Workloads

— Micro-benchmarking NOOP sleep jobs
— Application traces from IBM Blue Gene/P supercomputers
— Scientific numeric MPI applications from the PETSc tool package

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Throughput (jobs / sec)

Throughput (jobs / sec)

120

100

o]
o

D
o

N
o

N
o

o
o

IS
[$)]

~
o

N N W W

-
(&)}

-
o

0

o o O O,

HSlurm++ throughput 80 B Slurm++ throughput
ESlurm++ v0 throughput 70 1 Slurm++ v0 throughput
" Slurm throughput ¥ Slurm throughput
'gGO
%]
2 50
%
5 40
Q.
ey
S 30
o
F 20
I| | o ||
100 150 200 250 300 350 400 450 500 .
s 150 200 250 300 350
cale (No. of Nodes) Scale (No. of Nodes)
One-node jobs Half-partition jobs
12
= Slurm++ throughput —8— One-node jobs
" Slurm++ v0 throughput 10 ~—4— Half-partition jobs
8 Slurm throughput € —&— Full-partition jobs
3
K
¥
I
E
5 6
)
[oR
3 4
[
(]
Q.
I II I I I I -
Il- II. I. I 0
250 350 500 50 100 150 200 250 300 350 400 450 500
Scale (No. of Nodes) Scale (No. of nodes)
Full-partition jobs Speedup Summary

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Percentage of Number of Jobs

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

0, 0,
20.00%, 98.77% 40.00%, 99.34% 80.00%, 99.78%

0, 0,
10.00%, 95.50% 63.00%, 99.35%
5.00%, 90.91%

100.00%, 100.00% |

3.00%, 85.20%
2.00%, 70.44%

1.00%, 19.52%

—=— Percentage of number of jobs

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of Job size to Scale

Workload Specification

N w w i
v o] o

[E
[%2]

Throughput (jobs / sec)
N
o

I S|lurm++ throughput 64

[Slurm throughput

56
—®— Average ZHT message count per job

48
40
32
24

16

50 100 150 200 250 300 350 400 450 500

Scale (No. of nodes)

Slurm++ vs. Slurm

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

ZHT Message Count

1000

800

®))
)
o

N
o
o

200

Scheduling Latency (ms)

0

® Slurm++ average scheduling latency per job
= Slurm average scheduling latency per job

L....||IJ”

100 150 200 250 300 350 400 450 500
Scale (No. of nodes)

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Throughput (jobs / sec)

10000

1000

100

—=—Partition size=1 ——Partition size = 4

——Partition size = 16 ——Partition size = 64

0 50 100 150 200 250 300 350 400 450

Scale (No. of nodes)

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

500

Throughput (jobs / sec)

40 100% 256 e —
. Slurm+ throughput o B Averge scheduling latency per jo 130.4
@ SimSlurm++ throughput ’ 128 —6— Average ZHT message count per
32 —©— Normalized difference @ & - 80% job
' .64 423
28 - 70% g £
5z
24 - 60% & S
b= %
(&) — 16
20 - 50% © o
(0] =
= S
16 - 40% g T 8
= <
o A
12 - 30% < 4
- 0,
8 11.48% 20% 2
alsse 8.35% 8.10% 4.75%
L 0,
4 2.95% 1 569 2.15% 3:28% 770 1 1040% 1
0 0% 1024 4096 16384 65536
50 100 150 200 250 300 350 400 450 500 Scale (No. of nodes)
Scale (No. of node)
Validation Scalability

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

256

128

o))
N

w
N

(e}

=
[e)]
ZHT message count

« Conclusions

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Conclusions

Workloads are becoming finer-grained
Key-value store is a viable building block
Distributed resource manager is demanded
Fully distributed architecture Is scalable

Slurm++ is 10X faster in making scheduling
decisions

Simulation results show the technique is
scalable

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

 Future Work

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Future Weork

 Contribute to the Intel ORCM cluster
manager

— Built on top of open-mpi
— Make key-value store as a new Plugin

* Distributed data-aware scheduling for
HPC applications

 Elastic resource allocation

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

* More information:
— http://datasys.cs.iit.edu/~kewang/

 Contact:
— kwang22@hawk.iit.edu

e Questions?

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

