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* Introduction & Motivation
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Exascale Computing

PERFORMANCE DEVELOPMENT PROJECTED

http://s.top500.org/static/lists/2014/06/TOP500_201406_Poster.pdf

http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
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Resource Manager

° Manages resources
— compute
— storage
— network

» Job scheduling
— resource allocation
— job launch

« Data management

— data movement
— caching
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Problem Staiement
Job Scheduling System Challenges

« Scalability
— System scale is increasing
— Workload size is increasing
— Processing capacity needs to increase

- Efficiency
— Allocating resources fast

— Making fast enough scheduling decisions
— Maintaining a high system utilization

* Reliability

— Still functioning well under failures
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* Proposed Work
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Slurm++ Architecture

Slurm workload manager Slurm++: extension to Slurm
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User
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Fig. 5. Interactive job initiation. srun simultaneously allocates nodes and a job step from
slurmctld then sends a run request to all slurmds in job. Dashed arrows indicate a periodic

request that may or may not occur during the lifetime of the job
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Distributed Metadata Management

Key Value Description
controller id free node list Free nodes in a partition
c ki original The original controller that is responsible for
job id controller id J a submitted job P
job id + original controller id COIR’[\Fglllveerdlist The controllers that pj%rglcnpate in launching a

job id + original controller id +

¢ The nodes in each partition that are involved
involved controller id

participated node list in launching a job
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Dynamic Resource Balancing

« Balancing resources among all the partitions
 Trivial for centralized architecture

« Challenging for distributed architecture
— No global state information
— Need to be achieved dynamically
— Resource conflict may happen
— Distributed resource stealing
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Resource Conilict

* Different controllers may modify the same
resource concurrently

 Resolved through atomic operation

ALGORITHM 1: COMPARE AND SWAP

Input: key (key), value seen before (seen_value), new value intended to insert (new_value), and the
storage hash map (map) of a ZHT server.

Output: A Boolean indicates success (TRUE) or failure (FALSE), and the current actual value
current_value).

current_value = map.get(key);

if (current_value == seen_value) then
map.put(key, new_value);
return TRUE,;

else
return FALSE, current value

end
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Random Resource Siealing

ALGORITHM 2: RANDOM RESOURCE STEALING

Input: number of nodes required (num_node_req), number of nodes allocated (*num_node_alloc), number of controllers/partitions (num_ctl),
controller membership list (ctl_id[num_ctl), sleep length (sleep_length), number of reties (num_retry).

Output: list of involved controller ids (list_ctl_id_inv), participated nodes of each involved controller (part_nodel]).
1 num_try = 0; num_ctl_inv = 0; default_sleep_length = sleep_length;

2 while *num_node_alloc < num_node_req do

3 sel_ctl_idx = ct|_id[Random(num_ctl)]; sel_ctl_node = zht_lookup(sel_ctl_id);

4 if (sel_ctl_node != NULL) then

5 num_more_node = nhum_node_req — *num_node_alloc;

6

7

8

again: num_free_node = sel_ctl_node.num_free node;
if (num_free_node > 0) then
num_try = 0; sleep_length = default_sleep_length;

9 num_node_try = num_free_node > num_more_node ? num_more_node : num_free_node;

10 list_node = allocate(sel_ctl_node, num_node_try);

11 if (list_node '= NULL) then

12 *num_node_alloc += num_node_try; part_node[num_ctl_inv++] = list_node; list_ctl_id_inv.add(remote_ctl_id);
13 else

14 goto again;

15 end

16 else if (++num_try > num_retry) do

17 release(list_ctl_id_inv, part_node); *num_node_alloc= 0; sleep_length = default_sleep_length;
18 else

19 sleep(sleep_length); sleep_length *= 2;

20 end

21 end

22 end

23 return list_ctl_id_inv, part_node;
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Limitations

Poor performance (resource deadlock)
— For big jobs (e.g. full-scale, half-scale)

— Under high system utilization
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Weakly-Consistent Monitoring based
Resource Stealing Technigue

* Monitoring-based weakly consistent

* A centralized monitoring service
— collect all the resources of all partitions periodically
(global view)
« Controllers: Two phase tuning
— pull all the resources periodically (macro-tuning)

— store the resources in a binary-search-tree (BST)
(local view)

— find the most suitable partition according to BST
— lookup the resource of that partition
— update the BST (micro-tuning, not consistent)
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Monitoring Service

ALGORITHM 3. MONITORING SERVICE LOGIC

Input: number of controllers or partitions (num__ctl), controller membership list
(ctl_id[num__ctl]), update frequency (sleep_length).

Output: void.

1 global key = “global resource specification”; global value = “”;

2 while TRUE do

3 global value =",

4 for eachiin 0 to num ctl—1; do

) cur_ctl_res = zht_lookup(ctl_id[i]);
6 if (cur_ctl_res == NULL) then

14 exit(1);

8 else

9 global value += cur _ctl _res;
10 end

11 end

12 zht_insert(global _key, global value); sleep(sleep length);
13 end
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Binary-Search Tree (BST)

* Property

— left child <= root <= right
child

 Operations
— BST insert(BST™, char™, int)
— BST delete(BST™, char®, int)
— BST delete _al(BST™)
— BST search best(BST*, int)
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Two-phase Tuning

PHASE 1: PULL-BASED MACRO-TUNING

Input: number of controllers or partitions (num__ctl), controller membership list
(ctl_id[num _ctl]), update frequency (sleep length), binary search tree of the number of
free nodes of each partition (*bst)

Output: void.

1 global key = “global resource specification”; global value = *”;

2 while TRUE do

3 global value = zht_lookup(global _key);

4 global _res[num_ctl] = split(global value);

5 pthread_mutex_lock(&bst lock);

6 BST_delete_all(bst);

7 foreachiin 0 to num ctl-1; do

8 BST insert(bst, ctl_id[i], global res[il.num_free node);
9 end

10 pthread_mutex_unlock(&bst lock);

11 sleep(sleep_length);

12 end
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Two-phase Tuning

_PHASE 2: MICRO-TUNING RESOURCE ALLOCATION

Input: number of nodes required (num_node_req), number of nodes allocated (*num_node_alloc), self id (self_id), sleep length (sleep_length),
number of reties (num_retry), binary search tree of the number of free nodes of each partition (*BST)

Output: list of nodes allocated to the job

1 *num_node_alloc = 0; num_try = 0; alloc_node_list = NULL,; target_ctl = self id,

2 while *num_node_alloc < num_node req do

3 resource = zht_lookup(target_ctl); nodelist = allocate_resource(target_ctl, resource, num_node_req — *num_node_alloc);
4 if (nodelist '= NULL) then

5 num_try = 0; alloc_node_list += nodelist; *num_node_alloc += nodelist.size(); new_resource = resource — nodelist,
6 pthread_mutex_lock(&bst lock);

7 old_resource = BST_search_exact(bst, target_ctl);

8 if (old_resource '= NULL) then

9 BST_delete(bst, target_ctl, old_resource.size());

10 end

11 BST _insert(bst, target_ctl, updated_resource.size());

12 pthread_mutex_unlock(&bst_lock);

13 else if (num_try++ > num_retry) then

14 release_nodes(nodelist); alloc_node_list = NULL; *num_node_alloc = 0; num_try = O; sleep(sleep_length);
15 end

16 if (*num_node_alloc < num_node_req) then

17 pthread_mutex_lock(&bst lock);

18 if ((data_item = BST_search_best(bst, num_node_req —*num_node_alloc) = NULL) then

19 target_ctl = data_item.ctl_id, BST_delete(bst, target_ctl, data_item.size());

20 else

21 target ctl = self id,;

22 end

23 end

24 end

25 return alloc_node_list;
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Implementation Details

 Code Available (developed in c)
— https://github.com/kwangiit/SLURMPP_V?2

« Code Complexity
— 5K lines of new code
— Plus 500K lines of SLURM code
— 8K lines of ZHT code
— 1K lines of auto-generated code by Google Protocol Buffer

 Dependencies
— Google Protocol Buffer
— ZHT key value store
— Slurm resource manager
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Evaluation
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Evaluation

e Test-bed
— The Probe 500-node Kodiak Cluster at LANL

— Each node has two AMD Opteron (tm) processers with 252
(2.6GHZ), and has 8GB memory

— The network supports both Ethernet and Infini-Band.

— Our experiments use 10Gbits Ethernet (default configuration of
Kodiak).

— Experiments up to 500 nodes

« Workloads

— Micro-benchmarking NOOP sleep jobs
— Application traces from IBM Blue Gene/P supercomputers
— Scientific numeric MPI applications from the PETSc tool package
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Percentage of Number of Jobs
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« Conclusions
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Conclusions

Workloads are becoming finer-grained
Key-value store is a viable building block
Distributed resource manager is demanded
Fully distributed architecture Is scalable

Slurm++ is 10X faster in making scheduling
decisions

Simulation results show the technique is
scalable
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Future Weork

 Contribute to the Intel ORCM cluster
manager

— Built on top of open-mpi
— Make key-value store as a new Plugin

* Distributed data-aware scheduling for
HPC applications

 Elastic resource allocation
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* More information:
— http://datasys.cs.iit.edu/~kewang/

 Contact:
— kwang22@hawk.iit.edu

e Questions?
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