Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Ke Wang

Data-Intensive Distributed Systems Laboratory
Computer Science Department
Illinois Institute of Technology

CS554: Data-Intensive Computing, IIT February 9th, 2015

Outline

- Introduction & Motivation
- Problem Statement
- Proposed Work
- Evaluation
- Conclusions
- Future Work

Outline

- Introduction & Motivation
- Problem Statement
- Proposed Work
- Evaluation
- Conclusions
- Future Work

Distributed Systems

Exascale Computing

PERFORMANCE DEVELOPMENT

PROJECTED

http://s.top500.org/static/lists/2014/06/TOP500_201406_Poster.pdf
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Resource Manager

- Manages resources
 - compute
 - storage
 - network
- Job scheduling
 - resource allocation
 - job launch
- Data management
 - data movement
 - caching

Motivation

	₩edical Im	age Processing: Functional Mag	netic Resonance	
197	70s	Ensemble simulations are important for		
	Chemistry Domain: Mbitouse exascale platforms			
198	Molecular I	One approach to dealing with uncertainty is to perform multiple ensemble runs (parameter sweeps) with various combinations of the	Modeling and	
199	Production	Runtsin parting. Design pace of parameters will be of high dimension, we will	Simulation at the Exascale for Energy and the Environment	
		have to address the challenges of designing MARCHIPS MESON METOD	For These Party State Party St	
200		e Astrionionion Application methods, such as sparse grids, offer new approaches to this problem. Furthermore, recent results in approximation theory can be used to guide us in	No. 1 Provided in the control of the	
201	Astronomy 10s	using exascale computing power to search for Domain Montage	(b) #50 females #200	
	Data Analy	tics:rcs:detsario Wordedinand Simulation at the Exascale for Energy and the	GA ₩₩	
		Environment)	Gauß-Allianz	

http://elib.dlr.de/64768/1/EnSIM_-_Ensemble_Simulation_on_HPC_Computes_EN.pdf

Outline

- Introduction & Motivation
- Problem Statement
- Proposed Work
- Evaluation
- Conclusions
- Future Work

Problem Statement Job Scheduling System Challenges

Scalability

- System scale is increasing
- Workload size is increasing
- Processing capacity needs to increase

Efficiency

- Allocating resources fast
- Making fast enough scheduling decisions
- Maintaining a high system utilization

Reliability

- Still functioning well under failures

Outline

- Introduction & Motivation
- Problem Statement
- Proposed Work
- Evaluation
- Conclusions
- Future Work

Job Scheduling Systems

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Slurm++ Architecture

Slurm workload manager

Figure 1. SLURM components

Slurm++: extension to Slurm

- Distributed
- Partition-based
- Resource sharing
- Distributed metadata management

Job Launching Procedure

Fig. 5. Interactive job initiation. srun simultaneously allocates nodes and a job step from slurmctld then sends a run request to all slurmds in job. Dashed arrows indicate a periodic request that may or may not occur during the lifetime of the job

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Distributed Metadata Management

Key	Value	Description
controller id	free node list	Free nodes in a partition
job id	original controller id	The original controller that is responsible for a submitted job
job id + original controller id	involved controller list	The controllers that participate in launching a job
job id + original controller id + involved controller id	participated node list	The nodes in each partition that are involved in launching a job

Dynamic Resource Balancing

- Balancing resources among all the partitions
- Trivial for centralized architecture
- Challenging for distributed architecture
 - No global state information
 - Need to be achieved dynamically
 - Resource conflict may happen
 - Distributed resource stealing

Resource Conflict

- Different controllers may modify the same resource concurrently
- Resolved through atomic operation

ALGORITHM 1: COMPARE AND SWAP

Input: key (*key*), value seen before (*seen_value*), new value intended to insert (*new_value*), and the storage hash map (*map*) of a ZHT server.

Output: A Boolean indicates success (*TRUE*) or failure (*FALSE*), and the current actual value (*current_value*).

```
1  current_value = map.get(key);
2  if (current_value == seen_value) then
3          map.put(key, new_value);
4          return TRUE;
5  else
6          return FALSE, current_value
7  end
```

Random Resource Stealing

ALGORITHM 2: RANDOM RESOURCE STEALING

Input: number of nodes required (num_node_req), number of nodes allocated (*num_node_alloc), number of controllers/partitions (num_ctl), controller membership list (ctl_id[num_ctl]), sleep length (sleep_length), number of reties (num_retry).

```
Output: list of involved controller ids (list ctl id inv), participated nodes of each involved controller (part node[]).
   num try = 0; num ctl inv = 0; default sleep length = sleep length;
   while *num node alloc < num node req do
        sel ctl idx = ctl id[Random(num ctl)]; sel ctl node = zht_lookup(sel ctl id);
3
        if (sel_ctl_node != NULL) then
4
             num more node = num node reg - *num node alloc;
5
            num_free_node = sel_ctl_node.num_free_node;
    again:
7
             if (num free node > 0) then
8
                  num try = 0; sleep length = default sleep length;
9
                  num node try = num free node > num more node ? num more node : num free node;
                  list node = allocate(sel ctl node, num node try);
10
                  if (list_node != NULL) then
11
12
                       *num node alloc += num node try; part node[num ctl inv++] = list node; list ctl id inv.add(remote ctl id);
13
                  else
14
                       goto again;
15
                  end
             else if (++num_try > num_retry) do
16
17
                  release(list ctl id inv, part node); *num node alloc= 0; sleep length = default sleep length;
18
             else
19
                  sleep(sleep_length); sleep_length *= 2;
20
             end
21
        end
22 end
23 return list ctl id inv, part node;
```

Limitations

Poor performance (resource deadlock)

- For big jobs (e.g. full-scale, half-scale)
- Under high system utilization

- Linearly increasing as the system scale linearly with the system scales
- Exponentially increasing with both the job size and utilization
- At 1M-node scale, a full-scale job needs about 8000 stealing operations

Weakly-Consistent Monitoring based Resource Stealing Technique

- Monitoring-based weakly consistent
- A centralized monitoring service
 - collect all the resources of all partitions periodically (global view)
- Controllers: Two phase tuning
 - pull all the resources periodically (macro-tuning)
 - store the resources in a binary-search-tree (BST) (local view)
 - find the most suitable partition according to BST
 - lookup the resource of that partition
 - update the BST (micro-tuning, not consistent)

Monitoring Service

ALGORITHM 3. MONITORING SERVICE LOGIC

```
Input: number of controllers or partitions (num_ctl), controller membership list
(ctl id[num ctl]), update frequency (sleep length).
Output: void.
   global_key = "global resource specification"; global_value = "";
   while TRUE do
        global_value = "";
        for each i in 0 to num ctl – 1; do
4
5
              cur ctl res = zht lookup(ctl id[i]);
6
              if (cur_ctl_res == NULL) then
                   exit(1);
8
              else
9
                   global value += cur ctl res;
10
              end
11
        end
12
        zht_insert(global_key, global_value); sleep(sleep_length);
13
    end
```

Binary-Search Tree (BST)

Property

- left child <= root <= right
 child</pre>

Operations

- BST_insert(BST*, char*, int)
- BST_delete(BST*, char*, int)
- BST_delete_all(BST*)
- BST_search_best(BST*, int)

Two-phase Tuning

PHASE 1: PULL-BASED MACRO-TUNING

Input: number of controllers or partitions (*num_ctl*), controller membership list (*ctl_id*[*num_ctl*]), update frequency (*sleep_length*), binary search tree of the number of free nodes of each partition (**bst*)

```
Output: void.
```

```
global_key = "global resource specification"; global_value = "";
   while TRUE do
3
        global value = zht lookup(global key);
        global res[num ct/] = split(global value);
        pthread_mutex_lock(&bst_lock);
5
        BST delete all(bst);
        for each i in 0 to num ctl – 1; do
8
             BST insert(bst, ctl id[i], global res[i].num free node);
        end
10
        pthread_mutex_unlock(&bst lock);
        sleep(sleep length);
    end
```

Two-phase Tuning

PHASE 2: MICRO-TUNING RESOURCE ALLOCATION

24

end

25 return alloc node list;

```
Input: number of nodes required (num node req), number of nodes allocated (*num node alloc), self id (self id), sleep length (sleep length),
number of reties (num retry), binary search tree of the number of free nodes of each partition (*BST)
Output: list of nodes allocated to the job
   *num node alloc = 0; num try = 0; alloc node list = NULL; target ctl = self id;
   while *num node alloc < num node reg do
3
        resource = zht lookup(target ctl); nodelist = allocate resource(target ctl, resource, num node req - *num node alloc);
        if (nodelist != NULL) then
4
5
             num try = 0; alloc node list += nodelist; *num node alloc += nodelist.size(); new resource = resource - nodelist;
             pthread mutex lock(&bst lock);
6
             old resource = BST search exact(bst, target ctl);
             if (old resource != NULL) then
8
                  BST_delete(bst, target_ctl, old_resource.size());
9
10
             end
11
             BST_insert(bst, target_ctl, updated_resource.size());
12
             pthread mutex unlock(&bst lock);
13
        else if (num try++ > num retry) then
14
             release nodes(nodelist); alloc node list = NULL; *num node alloc = 0; num try = 0; sleep(sleep length);
15
        end
16
        if (*num node alloc < num node reg) then
17
             pthread mutex lock(&bst lock);
             if ((data_item = BST_search_best(bst, num_node_req -*num_node_alloc) != NULL) then
18
19
                  target ctl = data item.ctl id; BST delete(bst, target ctl, data item.size());
20
             else
21
                  target ctl = self id;
22
             end
23
        end
```

Implementation Details

Code Available (developed in c)

https://github.com/kwangiit/SLURMPP V2

Code Complexity

- 5K lines of new code
- Plus 500K lines of SLURM code
- 8K lines of ZHT code
- 1K lines of auto-generated code by Google Protocol Buffer

Dependencies

- Google Protocol Buffer
- ZHT key value store
- Slurm resource manager

Outline

- Introduction & Motivation
- Problem Statement
- Proposed Work
- Evaluation
- Conclusions
- Future Work

Evaluation

Test-bed

- The Probe 500-node Kodiak Cluster at LANL
- Each node has two AMD Opteron (tm) processers with 252 (2.6GHZ), and has 8GB memory
- The network supports both Ethernet and Infini-Band.
- Our experiments use 10Gbits Ethernet (default configuration of Kodiak).
- Experiments up to 500 nodes

Workloads

- Micro-benchmarking NOOP sleep jobs
- Application traces from IBM Blue Gene/P supercomputers
- Scientific numeric MPI applications from the PETSc tool package

Micro-Benchmarking Workloads

One-node jobs

Half-partition jobs

Full-partition jobs

Speedup Summary

Application Traces

Workload Specification

Slurm++ vs. Slurm

MPI Applications

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Different Partition Sizes

Slurm++: a Distributed Workload Manager for Extreme-Scale High-Performance Computing Systems

Exploring Scalability via Simulations

Validation

Scalability

Outline

- Introduction & Motivation
- Problem Statement
- Proposed Work
- Evaluation
- Conclusions
- Future Work

Conclusions

- Workloads are becoming finer-grained
- Key-value store is a viable building block
- Distributed resource manager is demanded
- Fully distributed architecture is scalable
- Slurm++ is 10X faster in making scheduling decisions
- Simulation results show the technique is scalable

Outline

- Introduction & Motivation
- Problem Statement
- Proposed Work
- Evaluation
- Conclusions
- Future Work

Future Work

- Contribute to the Intel ORCM cluster manager
 - Built on top of open-mpi
 - Make key-value store as a new Plugin
- Distributed data-aware scheduling for HPC applications
- Elastic resource allocation

More Information

- More information:
 - http://datasys.cs.iit.edu/~kewang/
- Contact:
 - kwang22@hawk.iit.edu
- Questions?