


•  Quiz#2 graded 
– Minimum Value: 0 
– Average: 6.40 
– Median: 6.00 
– Maximum Value: 10.00 
– Standard Deviation: 2.28  
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•  Project proposal writeup 
– Will be posted today 

•  Project brainstorming ideas 
– Will be posted today 
– This is your reading assignment, plus papers 

cited in these writeups 
•  Project brainstorming next 3 lectures 
•  Project proposals and team formations 

due March 2nd (midnight) 
GeMTC: ManyGPU-enabled Many-Task Computing  3 



•  More information: 
– http://www.cs.iit.edu/~iraicu/  
– http://datasys.cs.iit.edu/  

•  Contact: 
– iraicu@cs.iit.edu  

•  Questions? 
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Outline 
●  Background Information 

o  Many-task computing 
o  Hardware Accelerators 

●  Proposed Work 
o  GeMTC = GPU enabled Many Task Computing 

●  GeMTC Architecture 
●  Swift and the dataflow model 
●  Performance Evaluation 
●  Closing Remarks & Future Directions 



Distributed Paradigms 

HPC: 
●  Tightly coupled 
●  Large jobs 
●  Hours/days 
●  Low latency 
 

HTC: 
●  Loosely coupled 
●  Days/Months 
●  Fault tolerance 

M 
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Many-Task Computing (MTC) 
Advantages: 
●  Improve fault 

tolerance 
●  Maintain efficiency 
●  Programmability & 

Portability 
●  Support pleasingly 

parallel and complex 
applications 

 

MTC emphasizes: 
●  Bridging HPC/HTC 
●  Many resources  

o  Short period of time 
●  Many computational tasks 
●  Dependent/independent tasks 
●  Tasks organized as DAGs 
●  Primary metrics are seconds 



●  GPU - Streaming Multiprocessors 
(15 SMXs on Kepler K20) 

●  Warps 
o  32 threads in a warp 
o  192 warps 

i.  hardware available 
ii.  independent compute element 

●  Intel Xeon Phi 
o  60 cores * 4 threads per core = 240 

hardware threads 

Accelerator Architectures 



Proposed Work 

Goals: 
1) MTC support 
2) Programmability 
3) Efficiency  
 

Approach:  
Design, implement 
middleware: 
1) Manages GPU  
2) Spread host/device 
3) Workflow system  
integration (Swift/T) 
 
 

GeMTC: GPU enabled Many-Task Computing 
Motivation: No support for MTC on Accelerators! 

4) MIMD on SIMD 
5) Increase concurrency 
15 to 192 (~13x) 



CUDA Concurrent Kernels 



GeMTC FIFO 



GeMTC Overdecomposition 



GeMTC Architecture 



GeMTC API 
Device Management: 
●  gemtcSetup() 
●  gemtcCleanup() 
 
Task Management: 
●  gemtcPush() 
●  gemtcPoll() 

Data Movement: 
●  gemtcMemcpyDevToHost() 
●  gemtcMemcpyHostToDev() 
 

Memory Management*: 
●  gemtcGPUMalloc() 
●  gemtcGPUFree() 

 
*EuroSys’13 Poster 



GeMTC AppKernels 
●  Precompiled into GeMTC Framework 
●  Optimized for Single Warp Execution  

o  (Future: Strap together multiple warps) 
●  Previous AppKernel Work: 

o  Molecular Dynamics, Synthetic Benchmarks 
●  Current AppKernel Work: 

o  BLAS functionality, etc. 
§  SAXPY, SGEMM, Image processing, Black Scholes  





Swift and Applications 
●  Swift 

o  Active research project (CI UChicago & ANL) 
o  Parallel Programming Framework 
o  Throughput ~25k tasks/sec per process 
o  Shown to scale to 128k cores 

●  Application Domains Supported 
o  Astronomy, Biochemistry, Bioinformatics, Economics, Climate 

Science, Medical Imaging 

Images from Swift Case Studies - http://www.ci.uchicago.edu/swift/case_studies/ 



Swift Dataflow & Integration 
… 
x = f(a); 
y = f(b); 
 
c = g(x, y); 
... 



Performance Evaluation 
●  GeMTC and Molecular Dynamics 
●  GeMTC Throughput and Efficiency 

(Leveraging Swift) 
●  Preliminary Results on Intel Xeon Phi 



Speedup within a Single Warp 



GeMTC Utilization on K20X 



Performance Evaluation 
●  GeMTC and Molecular Dynamics 
●  GeMTC Throughput and Efficiency 

(Leveraging Swift) 
●  Preliminary Results on Intel Xeon Phi 



Fine-grained Swift CPU Workloads 



GeMTC + Swift on XK7 of Blue Waters 



Single XK7 Node Efficiency 



GeMTC + Swift 512 Nodes 1 Worker/GPU 



GeMTC + Swift 512 Nodes, 168W/GPU 



Performance Evaluation 
●  GeMTC and Molecular Dynamics 
●  GeMTC Throughput and Efficiency 

(Leveraging Swift) 
●  Preliminary Results on Intel Xeon Phi 



Preliminary Results on Intel Xeon Phi 



Conclusion & Future Work 
●  Efficient MTC on NVIDIA GPUs 
●  MIMD on SIMD 
 
●  More efficient node utilization (CPU) 
●  Strap together multiple warp workers 
●  Support alt. accelerators (OpenCL, OpenACC) 
●  CUDA 6 Enhancements (Unified Memory, etc.) 



Code Repositories 
GeMTC: 
http://datasys.cs.iit.edu/projects/GeMTC 
https://github.com/skrieder/gemtc 
Swift: 
http://swift-lang.org/main/ 



Questions? 
Scott J. Krieder 
Illinois Institute of Technology 
skrieder@iit.edu 
@skrieder 
http://datasys.cs.iit.edu/~skrieder 



Appendix:  
Additional Slides and Details 



Related Work 
●  Warp-level execution 

o  Graph processing - Hong et. al., PPoPP’11 
●  Dataflow on Accelerators 

o  PTask, Rossbach et al., MSR 
●  Accelerator Virtualization 

o  Becchi et. al., Ravi, Pegasus 
●  Runtime systems 

o  StarPU, COSMIC 



GeMTC and MD over Single Warp 



GeMTC and MDLite over 1344 Workers 



GeMTC + Swift over 10,000 GPU Workers 



GeMTC Memory Management 


