

•  Quiz#2 graded
– Minimum Value: 0
– Average: 6.40
– Median: 6.00
– Maximum Value: 10.00
– Standard Deviation: 2.28

GeMTC: ManyGPU-enabled Many-Task Computing 2

•  Project proposal writeup
– Will be posted today

•  Project brainstorming ideas
– Will be posted today
– This is your reading assignment, plus papers

cited in these writeups
•  Project brainstorming next 3 lectures
•  Project proposals and team formations

due March 2nd (midnight)
GeMTC: ManyGPU-enabled Many-Task Computing 3

•  More information:
– http://www.cs.iit.edu/~iraicu/
– http://datasys.cs.iit.edu/

•  Contact:
– iraicu@cs.iit.edu

•  Questions?

Challenges and Opportunities in Large-Scale Storage Systems 4

Design and Evaluation of the
GeMTC Framework for GPU-

enabled Many-Task Computing
Scott J. Krieder, Justin M. Wozniak, Timothy Armstrong,

Michael Wilde, Daniel S. Katz, Benjamin Grimmer,
 Ian T. Foster, Ioan Raicu

HPDC 2014
Vancouver, Canada

Acknowledgements
Dr. Justin Wozniak, Argonne (ANL) Computer Scientist
Timothy Armstrong, UChicago, CS Ph.D. Student
Michael Wilde, UChicago CI Fellow & ANL Software Architect
Dr. Daniel S. Katz, Senior Fellow, Computation Institute, University of Chicago
Dr. Ian T. Foster, Director, Computation Institute at UChicago & ANL Senior Scientist
Dr. Ioan Raicu, Advisor, Illinois Institute of Technology
Benjamin Grimmer, Undergraduate, Illinois Institute of Technology

Outline
●  Background Information

o  Many-task computing
o  Hardware Accelerators

●  Proposed Work
o  GeMTC = GPU enabled Many Task Computing

●  GeMTC Architecture
●  Swift and the dataflow model
●  Performance Evaluation
●  Closing Remarks & Future Directions

Distributed Paradigms

HPC:
●  Tightly coupled
●  Large jobs
●  Hours/days
●  Low latency

HTC:
●  Loosely coupled
●  Days/Months
●  Fault tolerance

M
T
C

Many-Task Computing (MTC)
Advantages:
●  Improve fault

tolerance
●  Maintain efficiency
●  Programmability &

Portability
●  Support pleasingly

parallel and complex
applications

MTC emphasizes:
●  Bridging HPC/HTC
●  Many resources

o  Short period of time
●  Many computational tasks
●  Dependent/independent tasks
●  Tasks organized as DAGs
●  Primary metrics are seconds

●  GPU - Streaming Multiprocessors
(15 SMXs on Kepler K20)

●  Warps
o  32 threads in a warp
o  192 warps

i.  hardware available
ii.  independent compute element

●  Intel Xeon Phi
o  60 cores * 4 threads per core = 240

hardware threads

Accelerator Architectures

Proposed Work

Goals:
1) MTC support
2) Programmability
3) Efficiency

Approach:
Design, implement
middleware:
1) Manages GPU
2) Spread host/device
3) Workflow system
integration (Swift/T)

GeMTC: GPU enabled Many-Task Computing
Motivation: No support for MTC on Accelerators!

4) MIMD on SIMD
5) Increase concurrency
15 to 192 (~13x)

CUDA Concurrent Kernels

GeMTC FIFO

GeMTC Overdecomposition

GeMTC Architecture

GeMTC API
Device Management:
●  gemtcSetup()
●  gemtcCleanup()

Task Management:
●  gemtcPush()
●  gemtcPoll()

Data Movement:
●  gemtcMemcpyDevToHost()
●  gemtcMemcpyHostToDev()

Memory Management*:
●  gemtcGPUMalloc()
●  gemtcGPUFree()

*EuroSys’13 Poster

GeMTC AppKernels
●  Precompiled into GeMTC Framework
●  Optimized for Single Warp Execution

o  (Future: Strap together multiple warps)
●  Previous AppKernel Work:

o  Molecular Dynamics, Synthetic Benchmarks
●  Current AppKernel Work:

o  BLAS functionality, etc.
§  SAXPY, SGEMM, Image processing, Black Scholes

Swift and Applications
●  Swift

o  Active research project (CI UChicago & ANL)
o  Parallel Programming Framework
o  Throughput ~25k tasks/sec per process
o  Shown to scale to 128k cores

●  Application Domains Supported
o  Astronomy, Biochemistry, Bioinformatics, Economics, Climate

Science, Medical Imaging

Images from Swift Case Studies - http://www.ci.uchicago.edu/swift/case_studies/

Swift Dataflow & Integration
…
x = f(a);
y = f(b);

c = g(x, y);
...

Performance Evaluation
●  GeMTC and Molecular Dynamics
●  GeMTC Throughput and Efficiency

(Leveraging Swift)
●  Preliminary Results on Intel Xeon Phi

Speedup within a Single Warp

GeMTC Utilization on K20X

Performance Evaluation
●  GeMTC and Molecular Dynamics
●  GeMTC Throughput and Efficiency

(Leveraging Swift)
●  Preliminary Results on Intel Xeon Phi

Fine-grained Swift CPU Workloads

GeMTC + Swift on XK7 of Blue Waters

Single XK7 Node Efficiency

GeMTC + Swift 512 Nodes 1 Worker/GPU

GeMTC + Swift 512 Nodes, 168W/GPU

Performance Evaluation
●  GeMTC and Molecular Dynamics
●  GeMTC Throughput and Efficiency

(Leveraging Swift)
●  Preliminary Results on Intel Xeon Phi

Preliminary Results on Intel Xeon Phi

Conclusion & Future Work
●  Efficient MTC on NVIDIA GPUs
●  MIMD on SIMD

●  More efficient node utilization (CPU)
●  Strap together multiple warp workers
●  Support alt. accelerators (OpenCL, OpenACC)
●  CUDA 6 Enhancements (Unified Memory, etc.)

Code Repositories
GeMTC:
http://datasys.cs.iit.edu/projects/GeMTC
https://github.com/skrieder/gemtc
Swift:
http://swift-lang.org/main/

Questions?
Scott J. Krieder
Illinois Institute of Technology
skrieder@iit.edu
@skrieder
http://datasys.cs.iit.edu/~skrieder

Appendix:
Additional Slides and Details

Related Work
●  Warp-level execution

o  Graph processing - Hong et. al., PPoPP’11
●  Dataflow on Accelerators

o  PTask, Rossbach et al., MSR
●  Accelerator Virtualization

o  Becchi et. al., Ravi, Pegasus
●  Runtime systems

o  StarPU, COSMIC

GeMTC and MD over Single Warp

GeMTC and MDLite over 1344 Workers

GeMTC + Swift over 10,000 GPU Workers

GeMTC Memory Management

