
Classification with  
Decision Tree Induction 

 This algorithm makes Classification Decision for a test 
sample with the help of tree like structure (Similar to 
Binary Tree OR k-ary tree) 

 Nodes in the tree are attribute names of the given 
data 

 Branches in the tree are attribute values  

 Leaf nodes are the class labels 

 

 Supervised Algorithm (Needs Dataset for creating a 
tree) 

 

 Greedy Algorithm (favourite attributes first) 



Building Decision Tree 

 Two step method 
 Tree Construction  

1. Pick an attribute for division of given data 
2. Divide the given data into sets on the basis of 

this attribute 
3. For every set created above - repeat 1 and 2 

until you find leaf nodes in all the branches of 
the tree - Terminate 

 Tree Pruning (Optimization) 
 Identify and remove branches in the Decision 

Tree that are not useful for classification 
 Pre-Pruning 
 Post Pruning   



Assumptions and Notes for  
Basic Algorithm 

 Attributes are categorical  
 if continuous-valued, they are discretized 

in advanced  

 Examples are partitioned recursively based 
on selected attributes 

 Test attributes are selected on the basis of 
a heuristic or statistical measure (e.g., 
information gain) 

 At start, all the training examples are at the 
root 



Algorithm at work….  
(Tree Construction - Step 1 & 2) 

age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

Given data 

Three Data Sets formed after  

division at root node on the 

basis of “age” attribute 



Algorithm in action…. 

Data 

Set1 Set2 



Final Decision Tree     

age? 

overcast 

Credit rating? 

no yes fair excellent 

<=30 >40 

no no yes yes 

31..40 

Student? Yes 

On the basis of tree constructed in the manner 

described, classify a test sample  

(age, student, creditrating, buys_computer) 

(<=30, yes, excellent, ?) 

-Will this student buy computer? 



Tree Construction  
(Termination Conditions) 

 

 All samples for a given node belong to the 
same class 

 

 There are no remaining attributes for 
further partitioning – majority voting is 
employed for classifying the leaf 

 

 There are no samples left 



Attribute Selection 
Advancements 

 We want to find the most ―useful‖ 
attribute in classifying a sample. Two 
measures of usefulness –  

 Information Gain 

 Attributes are assumed to be categorical 

 Gini Index (IBM IntelligentMiner) 

 Attributes are assumed to be contineous 

 Assume there exist several possible split values 
for each attribute 

 



How to calculate  
Information ―Gain‖ 

 In a given Dataset, assume there are two 

classes, P  and N (yes and no from 

example) 

 Let the set of examples S contain p elements of 

class P  and n elements of class N 

 The amount of information, needed to decide if 

an arbitrary example in S belongs to P  or N is 

defined as 
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Entropy 

 Entropy measures the impurity of a 
set of samples. 

 It is lowest, if there is at most one class 
present, and it is highest, if the 
proportions of all present classes are 
equal. That is, 

 If all examples are positive or all negative, 
entropy is low (zero).  

 If half are positive and half are negative, 
entropy is high (1.0) 

 



Information Gain in 
Decision Tree Induction 

 Assume that using attribute A a set S will be 
partitioned into sets {S1, S2 , …, Sv}   
 If Si contains pi examples of P and ni examples of 

N, the entropy, or the expected information needed 
to classify objects in all subtrees Si is 

 

 

 The encoding information that would be 
gained by branching on A.  This is the 
expected reduction in entropy if we go with A. 
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Play-tennis example:  
which attribute do we take first 

Outlook Temperature Humidity Windy Class

sunny hot high false N

sunny hot high true N

overcast hot high false P

rain mild high false P

rain cool normal false P

rain cool normal true N

overcast cool normal true P

sunny mild high false N

sunny cool normal false P

rain mild normal false P

sunny mild normal true P

overcast mild high true P

overcast hot normal false P

rain mild high true N

Humidity = high [3+,4-] E=0.985 
Humidity=normal [6+,1-] E = .592 
Gain(S, Humidity) = .940 – 7/14(.985) – (7/14).592 = .151 
 
Windy = false [6+,2-], E = .811 
Windy = true [3+,3-], E = 1.0 
 
Gain (S, Windy) = .940 – (8/14)(.811 – (6/14)(1.0) = .048 
 
Humidity split into two classes , one with a great split of 
6+ and 1-. The other was not so great of 3+,3- 
Wind split into two classes, one with an Ok split of 6+2- 
And the other was terrible of 3+,3- (max entropy of 1.0).  
 
So Humidity is the best attribute between these two.  
 
Gain(S,outlook) = .246 
Gain(S,humidity) = .151 
Gain(S,wind) = .048 
Gain(S,Temperature) = .029 

I (Humidity[9+,5-]) = .940  



Gini Index (IBM IntelligentMiner 

 If a data set T contains examples from n classes, gini index, 
gini(T) is defined as 

 

     where pj is the relative frequency of class j in T. 

 If a data set T is split into two subsets T1 and T2 with sizes N1 
and N2 respectively, the gini index of the split data contains 
examples from n classes, the gini index gini(T) is defined as 

 

 

 

 The attribute provides the smallest ginisplit(T) is chosen to split 
the node (need to enumerate all possible splitting points for 
each attribute). 





n

j

p jTgini

1

21)(

)()()( 2
2

1
1

Tgini
N

N
Tgini

N

NTginisplit




Extracting Classification Rules 

 Represent the knowledge in the form of IF-THEN rules 

 One rule is created for each path from the root to a leaf 

 Each attribute-value pair along a path forms a conjunction 

 The leaf node holds the class prediction 

 Rules are easier for humans to understand 

 

 Example 
IF age = ―<=30‖ AND student = ―no‖   THEN buys_computer = ―no‖ 
IF age = ―<=30‖ AND student = ―yes‖  THEN buys_computer = ―yes‖ 
IF age = ―31…40‖    THEN buys_computer = ―yes‖ 
IF age = ―>40‖   AND credit_rating = ―excellent‖   THEN buys_computer = 

―yes‖ 
IF age = ―<=30‖ AND credit_rating = ―fair‖  THEN buys_computer = ―no‖ 



Overfitting 

 Generated Decision Tree is said to overfit the training 
data if, 
 It results in poor accuracy to classify test samples 
 It has too many branches, that reflect anomalies due 

to noise or outliers 

 Two approaches to avoid overfitting –  
 Tree Pre-Pruning – Halt tree construction early – that 

is, do not split a node if the goodness measure falls 
below a threshold 
 It is difficult to choose appropriate threshold 

 Tree Post-Pruning - Remove branches from a ―fully 
grown‖ tree—get a sequence of progressively pruned 
trees 
 Use a set of data different from the training data 

to decide which is the ―best pruned tree‖ 



Classifier Accuracy Estimation 

 Why estimate a classifier accuracy? 

 Comparing classifiers for the given dataset (Different 
classifiers will favor different domain of datasets) 

 One needs to estimate how good the prediction will 
be.  

 Methods of estimating accuracy 

 Holdout – randomly partition the given data into two 
independent sets and use one for training (typically 
2/3rd)  and the other for testing (1/3rd) 

 k-fold cross-validation – randomly partition the 
given data into ‗k‘ mutually exclusive subsets (folds). 
Training and testing is performed k times. 



Accuracy Improvement 

 Methods 

 Bagging (Bootstrap aggregation) – Number of 
trees are constructed on subsets of given data 
and majority voting is taken from these trees to 
classify a test sample. 

 Boosting – attaching weights (importance) to 
the training samples and optimizing the weights 
during training and further using these weights 
to classify the test sample. Advantage – avoids 
outliers 


