
Classification with
Decision Tree Induction

 This algorithm makes Classification Decision for a test
sample with the help of tree like structure (Similar to
Binary Tree OR k-ary tree)

 Nodes in the tree are attribute names of the given
data

 Branches in the tree are attribute values

 Leaf nodes are the class labels

 Supervised Algorithm (Needs Dataset for creating a
tree)

 Greedy Algorithm (favourite attributes first)

Building Decision Tree

 Two step method
 Tree Construction

1. Pick an attribute for division of given data
2. Divide the given data into sets on the basis of

this attribute
3. For every set created above - repeat 1 and 2

until you find leaf nodes in all the branches of
the tree - Terminate

 Tree Pruning (Optimization)
 Identify and remove branches in the Decision

Tree that are not useful for classification
 Pre-Pruning
 Post Pruning

Assumptions and Notes for
Basic Algorithm

 Attributes are categorical
 if continuous-valued, they are discretized

in advanced

 Examples are partitioned recursively based
on selected attributes

 Test attributes are selected on the basis of
a heuristic or statistical measure (e.g.,
information gain)

 At start, all the training examples are at the
root

Algorithm at work….
(Tree Construction - Step 1 & 2)

age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

Given data

Three Data Sets formed after

division at root node on the

basis of “age” attribute

Algorithm in action….

Data

Set1 Set2

Final Decision Tree

age?

overcast

Credit rating?

no yes fair excellent

<=30 >40

no no yes yes

31..40

Student? Yes

On the basis of tree constructed in the manner

described, classify a test sample

(age, student, creditrating, buys_computer)

(<=30, yes, excellent, ?)

-Will this student buy computer?

Tree Construction
(Termination Conditions)

 All samples for a given node belong to the
same class

 There are no remaining attributes for
further partitioning – majority voting is
employed for classifying the leaf

 There are no samples left

Attribute Selection
Advancements

 We want to find the most ―useful‖
attribute in classifying a sample. Two
measures of usefulness –

 Information Gain

 Attributes are assumed to be categorical

 Gini Index (IBM IntelligentMiner)

 Attributes are assumed to be contineous

 Assume there exist several possible split values
for each attribute

How to calculate
Information ―Gain‖

 In a given Dataset, assume there are two

classes, P and N (yes and no from

example)

 Let the set of examples S contain p elements of

class P and n elements of class N

 The amount of information, needed to decide if

an arbitrary example in S belongs to P or N is

defined as

np

n

np

n

np

p

np

p
npI

 22 loglog),(

Entropy

 Entropy measures the impurity of a
set of samples.

 It is lowest, if there is at most one class
present, and it is highest, if the
proportions of all present classes are
equal. That is,

 If all examples are positive or all negative,
entropy is low (zero).

 If half are positive and half are negative,
entropy is high (1.0)

Information Gain in
Decision Tree Induction

 Assume that using attribute A a set S will be
partitioned into sets {S1, S2 , …, Sv}
 If Si contains pi examples of P and ni examples of

N, the entropy, or the expected information needed
to classify objects in all subtrees Si is

 The encoding information that would be
gained by branching on A. This is the
expected reduction in entropy if we go with A.

1

),()(
i

ii
ii npI

np

np
AE

)(),()(AEnpIAGain

Play-tennis example:
which attribute do we take first

Outlook Temperature Humidity Windy Class

sunny hot high false N

sunny hot high true N

overcast hot high false P

rain mild high false P

rain cool normal false P

rain cool normal true N

overcast cool normal true P

sunny mild high false N

sunny cool normal false P

rain mild normal false P

sunny mild normal true P

overcast mild high true P

overcast hot normal false P

rain mild high true N

Humidity = high [3+,4-] E=0.985
Humidity=normal [6+,1-] E = .592
Gain(S, Humidity) = .940 – 7/14(.985) – (7/14).592 = .151

Windy = false [6+,2-], E = .811
Windy = true [3+,3-], E = 1.0

Gain (S, Windy) = .940 – (8/14)(.811 – (6/14)(1.0) = .048

Humidity split into two classes , one with a great split of
6+ and 1-. The other was not so great of 3+,3-
Wind split into two classes, one with an Ok split of 6+2-
And the other was terrible of 3+,3- (max entropy of 1.0).

So Humidity is the best attribute between these two.

Gain(S,outlook) = .246
Gain(S,humidity) = .151
Gain(S,wind) = .048
Gain(S,Temperature) = .029

I (Humidity[9+,5-]) = .940

Gini Index (IBM IntelligentMiner

 If a data set T contains examples from n classes, gini index,
gini(T) is defined as

 where pj is the relative frequency of class j in T.

 If a data set T is split into two subsets T1 and T2 with sizes N1
and N2 respectively, the gini index of the split data contains
examples from n classes, the gini index gini(T) is defined as

 The attribute provides the smallest ginisplit(T) is chosen to split
the node (need to enumerate all possible splitting points for
each attribute).

n

j

p jTgini

1

21)(

)()()(2
2

1
1

Tgini
N

N
Tgini

N

NTginisplit

Extracting Classification Rules

 Represent the knowledge in the form of IF-THEN rules

 One rule is created for each path from the root to a leaf

 Each attribute-value pair along a path forms a conjunction

 The leaf node holds the class prediction

 Rules are easier for humans to understand

 Example
IF age = ―<=30‖ AND student = ―no‖ THEN buys_computer = ―no‖
IF age = ―<=30‖ AND student = ―yes‖ THEN buys_computer = ―yes‖
IF age = ―31…40‖ THEN buys_computer = ―yes‖
IF age = ―>40‖ AND credit_rating = ―excellent‖ THEN buys_computer =

―yes‖
IF age = ―<=30‖ AND credit_rating = ―fair‖ THEN buys_computer = ―no‖

Overfitting

 Generated Decision Tree is said to overfit the training
data if,
 It results in poor accuracy to classify test samples
 It has too many branches, that reflect anomalies due

to noise or outliers

 Two approaches to avoid overfitting –
 Tree Pre-Pruning – Halt tree construction early – that

is, do not split a node if the goodness measure falls
below a threshold
 It is difficult to choose appropriate threshold

 Tree Post-Pruning - Remove branches from a ―fully
grown‖ tree—get a sequence of progressively pruned
trees
 Use a set of data different from the training data

to decide which is the ―best pruned tree‖

Classifier Accuracy Estimation

 Why estimate a classifier accuracy?

 Comparing classifiers for the given dataset (Different
classifiers will favor different domain of datasets)

 One needs to estimate how good the prediction will
be.

 Methods of estimating accuracy

 Holdout – randomly partition the given data into two
independent sets and use one for training (typically
2/3rd) and the other for testing (1/3rd)

 k-fold cross-validation – randomly partition the
given data into ‗k‘ mutually exclusive subsets (folds).
Training and testing is performed k times.

Accuracy Improvement

 Methods

 Bagging (Bootstrap aggregation) – Number of
trees are constructed on subsets of given data
and majority voting is taken from these trees to
classify a test sample.

 Boosting – attaching weights (importance) to
the training samples and optimizing the weights
during training and further using these weights
to classify the test sample. Advantage – avoids
outliers

