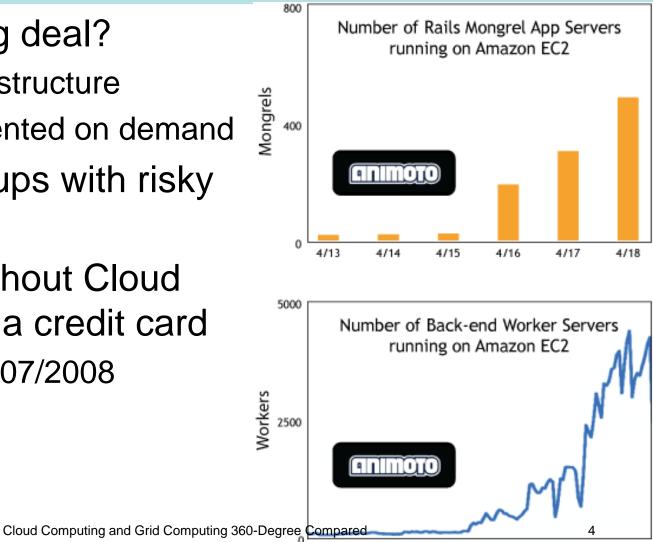
Cloud Computing and Grid Computing 360-Degree Compared

Ioan Raicu Computer Science Department Illinois Institute of Technology

CS 595 Hot Topics in Distributed Systems: Data-Intensive Computing September 22nd, 2010

Outline


- Business model
- Architecture
- Resource management
- Programming model
- Application model
- Security model

Business Model

- Grids:
 - Largest Grids funded by government
 - Largest user-base in academia and government labs to drive scientific computing
 - Project-oriented: service units
- Clouds:
 - Industry (i.e. Amazon) funded the initial Clouds
 - Large user base in common people, small businesses, large businesses, and a bit of openn science research
 - Utility computing: real money

Business Model Why is it a big deal?

- Why is this a big deal?
 - No owned infrastructure
 - All resources rented on demand
- Critical for startups with risky business plans
- Not possible without Cloud Computing and a credit card
 - Launched in 2007/2008 timeframe

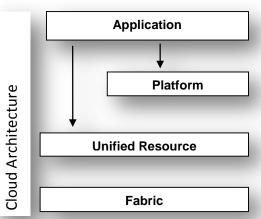
4/15

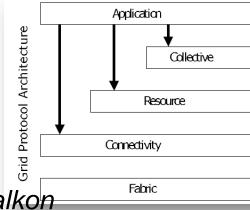
4/16

4/17

4/18

4/13


4/14


An Example of an Application in the Cloud

Architecture

- Grids:
 - Application: Swift, Grid portals (NVO)
 - Collective layer: MDS, Condor-G, Nimrod-G
 - Resource layer: GRAM, Falkon, GridFTP
 - Connectivity layer: Grid Security Infrastructure
 - Fabric layer: GRAM, PBS, SGE, LSF, Condor, Falkon
- Clouds:
 - Application Layer: Software as a Service (SaaS)
 - Platform Layer: *Platform as a Service (PaaS)*
 - Unified Resource: Infrastructure as a Service (laaS)
 - Fabric: *laaS*

Resource Management

Compute Model

- batch-scheduled vs. time-shared

- Data Model
 - Data Locality
 - Combining compute and data management
- Virtualization

- Slow adoption vs. central component

- Monitoring
- Provenance

Questions

