

• Want to:

– Process lots of data (> 1 TB)

– Automatically parallelize across
hundreds/thousands of CPUs

– Have status and monitoring tools

– Provide clean abstraction for programmers

– Make this easy

2

• “A simple and powerful interface that

enables automatic parallelization and

distribution of large-scale computations,

combined with an implementation of this

interface that achieves high performance

on large clusters of commodity PCs.”

Dean and Ghermawat, “MapReduce: Simplified Data Processing on Large Clusters”,

Google Inc.
3

• Iterate over a large number of records

• Extract something of interest from each

• Shuffle and sort intermediate results

• Aggregate intermediate results

• Generate final output

• Key idea: provide an abstraction at the

point of these two operations

4

• Process data using special map() and reduce()

functions

• The map() function is called on every item in the

input and emits a series of intermediate

key/value pairs

• All values associated with a given key are

grouped together

• The reduce() function is called on every unique

key, and its value list, and emits a value that is

added to the output

5

• Borrows from functional programming

• Users implement interface of two
functions:

– map (in_key, in_value) ->

(out_key, intermediate_value) list

– reduce (out_key, intermediate_value list) ->

out_value list

6

• Records from the data source (lines out of
files, rows of a database, etc) are fed into
the map function as key*value pairs: e.g.,
(filename, line).

• map() produces one or more intermediate
values along with an output key from the
input.

7

• After the map phase is over, all the
intermediate values for a given output key
are combined together into a list

• reduce() combines those intermediate
values into one or more final values for
that same output key

• (in practice, usually only one final value
per key)

8

• Word frequency

Map

doc

Reduce

<word,3>

<word,1>

<word,1>

<word,1>

Runtime

System

<word,1,1,1>

9

• Distributed grep

– Map function emits <word, line_number> if word

matches search criteria

– Reduce function is the identity function

• URL access frequency

– Map function processes web logs, emits <url, 1>

– Reduce function sums values and emits <url, total>

10

How now

Brown cow

How does

It work now

brown 1

cow 1

does 1

How 2

it 1

now 2

work 1

M

M

M

M

R

R

<How,1>

<now,1>

<brown,1>

<cow,1>

<How,1>

<does,1>

<it,1>

<work,1>

<now,1>

<How,1 1>

<now,1 1>

<brown,1>

<cow,1>

<does,1>

<it,1>

<work,1>

Input Output

Map

Reduce
MapReduce

Framework

11

1. The user program, via the MapReduce

library, shards the input data

User

ProgramInput

Data

Shard 0
Shard 1
Shard 2
Shard 3
Shard 4
Shard 5
Shard 6

* Shards are typically 16-64mb in size

12

2. The user program creates process

copies distributed on a machine cluster.

One copy will be the “Master” and the

others will be worker threads.

User

Program

Master

Workers
Workers

Workers
Workers

Workers

13

3. The master distributes M map and R

reduce tasks to idle workers.

– M == number of shards

– R == the intermediate key space is divided

into R parts

Master
Idle

Worker

Message(Do_map_task)

14

4. Each map-task worker reads assigned

input shard and outputs intermediate

key/value pairs.

– Output buffered in RAM.

Map

workerShard 0 Key/value pairs

15

5. Each worker flushes intermediate values,

partitioned into R regions, to disk and

notifies the Master process.

Master

Map

worker

Disk locations

Local

Storage

16

6. Master process gives disk locations to an

available reduce-task worker who reads

all associated intermediate data.

Master

Reduce

worker

Disk locations

remote

Storage

17

7. Each reduce-task worker sorts its

intermediate data. Calls the reduce

function, passing in unique keys and

associated key values. Reduce function

output appended to reduce-task’s

partition output file.

Reduce

worker

Sorts data Partition

Output file

18

8. Master process wakes up user process

when all tasks have completed. Output

contained in R output files.

wakeup User

Program
Master

Output

files

19

1. Partitions input data

2. Schedules execution across a set of

machines

3. Handles machine failure

4. Manages interprocess communication

20

• map() functions run in parallel, creating
different intermediate values from different
input data sets

• reduce() functions also run in parallel,
each working on a different output key

• All values are processed independently

• Bottleneck: reduce phase can’t start until
map phase is completely finished.

21

• Master program divvies up tasks based on
location of data: tries to have map() tasks
on same machine as physical file data, or
at least same rack

• map() task inputs are divided into 64 MB
blocks: same size as Google File System
chunks

22

• Master detects worker failures
– Re-executes completed & in-progress map()

tasks

– Re-executes in-progress reduce() tasks

• Master notices particular input key/values
cause crashes in map(), and skips those
values on re-execution.
– Effect: Can work around bugs in third-party

libraries!

23

• No reduce can start until map is complete:

– A single slow disk controller can rate-limit the
whole process

• Master redundantly executes “slow-
moving” map tasks; uses results of first
copy to finish

24

• MapReduce has proven to be a useful abstraction

• Greatly simplifies large-scale computations at Google

• Functional programming paradigm can be applied to
large-scale applications

• Fun to use: focus on problem, let library deal w/ messy
details

• Greatly reduces parallel programming complexity
– Reduces synchronization complexity
– Automatically partitions data
– Provides failure transparency
– Handles load balancing

25

• Open source MapReduce implementation
– http://hadoop.apache.org/core/index.html

• Uses
– Hadoop Distributed Filesytem (HDFS)

• http://hadoop.apache.org/core/docs/current/hdfs_d
esign.html

– Java
– ssh

26

http://hadoop.apache.org/core/index.html
http://hadoop.apache.org/core/docs/current/hdfs_design.html
http://hadoop.apache.org/core/docs/current/hdfs_design.html

27

