PLANET

Massively Parallel Learning of Tree Ensembles with MapReduce

Joshua Herbach* Google Inc., AdWords

*Joint work with Biswanath Panda, Sugato Basu, Roberto J. Bayardo

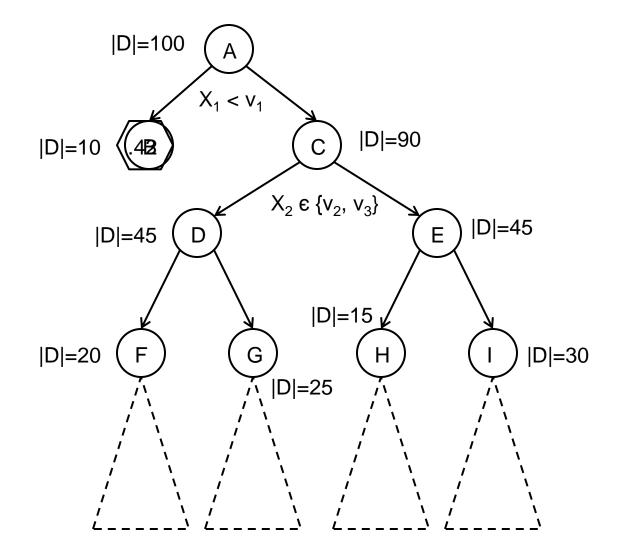
Outline

- PLANET infrastructure for building trees
- Decision trees
- Usage and motivation
- MapReduce
- PLANET details
- Results
- Future Work

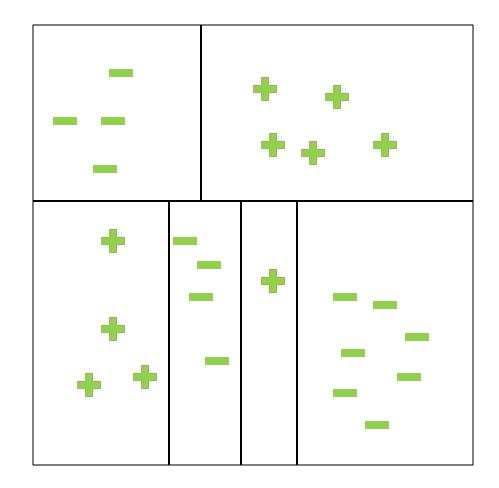
Tree Models

Classic data mining model • |D|=100 А Interpretable • $X_1 < V_1$ Good when built with ensemble ٠ techniques like bagging |D|=90 |D|=10 .42 С and boosting $X_2 \in \{V_2, V_3\}$ |D|=45 |D|=45 Е D |D|=15 |D|=30 |D|=20 F G Η ς |D|=25 j. 11 ۱

Construction

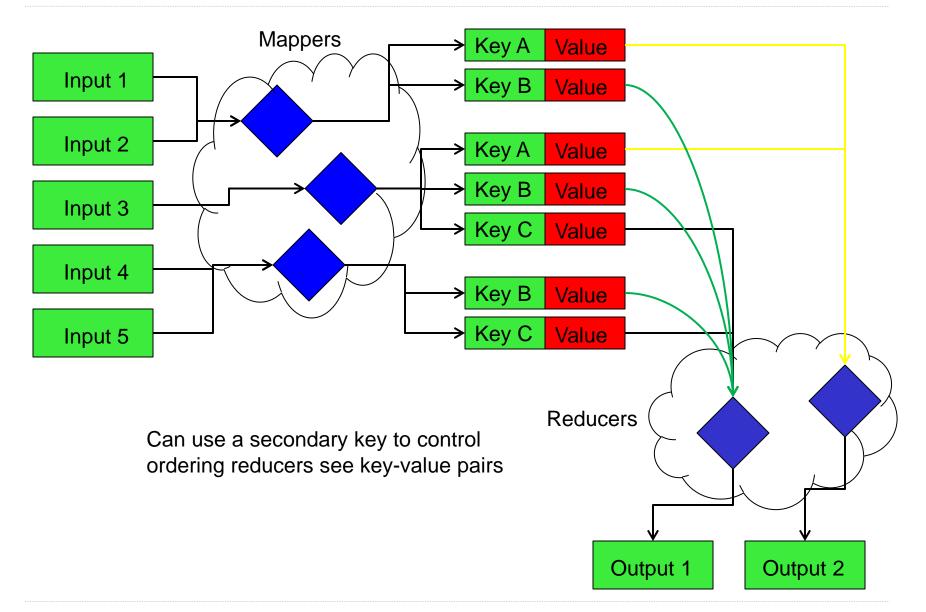


Find Best Split



- Large Datasets
 - Iterating through a large dataset (10s, 100s, or 1000s of GB) is slow
 - Computing values based on the records in a large dataset is really slow
- Parallelism!
 - Break up dataset across many processing units and then combine results
 - Super computers with specialized parallel hardware to support high throughput are expensive
 - Computers made from commodity hardware are cheap
- Enter MapReduce

MapReduce*



*http://labs.google.com/papers/mapreduce.html

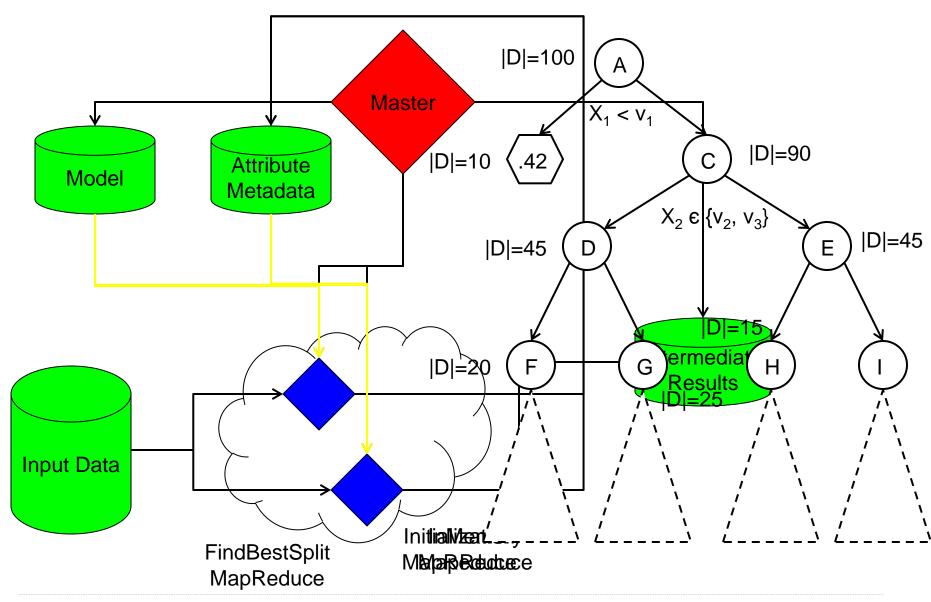
PLANET

- Parallel Learner for Assembling Numerous Ensemble Trees
- PLANET is a learner for training decision trees that is built on MapReduce
 - Regression models (or classification using logistic regression)
 - Supports boosting, bagging and combinations thereof
 - Scales to very large datasets

System Components

- Master
 - Monitors and controls everything
- MapReduce Initialization Task
 - Identifies all the attribute values which need to be considered for splits
- MapReduce FindBestSplit Task
 - MapReduce job to find best split when there is too much data to fit in memory
- MapReduce InMemoryGrow Task
 - Task to grow an entire subtree once the data for it fits in memory
- Model File
 - A file describing the state of the model

Architecture



Master

- Controls the entire process
- Determines the state of the tree and grows it
 - Decides if nodes should be leaves
 - If there is relatively little data entering a node; launch an InMemory MapReduce job to grow the entire subtree
 - For larger nodes, launches a MapReduce job to find candidate best splits
 - Collects results from MapReduce jobs and chooses the best split for a node
 - Updates Model
- Periodically checkpoints system
- Maintains status page for monitoring

Status page

← → C ☆ http://												0- /-
BoostedTreeTrainer												^
Initialize Mapree Clean N		ng Don In Pr Peno	rogress l ing									
				Err	or vs nui	mber of	trees					
0.35											training	
	2 ve Work Γο write:		6	8	10	12 /	14 forest_b	16 uilder-	18	20	22 tasks: tree_id: 21 node(s): 3, 4 model_file: /forest_builder- /forest_builder-	
071113beef7bcca4/building/grow_output_86											nodes_in_model_file: 473 active_trees: 21	

Initialization MapReduce

- Identifies all the attribute values which need to be considered for splits
- Continuous attributes
 - Compute an approximate equi-depth histogram*
 - Boundary points of histogram used for potential splits
- Categorical attributes
 - Identify attribute's domain
- Generates an "attribute file" to be loaded in memory by other tasks

FindBestSplit MapReduce

- MapReduce job to find best split when there is too much data to fit in memory
- Mapper
 - Initialize by loading attribute file from Initialization task and current model file
 - For each record run the Map algorithm
 - For each node output to all reducers
 <Node.Id, <Sum Result, Sum Squared Result, Count>>
 - For each split output <Split.Id, <Sum Result, Sum Squared Result, Count>>

Map(data): Node = TraverseTree(data, Model) if Node to be grown: Node.stats.AddData(data) for feature in data: Split = FindSplitForValue(Node.Id, feature) Split.stats.AddData(data)

FindBestSplit MapReduce

- MapReduce job to find best split when there is too much data to fit in memory
- Reducer (Continuous Attributes)
 - Load in all the <Node_Id, List<Sum Result, Sum Squared Result, Count>> pairs and aggregate the per_node statistics.
 - For each <Split_Id, List<Sum Result, Sum Squared Result, Count>> run the Reduce algorithm
 - For each Node_Id, output the best split found

```
Reduce(Split_Id, values):

Split = NewSplit(Split_Id)

best = FindBestSplitSoFar(Split.Node.Id)

for stats in values

split.stats.AddStats(stats)

left = ComputeImpurity(split.stats)

right = ComputeImpurity(split.node.stats – split.stats)

split.impurity = left + right

if split.impurity < best.impurity:

UpdateBestSplit(Split.Node.Id, split)
```

FindBestSplit MapReduce

- MapReduce job to find best split when there is too much data to fit in memory
 - Reducer (Categorical Attributes)
 - Modification to reduce algorithm:
 - Compute the aggregate stats for each individual value
 - Sort values by average target value
 - Iterate through list and find optimal subsequence in list*

InMemoryGrow MapReduce

- Task to grow an entire subtree once the data for it fits in memory
- Mapper
 - Initialize by loading current model file
 - For each record identify the node it falls under and if that node is to be grown, output <Node_Id, Record>
- Reducer
 - Initialize by loading attribute file from Initialization task
 - For each <Node_Id, List<Record>> run the basic tree growing algorithm on the records
 - Output the best splits for each node in the subtree

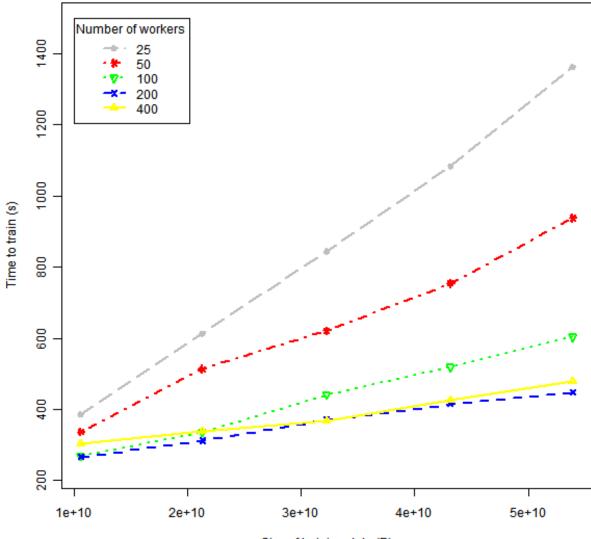
Ensembles

- Bagging
 - Construct multiple trees in parallel, each on a sample of the data
 - Sampling without replacement is easy to implement on the Mapper side for both types of MapReduce tasks
 - Compute a hash of <Tree_Id, Record_Id> and if it's below a threshold then sample it
 - Get results by combining the output of the trees
- Boosting
 - Construct multiple trees in a series, each on a sample of the data*
 - Modify the target of each record to be the residual of the target and the model's prediction for the record
 - For regression, the residual z is the target y minus the model prediction F(x)
 - For classification, $z = y 1 / (1 + \exp(-F(x)))$
 - Get results by combining output from each tree

18

- Set up and Tear down
 - Per-MapReduce overhead is significant for large forests or deep trees
 - Reduce tear-down cost by polling for output instead of waiting for a task to return
 - Reduce start-up cost through forward scheduling
 - Maintain a set of live MapReduce jobs and assign them tasks instead of starting new jobs from scratch
- Categorical Attributes
 - Basic implementation stored and tracked these as strings
 - This made traversing the tree expensive
 - Improved latency by instead considering fingerprints of these values
- Very high dimensional data
 - If the number of splits is too large the Mapper might run out of memory
 - Instead of defining split tasks as a set of nodes to grow, define them as a set of nodes grow and a set of attributes to explore.

Results



Size of training data (B)

Conclusions

- Large-scale learning is increasingly important
- Computing infrastructures like MapReduce can be leveraged for large-scale learning
- PLANET scales efficiently with larger datasets and complex models.
- Future work
 - Adding support for sampling with replacement
 - Categorical attributes with large domains
 - Might run out of memory
 - Only support splitting on single values
 - Area for future exploration

Thank You!

Q&A