

• Swift is a system for the rapid and reliable specification,

execution, and management of large-scale science and

engineering workflows. It supports applications that

execute many tasks coupled by disk-resident datasets -

as is common, for example, when analyzing large

quantities of data or performing parameter studies or

ensemble simulations.

• For example:
– Cancer research: looking for previously unknown protein changes by

comparing mass spectrum data with data known about proteome.

– A monte-carlo simulation of protein folding, 10 proteins, 1000

simulations for each configuration, inside simulated annealing algorithm

with 2x5=10 different parameter values. Each simulation component

takes ~ 5 CPU-minutes, so about ~ 1 CPU-year for a whole run;

producing 10...100Gb of data. 2

 Coordination language

 Linda[Ahuja,Carriero86], Strand[Foster,Taylor90], PCN[Foster92]

 Durra[Barbacci,Wing86], MANIFOLD[Papadopoulos98]

 Components programmed in specific language (C,

FORTRAN) and linked with system

 “Workflow” languages and systems

 Taverna[Oinn,Addis04], Kepler[Ludäscher,Altintas05],

Triana [Churches,Gombas05], Vistrail[Callahan,Freire06], DAGMan, Star-P

 XPDL[WfMC02], BPEL[Andrews,Curbera03], and BPML[BPML02],

YAWL[van de Aalst,Hofstede05], Windows Workflow Foundation
[Microsoft05]

S
w

iftS
c
r
ip

t

B
P

E
L

X
P

D
L

M
W

 W
flo

w

D
A

G
M

a
n

T
a
v
e
n

a

T
r
ia

n
a

K
e
p

le
r

V
is

tr
a
il

S
ta

r
-P

Scales to Grids ++ - - - ++ - - - - +

Typing ++ ++ ++ ++ - - - + - +

Iteration ++ -/+ - + - - - + - +

Scripting ++ - - + + + - - + ++

Dataset Mapping + - - - - - - - - -

Service Interop + - + - - - - + - -

Subflow/comp. + - + + - - + + - +

Provenance + - - + - + - + + -

Open source + + + - + + + + + -

“A 4x200 flow leads to a 5 MB BPEL file … chemists were not able to write in BPEL”
[Emmerich,Buchart06]

• ~2003: VDL - the Virtual Data Language.

express directed acyclic graphs of unix processes

processes take input and produce output through files

'virtual data' - when needed, materialise data either by

copying from elsewhere or by deriving it from other data that

is available

Lots of thinking about "graph transformations"

• ~2006: VDL2 (which became SwiftScript)

– key features:

• iterating over collections of files in the language

• accidentally became Turing-complete

• ~2010: still going - language tweaks, scaling improvements

5

• Scientific programmers use some science-domain specific

language to write the "science" bit of their application (eg R

for statistics, Root for particle physics).

• They aren't "high performance" or "distributed system"

programmers.

• Want to help them use "big" systems to run their application

- eg machines with 10^5 CPU cores.

• Traditional MPI (Message Passing Interface) is hard to think

about.

• Swift tries to provide an easier model that still allows many

applications to be expressed, and performed with

reasonable efficiency.

• SwiftScript is the language for programming in that model.

6

• file output <"output.txt">; Declares output to be a

variable whose value is stored in the file system rather

than in-core.

• <"output.txt"> means that the value is stored in a file

output.txt (this can be a URL)

• This is a simple example with a literal single filename.

– More complex syntax allows mapping arrays of files, with more

dynamic behaviour (eg generating filename patterns at runtime)

• We can omit the <...> mapping expression in which case

Swift will make up a filename - useful for intermediate

files.

7

• app (file o) count(file i) { uniq "-c" stdin=@i stdout=@o; }

This is how the real work gets done - by getting some

other science-domain specific program to do it.

• app procedures execute unix processes, but not like

system() or runProcess

• The environment in which an app procedure runs is

constrainted:

Application will start in "some directory, somewhere".

There, it will find its input files, and there it should leave

its output files.

• Applications need to be referentially transparent (but

SwiftScript doesn't clearly define what equivalence is)

 8

• Pick an execution site

• Transfer input files there (if they are not already

cached there)

• Put the job in an execution queue at the

execution site

• Wait for execution to finish

• Transfer output files back

• Check everything worked ok

9

• Online repository of neuroimaging

data

• A typical study comprises

 3 groups,

 20 subjects/group,

 5 runs/subject,

 300 volumes/run

 90,000 volumes, 60 GB raw 

1.2 million files processed

• 100s of such studies in total

http://www.fmridc.org

 Large user base

 World wide collaboration

 Thousands of requests

 Wide range of analyses

 Testing, production runs

 Data mining

 Ensemble, Parameter studies

• Accessing messy data

– Idiosyncratic layouts & formats

– Data integration a prerequisite to analysis

• Describing & executing complex computations

– Expression, discovery, reuse of analyses

– Scaling to large data, complex analyses

• Making analysis a community process

– Collaboration on both data & programs

– Provenance: tracking, query, application

• Accessing messy data

– Idiosyncratic layouts & formats

– Data integration a prerequisite to analysis

• Implementing complex computations

– Expression, discovery, reuse of analyses

– Scaling to large data, complex analyses

• Making analysis a community process

– Collaboration on both data & programs

– Provenance: tracking, query, application

XDTM

SwiftScript

Karajan

+Falkon

VDC

• Scientific data is often

logically structured

– E.g., hierarchical structure

– Common to map functions

over dataset members

– Nested map operations can scale to

millions of objects

• Heterogeneous storage

format & access protocols

– Same dataset can be stored

in text file, spreadsheet,

database, …

– Access via filesystem, DBMS,

HTTP, WebDAV, …

• Metadata encoded in

directory and file names

• Hinders program

development, composition,

execution

./knottastic

drwxr-xr-x 4 yongzh users 2048 Nov 12 14:15 AA

drwxr-xr-x 4 yongzh users 2048 Nov 11 21:13 CH

drwxr-xr-x 4 yongzh users 2048 Nov 11 16:32 EC

./knottastic/AA:

drwxr-xr-x 5 yongzh users 2048 Nov 5 12:41 04nov06aa

drwxr-xr-x 4 yongzh users 2048 Dec 6 12:24 11nov06aa

. /knottastic//AA/04nov06aa:

drwxr-xr-x 2 yongzh users 2048 Nov 5 12:52 ANATOMY

drwxr-xr-x 2 yongzh users 49152 Dec 5 11:40 FUNCTIONAL

. /knottastic/AA/04nov06aa/ANATOMY:

-rw-r--r-- 1 yongzh users 348 Nov 5 12:29 coplanar.hdr

-rw-r--r-- 1 yongzh users 16777216 Nov 5 12:29 coplanar.img

. /knottastic/AA/04nov06aa/FUNCTIONAL:

-rw-r--r-- 1 yongzh users 348 Nov 5 12:32 bold1_0001.hdr

-rw-r--r-- 1 yongzh users 409600 Nov 5 12:32 bold1_0001.img

-rw-r--r-- 1 yongzh users 348 Nov 5 12:32 bold1_0002.hdr

-rw-r--r-- 1 yongzh users 409600 Nov 5 12:32 bold1_0002.img

-rw-r--r-- 1 yongzh users 496 Nov 15 20:44 bold1_0002.mat

-rw-r--r-- 1 yongzh users 348 Nov 5 12:32 bold1_0003.hdr

-rw-r--r-- 1 yongzh users 409600 Nov 5 12:32 bold1_0003.img

• Typed parallel programming notation

– XDTM as data model and type system

– Typed dataset and procedure definitions

• Scripting language

– Implicit data parallelism

– Program composition

 from procedures

– Control constructs

(foreach, if, while, …)

Clean application logic

Type checking

Dataset selection, iteration

Discovery by types

Type conversion

A Notation and System for Expressing and Executing Cleanly Typed Workflows on

Messy Scientific Data [SIGMOD05]

• Runtime system for SwiftScript

– Translate programs into task graphs

– Schedule, monitor, execute task graphs on local clusters and/or

distributed Grid resources

– Annotate data products with provenance metadata

• Grid scheduling and optimization

– Lightweight execution engine: Karajan

– Falkon: lightweight dispatch, dynamic provisioning

– Grid execution: site selection, data movement

– Caching, pipelining, clustering, load balancing

– Fault tolerance, exception handling

A Virtual Data System for Representing, Querying & Automating Data Derivation [SSDBM02]

Swift: Fast, Reliable, Loosely-Coupled Parallel Computation [SWF07]

• There are many different execution resources in the

world: clusters on your campus, supercomputers, your

own laptop.

• It is useful to be able to choose and switch between

sites, and choose between different mechanisms for

accessing a site, because:

• your usual site is broken today

• someone is developing a better mechanism (higher

performance) for submitting to your usual site (ongoing

r&d there)

• you want to use the combined power of several sites at

once (research question: if many sites available, which is

best to use?)

18

• Failure happens a lot in our target environments (integer

percentages in some environments) so reliability is not "a nice

feature to have" - it is essential.

• Retries: if an application execution fails, we try it 2 more times

• Restarts: if retries fail, then the whole script fails (eventually). Maybe

want to restart manually where we left off. Assume that app blocks

are expensive and everything else is cheap, so start the script from

beginning again, skipped apps that we've already run (using a log

file)

• Replication: deals with a softer class of failure. Sometimes an app

goes into a queue and sits "forever" (really forever, or perhaps much

longer than most other apps). We can launch a new attempt to run

the app, without killing the original. When one starts, we kill the

other(s)

19

Virtual Node(s)

SwiftScript

Abstract

computation

Virtual Data

Catalog

SwiftScript

Compiler

Specification Execution

Virtual Node(s)

Provenance

data

Provenance

data Provenance

collector

launcher

launcher

file1

file2

file3

App

F1

App

F2

Scheduling

Execution Engine

(Karajan w/

Swift Runtime)

Swift runtime

callouts

C

C C C

Status reporting

Provisioning

Falkon

Resource

Provisioner

Amazon

EC2

• Fast, scalable lightweight threading model

• Suitable constructs for control flow

• Flexible task dependency model

– “Futures” enable pipelining

• Flexible provider model allows for use of

different run time environments

– Desktop, clusters, Grids

– Flow controlled to avoid resource overload

• Workflow client runs from a Java container

Java CoG Workflow, Gv Laszewski, M. Hatigan, Workflows for e-Sciences 2007

 Falkon dynamic provisioner:

 Monitors demand (incoming user

requests)

 Manages supply: selects resources;

creates executors (via Globus

GRAM+LRM)

 Various decision strategies for

acquisition and release

 Falkon executor

 440 tasks/sec max

 54,000 executors

 millions of tasks

Falkon: Fast and Light-weight Task Execution Framework, I. Raicu, Y. Zhao et al. SC07

WS

WS

Provisioner

Compute

Resources

Executor 1

Clients

Executor n

Compute

Resource m

Compute

Resource 1

Dispatcher

23

24

• The other key area of interest is...

• Massive implicit parallelism

• We can declare a mapped array of files: (eg

mydata.*.img)

• file inp[] <simple_mapper; prefix="mydata.",

suffix=".img">; and iterate over it:

• foreach s,i in inp { out[i] = f(s); // same as out[i] = f(inp[i]);

} All iterations can happen in parallel (subject to runtime

limits, but could be many thousands of CPUs)

• In real use, f might be an app procedure taking 30s, with

10^5 loop iterations.

•

 25

• Execution order is data dependency order

• Everything can be executed in parallel, except where

there are dataflow dependencies.

• Dataflow dependencies are expressed by single

assignment variables:

• int a; int b; int c; a = f(c); b = g(6); c = h(7); Execution of f

will be after h. Execution of g will be unordered wrt f and

h.

• Extends into (non-app) procedures.

Only concurrency control in SwiftScript - no locks, etc.

Assignment can be "in memory" or giving a file its

content.

 26

• Arrays are not single-assignment

• int a[]; int b; a[0] = 128; a[1] = 129; b = sum(a); // pass in

the whole array a is not single assignment. But the

elements of a are.

• Static analysis of code to see which statements might

write to a. When all potential writers are finished, then

the array is "closed" for writing. Cannot modify an

element once it has been assigned.

• Arrays are "monotonic" - we know more over time, and

once we know something, it is true forever. A weaker

form of single assignment.

27

• But there are deadlocks (in practice, and maybe in theory?):

int a[];

foreach i in [1:10] {

 if (i < 9)

 { a[i] = 5;

 } else { // i==10

 int b;

 b = f(a);

 }

}

a will be closed when the whole foreach is finished... but the foreach

will never finish because f(a) is waiting for a to close.

• Leads to programmer confusion when overly conservative

• More static+runtime analysis? Better structures/iterators? (map-

like?)

 28

• Metrics are related to scientific computing focus.

• Mostly, what was done with app procedures by an

application:

• How many CPU-hours in total? (eg 208763 CPU-hours)

• How many CPUs in use simultaneously? (eg 2000

CPUs)

• In terms of language execution, interested in raw

SwiftScript speed where it impedes the above: can we

sustain 100 app block launches per second?

• How short can you make your SwiftScript program? (so

interesting to see how *few* lines of code are written in

SwiftScript...)

 29

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 200 400 600 800 1000 1200

Memory (MB)

N
u

m
b

e
r

o
f

N
o

d
e

s

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70

Number of Workers

T
h

ro
u

g
h

p
u

t

Swift + Falkon (ANL->ANL)

Swift + Falkon (UC->ANL)

• provenance = record of the history of an artifact to help

convince you that it is genuine/valuable

• In Swift: record what output files were generated - which

input files, which programs, where programs were run

• Which datafiles used this site? (because we must

discard any results from it)

• Regenerate interesting results because we've damaged

our copy

• Functional/dataflow style helps there but many other

issues.

• Prototype implementation

32

• Processing datasets that grow over time - eg a database

of fMRI images that is added to as new patients are

seen.

• Represent the database as a mapped array that is never

closed.

We can iterate with foreach over that array, and leave

the SwiftScript program running "forever"

• Maybe no need to change the language definition much /

at all

• No implementation, only some mailinglist chatter

33

• Q: why did you implement this as a new language rather

than embedding?

• A: An accident of history - we started off making a

glorified DAG description language, not a "real

programming language"

• But we can still wonder whether it would be a better or

worse idea...

• How would we implement:

• Out-of-core data and applications

• Massive (10^5) multithreading and everything-is-a-future

style

• for example: in Haskell or Java

34

• In the beginning we were expecting people to make things that

looked almost like DAGs of programs but "a bit more interesting."

• Now people want to do sin and cos and in-memory matrix

multiplication

• Its a hassle to add wire in existing libraries in other langauges for

every new feature.

• The implementation is not really suited to in-core data processing -

even a single integer has a very large footprint (because originally

our 'values' were mostly many-megabyte files, where overhead

mattered less)

• Areas that I've seen: parsing/printing data files; matrix operations;

sin/cos

• Would be great to easily import some other languages library

collection

35

(Dispatch is performed here via GRAM+PBS)

(Dispatch is performed here via GRAM+PBS)

UC: 218

TP: 262

39

40

• Wide range of analyses

– Testing, interactive analysis,

production runs

– Data mining

– Parameter studies
[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”

41

Falkon: a Fast and Light-weight tasK executiON framework

1239

2510

3683

4808

456

866 992 1123

120
327

546 678

0

1000

2000

3000

4000

5000

6000

120 240 360 480

Input Data Size (Volumes)

T
im

e
 (

s
)

GRAM

GRAM/Clustering

Falkon

• GRAM vs. Falkon: 85%~90% lower run time

• GRAM/Clustering vs. Falkon: 40%~74% lower run time

[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”

42

B. Berriman, J. Good (Caltech)
J. Jacob, D. Katz (JPL)

[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”

43

Falkon: a Fast and Light-weight tasK executiON framework

0

500

1000

1500

2000

2500

3000

3500

m
P
ro

je
ct

m
D
iff
/F

it

m
B
ac

kg
ro

un
d

m
A
dd

(s
ub

)

m
A
dd

to
ta

l

Components

T
im

e
 (

s
)

GRAM/Clustering

MPI

Falkon

• GRAM/Clustering vs. Falkon: 57% lower application run time

• MPI* vs. Falkon: 4% higher application run time

• * MPI should be lower bound

[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”

• Determination of free

energies in aqueous solution

– Antechamber – coordinates

– Charmm – solution

– Charmm - free energy

44

[NOVA08] “Realizing Fast, Scalable and Reliable Scientific Computations in Grid Environments”

45

45

0 1800 3600 5400 7200 9000 10800 12600 14400

1

1001

2001

3001

4001

5001

6001

7001

8001

9001

10001

11001

12001

13001

14001

15001

16001

17001

18001

19001

20001

T
a

s
k

 I
D

Time (sec)

waitQueueTime execTime resultsQueueTime

• 244 molecules  20497 jobs

• 15091 seconds on 216 CPUs  867.1 CPU hours

• Efficiency: 99.8%

• Speedup: 206.9x  8.2x faster than GRAM/PBS

• 50 molecules w/ GRAM (4201 jobs)  25.3 speedup

[NOVA08] “Realizing Fast, Scalable and Reliable Scientific Computations in Grid Environments”

Scalable Resource Management in Clouds and Grids 46

• Classic benchmarks for MapReduce

– Word Count

– Sort

• Swift and Falkon performs similar or better than

Hadoop (on 32 processors)
Sort

42

85

733

25

83

512

1

10

100

1000

10000

10MB 100MB 1000MB

Data Size

T
im

e
 (

s
e
c

)
Swift+Falkon

Hadoop

Word Count

221

1143
1795

863

4688
7860

1

10

100

1000

10000

75MB 350MB 703MB

Data Size

T
im

e
 (

s
e

c
)

Swift+PBS

Hadoop

47

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

200000

400000

600000

800000

1000000

T
h

ro
u

g
h

p
u

t
(t

a
s

k
s
/s

e
c

)

T
a

s
k

s
 C

o
m

p
le

te
d

N
u

m
b

e
r

o
f

P
ro

c
e

s
s

o
rs

Time (sec)

Processors
Active Tasks
Tasks Completed
Throughput (tasks/sec)

• CPU Cores: 130816

• Tasks: 1048576

• Elapsed time: 2483 secs

• CPU Years: 9.3

Speedup: 115168X (ideal 130816)

Efficiency: 88%

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

start

report

DOCK6

Receptor

(1 per protein:

defines pocket

to bind to)

ZINC
3-D

structures

ligands complexes

NAB script

parameters

(defines flexible

residues,

#MDsteps)

Amber Score:

1. AmberizeLigand

3. AmberizeComplex

5. RunNABScript

end

BuildNABScript

NAB

Script

NAB

Script

Template

Amber prep:

2. AmberizeReceptor

4. perl: gen nabscript

FRED

Receptor

(1 per protein:

defines pocket

to bind to)

Manually prep

DOCK6 rec file

Manually prep

FRED rec file

1
protein
(1MB)

6
GB
2M

structures
(6 GB)

DOCK6 FRED
~4M x 60s x 1 cpu

~60K cpu-hrs

Amber
~10K x 20m x 1 cpu

~3K cpu-hrs

Select best ~500

~500 x 10hr x 100 cpu

~500K cpu-hrs
GCMC

PDB
protein

descriptions

Select best ~5K Select best ~5K

For 1 target:

4 million tasks

500,000 cpu-hrs

(50 cpu-years) 48

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

49

CPU cores: 118784

Tasks: 934803

Elapsed time: 2.01 hours

Compute time: 21.43 CPU years

Average task time: 667 sec

Relative Efficiency: 99.7%

(from 16 to 32 racks)

Utilization:

• Sustained: 99.6%

• Overall: 78.3%

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

50

• Purpose

– On-demand “stacks” of

random locations within

~10TB dataset

• Challenge

– Processing Costs:

• O(100ms) per object

– Data Intensive:

• 40MB:1sec

– Rapid access to 10-10K

“random” files

– Time-varying load

AP Sloan
Data

+

+

+

+

+

+

=

+

 Locality Number of Objects Number of Files

1 111700 111700

1.38 154345 111699

2 97999 49000

3 88857 29620

4 76575 19145

5 60590 12120

10 46480 4650

20 40460 2025

30 23695 790
[DADC08] “Accelerating Large-scale Data Exploration through Data Diffusion”

[TG06] “AstroPortal: A Science Gateway for Large-scale Astronomy Data Analysis”

• AstroPortal

– Makes it really easy for astronomers to create

stackings of objects from the Sloan Digital Sky

Servey (SDSS) dataset

• Throughput

– 10X higher than GPFS

• Reduced load
– 1/10 of the original GPFS load

• Increased scalability
• 8X

51 Many-Task

Computing

on Grids,

Clouds,

and

Supercomp

uters

http://www.eecs.northwestern.edu/~iraicu/projects/Falkon/astro_portal.htm

• Clean separation of logical/physical concerns

+ Concise specification of parallel programs

– SwiftScript, with iteration, etc.

+ Efficient execution (on distributed resources)

– Karajan+Falkon: Grid interface, lightweight dispatch,

pipelining, clustering, provisioning

+ Rigorous provenance tracking and query

– Virtual data schema & automated recording

 Improved usability and productivity

– Demonstrated in numerous applications

53

