


• Swift is a system for the rapid and reliable specification, 

execution, and management of large-scale science and 

engineering workflows. It supports applications that 

execute many tasks coupled by disk-resident datasets - 

as is common, for example, when analyzing large 

quantities of data or performing parameter studies or 

ensemble simulations.  

• For example: 
– Cancer research: looking for previously unknown protein changes by 

comparing mass spectrum data with data known about proteome. 

– A monte-carlo simulation of protein folding, 10 proteins, 1000 

simulations for each configuration, inside simulated annealing algorithm 

with 2x5=10 different parameter values. Each simulation component 

takes ~ 5 CPU-minutes, so about ~ 1 CPU-year for a whole run; 

producing 10...100Gb of data.  2 



 Coordination language 

 Linda[Ahuja,Carriero86], Strand[Foster,Taylor90], PCN[Foster92] 

 Durra[Barbacci,Wing86], MANIFOLD[Papadopoulos98]  

 Components programmed in specific language (C, 

FORTRAN) and linked with system 

 “Workflow” languages and systems 

 Taverna[Oinn,Addis04], Kepler[Ludäscher,Altintas05],  

Triana [Churches,Gombas05], Vistrail[Callahan,Freire06], DAGMan, Star-P 

 XPDL[WfMC02], BPEL[Andrews,Curbera03], and BPML[BPML02], 

YAWL[van de Aalst,Hofstede05], Windows Workflow Foundation 
[Microsoft05] 
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Scales to Grids ++ - - - ++ - - - - + 

Typing ++ ++ ++ ++ - - - + - + 

Iteration ++ -/+ - + - - - + - + 

Scripting ++ - - + + + - - + ++ 

Dataset Mapping + - - - - - - - - - 

Service Interop + - + - - - - + - - 

Subflow/comp. + - + + - - + + - + 

Provenance + - - + - + - + + - 

Open source + + + - + + + + + - 

“A 4x200 flow leads to a 5 MB BPEL file … chemists were not able to write in BPEL”  
[Emmerich,Buchart06] 



• ~2003: VDL - the Virtual Data Language.  

express directed acyclic graphs of unix processes 

processes take input and produce output through files 

'virtual data' - when needed, materialise data either by 

copying from elsewhere or by deriving it from other data that 

is available 

Lots of thinking about "graph transformations"  

• ~2006: VDL2 (which became SwiftScript) 

– key features:  

• iterating over collections of files in the language 

• accidentally became Turing-complete  

• ~2010: still going - language tweaks, scaling improvements 
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• Scientific programmers use some science-domain specific 

language to write the "science" bit of their application (eg R 

for statistics, Root for particle physics). 

• They aren't "high performance" or "distributed system" 

programmers. 

• Want to help them use "big" systems to run their application 

- eg machines with 10^5 CPU cores. 

• Traditional MPI (Message Passing Interface) is hard to think 

about. 

• Swift tries to provide an easier model that still allows many 

applications to be expressed, and performed with 

reasonable efficiency. 

• SwiftScript is the language for programming in that model. 

 

6 



• file output <"output.txt">; Declares output to be a 

variable whose value is stored in the file system rather 

than in-core.  

• <"output.txt"> means that the value is stored in a file 

output.txt (this can be a URL)  

• This is a simple example with a literal single filename.  

– More complex syntax allows mapping arrays of files, with more 

dynamic behaviour (eg generating filename patterns at runtime)  

• We can omit the <...> mapping expression in which case 

Swift will make up a filename - useful for intermediate 

files.  
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• app (file o) count(file i) { uniq "-c" stdin=@i stdout=@o; } 

This is how the real work gets done - by getting some 

other science-domain specific program to do it. 

• app procedures execute unix processes, but not like 

system() or runProcess 

• The environment in which an app procedure runs is 

constrainted: 

Application will start in "some directory, somewhere". 

There, it will find its input files, and there it should leave 

its output files.  

• Applications need to be referentially transparent (but 

SwiftScript doesn't clearly define what equivalence is)  
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• Pick an execution site 

• Transfer input files there (if they are not already 

cached there) 

• Put the job in an execution queue at the 

execution site 

• Wait for execution to finish 

• Transfer output files back 

• Check everything worked ok 
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• Online repository of neuroimaging 

data 

• A typical study comprises  

 3 groups,  

 20 subjects/group,  

 5 runs/subject,  

 300 volumes/run  

 90,000 volumes, 60 GB raw  

1.2 million files processed 

• 100s of such studies in total 

 

http://www.fmridc.org 



 Large user base 

 World wide collaboration 

 Thousands of requests 

 Wide range of analyses 

 Testing, production runs 

 Data mining 

 Ensemble, Parameter studies 



• Accessing messy data 

– Idiosyncratic layouts & formats 

– Data integration a prerequisite to analysis 

• Describing & executing complex computations 

– Expression, discovery, reuse of analyses 

– Scaling to large data, complex analyses 

• Making analysis a community process 

– Collaboration on both data & programs 

– Provenance: tracking, query, application 



• Accessing messy data 

– Idiosyncratic layouts & formats 

– Data integration a prerequisite to analysis 

• Implementing complex computations 

– Expression, discovery, reuse of analyses 

– Scaling to large data, complex analyses 

• Making analysis a community process 

– Collaboration on both data & programs 

– Provenance: tracking, query, application 

XDTM 

SwiftScript 

Karajan 

+Falkon 

VDC 



• Scientific data is often  

logically structured 

– E.g., hierarchical structure 

– Common to map functions  

over dataset members 

– Nested map operations can scale to 

millions of objects 



• Heterogeneous storage 

format & access protocols 

– Same dataset can be stored 

in text file, spreadsheet, 

database, … 

– Access via filesystem, DBMS, 

HTTP, WebDAV, … 

• Metadata encoded in 

directory and file names 

• Hinders program 

development, composition, 

execution 

./knottastic 

drwxr-xr-x  4 yongzh users 2048 Nov 12 14:15 AA 

drwxr-xr-x  4 yongzh users 2048 Nov 11 21:13 CH 

drwxr-xr-x  4 yongzh users 2048 Nov 11 16:32 EC 

 

./knottastic/AA: 

drwxr-xr-x  5 yongzh users 2048 Nov  5 12:41 04nov06aa 

drwxr-xr-x  4 yongzh users 2048 Dec  6 12:24 11nov06aa 

 

. /knottastic//AA/04nov06aa: 

drwxr-xr-x  2 yongzh users  2048 Nov  5 12:52 ANATOMY 

drwxr-xr-x  2 yongzh users 49152 Dec  5 11:40 FUNCTIONAL 

 

. /knottastic/AA/04nov06aa/ANATOMY: 

-rw-r--r--  1 yongzh users      348 Nov  5 12:29 coplanar.hdr 

-rw-r--r--  1 yongzh users 16777216 Nov  5 12:29 coplanar.img 

 

. /knottastic/AA/04nov06aa/FUNCTIONAL: 

-rw-r--r--  1 yongzh users     348 Nov  5 12:32 bold1_0001.hdr 

-rw-r--r--  1 yongzh users  409600 Nov  5 12:32 bold1_0001.img 

-rw-r--r--  1 yongzh users     348 Nov  5 12:32 bold1_0002.hdr 

-rw-r--r--  1 yongzh users  409600 Nov  5 12:32 bold1_0002.img 

-rw-r--r--  1 yongzh users     496 Nov 15 20:44 bold1_0002.mat 

-rw-r--r--  1 yongzh users     348 Nov  5 12:32 bold1_0003.hdr 

-rw-r--r--  1 yongzh users  409600 Nov  5 12:32 bold1_0003.img 



• Typed parallel programming notation 

– XDTM as data model and type system 

– Typed dataset and procedure definitions 

•  Scripting language 

– Implicit data parallelism 

– Program composition 

 from procedures  

– Control constructs  

(foreach, if, while, …) 

Clean application logic 

Type checking 

Dataset selection, iteration 

Discovery by types 

Type conversion 

 
A Notation and System for Expressing and Executing Cleanly Typed Workflows on 

Messy Scientific Data [SIGMOD05] 



• Runtime system for SwiftScript 

– Translate programs into task graphs  

– Schedule, monitor, execute task graphs on local clusters and/or 

distributed Grid resources 

– Annotate data products with provenance metadata 

• Grid scheduling and optimization 

– Lightweight execution engine: Karajan 

– Falkon: lightweight dispatch, dynamic provisioning 

– Grid execution: site selection, data movement 

– Caching, pipelining, clustering, load balancing 

– Fault tolerance, exception handling 

A Virtual Data System for Representing, Querying & Automating Data Derivation [SSDBM02] 

Swift: Fast, Reliable, Loosely-Coupled Parallel Computation [SWF07] 



• There are many different execution resources in the 

world: clusters on your campus, supercomputers, your 

own laptop. 

• It is useful to be able to choose and switch between 

sites, and choose between different mechanisms for 

accessing a site, because: 

• your usual site is broken today 

• someone is developing a better mechanism (higher 

performance) for submitting to your usual site (ongoing 

r&d there) 

• you want to use the combined power of several sites at 

once (research question: if many sites available, which is 

best to use?) 
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• Failure happens a lot in our target environments (integer 

percentages in some environments) so reliability is not "a nice 

feature to have" - it is essential. 

• Retries: if an application execution fails, we try it 2 more times 

• Restarts: if retries fail, then the whole script fails (eventually). Maybe 

want to restart manually where we left off. Assume that app blocks 

are expensive and everything else is cheap, so start the script from 

beginning again, skipped apps that we've already run (using a log 

file) 

• Replication: deals with a softer class of failure. Sometimes an app 

goes into a queue and sits "forever" (really forever, or perhaps much 

longer than most other apps). We can launch a new attempt to run 

the app, without killing the original. When one starts, we kill the 

other(s) 
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• Fast, scalable lightweight threading model 

• Suitable constructs for control flow 

• Flexible task dependency model 

– “Futures” enable pipelining 

• Flexible provider model allows for use of 

different run time environments 

– Desktop, clusters, Grids 

– Flow controlled to avoid resource overload 

• Workflow client runs from a Java container 

 
Java CoG Workflow, Gv Laszewski, M. Hatigan, Workflows for e-Sciences 2007 



 Falkon dynamic provisioner: 

 Monitors demand (incoming user 

requests)    

 Manages supply: selects resources; 

creates executors (via Globus 

GRAM+LRM) 

 Various decision strategies for 

acquisition and release 

 Falkon executor 

 440 tasks/sec max 

 54,000 executors 

 millions of tasks 

 

Falkon: Fast and Light-weight Task Execution Framework, I. Raicu, Y. Zhao et al. SC07  

WS

WS

Provisioner

Compute 

Resources

Executor 1

Clients

Executor n

Compute

Resource m

Compute 

Resource 1

Dispatcher



 

23 



 

24 



• The other key area of interest is... 

• Massive implicit parallelism 

• We can declare a mapped array of files: (eg 

mydata.*.img) 

• file inp[] <simple_mapper; prefix="mydata.", 

suffix=".img">; and iterate over it: 

• foreach s,i in inp { out[i] = f(s); // same as out[i] = f(inp[i]); 

} All iterations can happen in parallel (subject to runtime 

limits, but could be many thousands of CPUs)  

• In real use, f might be an app procedure taking 30s, with 

10^5 loop iterations.  

•  
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• Execution order is data dependency order 

• Everything can be executed in parallel, except where 

there are dataflow dependencies. 

• Dataflow dependencies are expressed by single 

assignment variables: 

• int a; int b; int c; a = f(c); b = g(6); c = h(7); Execution of f 

will be after h. Execution of g will be unordered wrt f and 

h. 

• Extends into (non-app) procedures. 

Only concurrency control in SwiftScript - no locks, etc. 

Assignment can be "in memory" or giving a file its 

content. 
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• Arrays are not single-assignment 

• int a[]; int b; a[0] = 128; a[1] = 129; b = sum(a); // pass in 

the whole array a is not single assignment. But the 

elements of a are. 

• Static analysis of code to see which statements might 

write to a. When all potential writers are finished, then 

the array is "closed" for writing. Cannot modify an 

element once it has been assigned. 

• Arrays are "monotonic" - we know more over time, and 

once we know something, it is true forever. A weaker 

form of single assignment. 
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• But there are deadlocks (in practice, and maybe in theory?): 

int a[];  

foreach i in [1:10] {  

 if (i < 9)  

 { a[i] = 5;  

 } else { // i==10  

 int b;  

 b = f(a);  

 }  

}  

a will be closed when the whole foreach is finished... but the foreach 

will never finish because f(a) is waiting for a to close. 

• Leads to programmer confusion when overly conservative 

• More static+runtime analysis? Better structures/iterators? (map-

like?)  
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• Metrics are related to scientific computing focus. 

• Mostly, what was done with app procedures by an 

application: 

• How many CPU-hours in total? (eg 208763 CPU-hours) 

• How many CPUs in use simultaneously? (eg 2000 

CPUs) 

• In terms of language execution, interested in raw 

SwiftScript speed where it impedes the above: can we 

sustain 100 app block launches per second? 

• How short can you make your SwiftScript program? (so 

interesting to see how *few* lines of code are written in 

SwiftScript...) 

 29 



0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 200 400 600 800 1000 1200

Memory (MB)

N
u

m
b

e
r 

o
f 

N
o

d
e

s



0

10

20

30

40

50

60

0 10 20 30 40 50 60 70

Number of Workers

T
h

ro
u

g
h

p
u

t

Swift + Falkon (ANL->ANL)

Swift + Falkon (UC->ANL)



• provenance = record of the history of an artifact to help 

convince you that it is genuine/valuable 

• In Swift: record what output files were generated - which 

input files, which programs, where programs were run 

• Which datafiles used this site? (because we must 

discard any results from it) 

• Regenerate interesting results because we've damaged 

our copy 

• Functional/dataflow style helps there but many other 

issues. 

• Prototype implementation 
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• Processing datasets that grow over time - eg a database 

of fMRI images that is added to as new patients are 

seen. 

• Represent the database as a mapped array that is never 

closed. 

We can iterate with foreach over that array, and leave 

the SwiftScript program running "forever" 

• Maybe no need to change the language definition much / 

at all 

• No implementation, only some mailinglist chatter 
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• Q: why did you implement this as a new language rather 

than embedding? 

• A: An accident of history - we started off making a 

glorified DAG description language, not a "real 

programming language" 

• But we can still wonder whether it would be a better or 

worse idea... 

• How would we implement:  

• Out-of-core data and applications 

• Massive (10^5) multithreading and everything-is-a-future 

style 

• for example: in Haskell or Java 
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• In the beginning we were expecting people to make things that 

looked almost like DAGs of programs but "a bit more interesting." 

• Now people want to do sin and cos and in-memory matrix 

multiplication 

• Its a hassle to add wire in existing libraries in other langauges for 

every new feature. 

• The implementation is not really suited to in-core data processing - 

even a single integer has a very large footprint (because originally 

our 'values' were mostly many-megabyte files, where overhead 

mattered less) 

• Areas that I've seen: parsing/printing data files; matrix operations; 

sin/cos 

• Would be great to easily import some other languages library 

collection 
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(Dispatch is performed here via GRAM+PBS) 



(Dispatch is performed here via GRAM+PBS) 



UC: 218  

TP:  262 



 

39 



40 

• Wide range of analyses 

– Testing, interactive analysis, 

production runs 

– Data mining 

– Parameter studies 
[SC07] “Falkon: a Fast and Light-weight tasK executiON framework” 

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation” 
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Falkon: a Fast and Light-weight tasK executiON framework 
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• GRAM vs. Falkon: 85%~90% lower run time 

• GRAM/Clustering vs. Falkon: 40%~74% lower run time 

[SC07] “Falkon: a Fast and Light-weight tasK executiON framework” 

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation” 
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B. Berriman, J. Good (Caltech) 
J. Jacob, D. Katz (JPL)  

[SC07] “Falkon: a Fast and Light-weight tasK executiON framework” 

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation” 
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Falkon: a Fast and Light-weight tasK executiON framework 
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• GRAM/Clustering vs. Falkon: 57% lower application run time 

• MPI* vs. Falkon: 4% higher application run time 

• * MPI should be lower bound 

[SC07] “Falkon: a Fast and Light-weight tasK executiON framework” 

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation” 



• Determination of free 

energies in aqueous solution 

– Antechamber – coordinates 

– Charmm – solution 

– Charmm - free energy 

44 

[NOVA08] “Realizing Fast, Scalable and Reliable Scientific Computations in Grid Environments” 
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• 244 molecules  20497 jobs 

• 15091 seconds on 216 CPUs  867.1 CPU hours 

• Efficiency: 99.8% 

• Speedup: 206.9x  8.2x faster than GRAM/PBS 

• 50 molecules w/ GRAM (4201 jobs)  25.3 speedup 

[NOVA08] “Realizing Fast, Scalable and Reliable Scientific Computations in Grid Environments” 
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• Classic benchmarks for MapReduce 

– Word Count 

– Sort 

• Swift and Falkon performs similar or better than 

Hadoop (on 32 processors) 
Sort
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• CPU Cores: 130816 

• Tasks: 1048576 

• Elapsed time: 2483 secs 

• CPU Years: 9.3 

Speedup: 115168X (ideal 130816) 

Efficiency: 88% 

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems” 
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(50 cpu-years) 48 

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems” 
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CPU cores: 118784 

Tasks: 934803 

Elapsed time: 2.01 hours 

Compute time: 21.43 CPU years 

Average task time: 667 sec 

Relative Efficiency: 99.7% 

(from 16 to 32 racks) 

Utilization:  

• Sustained: 99.6% 

• Overall: 78.3% 

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems” 
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• Purpose 

– On-demand “stacks” of 

random locations within 

~10TB dataset 

• Challenge 

– Processing Costs:  

• O(100ms) per object 

– Data Intensive:  

• 40MB:1sec 

– Rapid access to 10-10K 

“random” files 

– Time-varying load 

AP Sloan 
Data 

+ 

+ 

+ 

+ 

+ 

+ 

= 

+ 

 Locality Number of Objects Number of Files

1 111700 111700

1.38 154345 111699

2 97999 49000

3 88857 29620

4 76575 19145

5 60590 12120

10 46480 4650

20 40460 2025

30 23695 790
[DADC08] “Accelerating Large-scale Data Exploration through Data Diffusion” 

[TG06] “AstroPortal: A Science Gateway for Large-scale Astronomy Data Analysis” 



• AstroPortal 

– Makes it really easy for astronomers to create 

stackings of objects from the Sloan Digital Sky 

Servey (SDSS) dataset 

 
• Throughput 

– 10X higher than GPFS 

• Reduced load 
– 1/10 of the original GPFS load 

• Increased scalability 
• 8X 

51 Many-Task 

Computing 

on Grids, 

Clouds, 

and 

Supercomp

uters 

http://www.eecs.northwestern.edu/~iraicu/projects/Falkon/astro_portal.htm


• Clean separation of logical/physical concerns 

+ Concise specification of parallel programs 

– SwiftScript, with iteration, etc. 

+ Efficient execution (on distributed resources) 

– Karajan+Falkon: Grid interface, lightweight dispatch, 

pipelining, clustering, provisioning 

+ Rigorous provenance tracking and query 

– Virtual data schema & automated recording 

 Improved usability and productivity 

– Demonstrated in numerous applications 
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