Workflow Systems

loan Raicu
Computer Science Department
llinois Institute of Technology

CS 595: Data-Intensive Computing
November 2", 2011

Swiit and e-Science

« Swift is a system for the rapid and reliable specification,
execution, and management of large-scale science and
engineering workflows. It supports applications that
execute many tasks coupled by disk-resident datasets -
as iIs common, for example, when analyzing large
guantities of data or performing parameter studies or
ensemble simulations.

* For example:

— Cancer research: looking for previously unknown protein changes by
comparing mass spectrum data with data known about proteome.

— A monte-carlo simulation of protein folding, 10 proteins, 1000
simulations for each configuration, inside simulated annealing algorithm
with 2x5=10 different parameter values. Each simulation component
takes ~ 5 CPU-minutes, so about ~ 1 CPU-year for a whole run;
producing 10...100Gb of data.

Other Work

e Coordination language
Linda[Ahuja,CarrierOSG], Strand[Foster,TaylorQO], PCNrosteroz]
Durra[Barbacci,Wing86], MANIFOLDjpapadopoulosss]

+ Components programmed in specific language (C,
FORTRAN) and linked with system

® “Workflow” languages and systems

o Tavernaoinnaddisoa], Kepler|Ludascher Altintasos],
Triana [Churches,Gombas05], ViStraiI[Callahan,FreireOG], DAGMan, Star-P

o XPDLwvcoz;, BPEL [andrews,curberaoa], and BPM L[sBPMmLO2],

YAWNL [van de Aalst Hofstede0s], Windows Workflow Foundation
[Microsoft05]

Other Work

b 2
Scales to Grids ++ - - - 4+ - - - - +
Typing ++ | ++ | ++ | ++ | - - - + - +
Iteration ++ | -/+ - + - - - + - +
Scripting ++ | - - + + + - - + | ++
Dataset Mapping + - - - - - - - - -
Service Interop + - + - - - - + - -
Subflow/comp. + - + + - - + + - +
Provenance + - - + - + - + + -
Open source + + + - + + + + + -

“A 4x200 flow leads to a 5 MB BPEL file ... chemists were not able to write in BPEL”
[Emmerich,Buchart06]

A briet history of SwitiScript

~2003: VDL - the Virtual Data Language.

express directed acyclic graphs of unix processes
processes take input and produce output through files
'virtual data' - when needed, materialise data either by
copying from elsewhere or by deriving it from other data that
IS available

Lots of thinking about "graph transformations"

~2006: VDL2 (which became SwiftScript)

— key features:
« iterating over collections of files in the language
« accidentally became Turing-complete

~2010: still going - language tweaks, scaling improvements

5

Target programmers

Scientific programmers use some science-domain specific
language to write the "science" bit of their application (eg R
for statistics, Root for particle physics).

They aren't "high performance" or "distributed system"
programmers.

Want to help them use "big" systems to run their application
- eg machines with 105 CPU cores.

Traditional MPI (Message Passing Interface) is hard to think
about.

Swift tries to provide an easier model that still allows many
applications to be expressed, and performed with
reasonable efficiency.

SwiftScript is the language for programming in that mode.

Mappers and file types

file output <"output.txt">; Declares output to be a
variable whose value is stored in the file system rather
than in-core.

<"output.txt"> means that the value is stored in a file
output.txt (this can be a URL)

This is a simple example with a literal single filename.
— More complex syntax allows mapping arrays of files, with more
dynamic behaviour (eg generating filename patterns at runtime)
We can omit the <...> mapping expression in which case
Swift will make up a filename - useful for intermediate
files.

app procedures

app (file o) count(file 1) { unig "-c" stdin=@1 stdout=@o; }
This is how the real work gets done - by getting some
other science-domain specific program to do It.

app procedures execute unix processes, but not like
system() or runProcess

The environment in which an app procedure runs is
constrainted:

Application will start in "some directory, somewhere".
There, it will find its input files, and there it should leave
Its output files.

Applications need to be referentially transparent (but
SwiftScript doesn't clearly define what equivalence is)

Executing an app {} procedure

Pick an execution site

Transfer input files there (if they are not already
cached there)

Put the job In an execution queue at the
execution site

Wait for execution to finish
Transfer output files back
Check everything worked ok

Case Study
Functional MRI (fMRI) Daia Center

i P

+ Online repository of neuroimaging T Y XXX

. iat?pical study comprises Q‘t ? ? f'? “ Q g @:&

220000008
20 subjects/group, ,.",,”’
5 runs/subject, Nl ol ol ok, aft. oft of. o o

300 volumes/run

- 90,000 volumes, 60 GB raw > ’**a**$$$
1.2 million files processed * @ 9 9 9 9 \3 9 l’
* 100s of such studies in total " ’ ‘ ’ . . 200

http://www.fmridc.org

iMRI Data Analysis

Wi il |
olacsacessl| (i
< “Hann
PPP999999
g — EELEELEE RN

TITITIYYIY' ?

@ Large user base
+ World wide collaboration
¢ Thousands of requests

e Wide range of analyses
+ Testing, production runs

+ Data mining
o Ensemble, Parameter studies

Three Obsiacles to Creating
a Community Resource

« Accessing messy data
— ldiosyncratic layouts & formats
— Data integration a prerequisite to analysis
« Describing & executing complex computations
— EXxpression, discovery, reuse of analyses
— Scaling to large data, complex analyses
« Making analysis a community process

— Collaboration on both data & programs
— Provenance: tracking, query, application

The Swift Solution

» Accessing messy data XDTM

— ldiosyncratic layouts & formats
— Data integration a prerequisite to analysis

* Implementing complex computations EWiisIsgla

— Expression, discovery, reuse of analyses _
. Karajan
— Scaling to large data, complex analyses .
: : : +Falkon
« Making analysis a community process

— Collaboration on both data & programs
— Provenance: tracking, query, application

VDC

The Messy Daia Problem (1)

« Scilentific data is often
logically structured
— E.g., hierarchical structure

— Common to map functions
over dataset members

— Nested map operations can sca
millions of objects

o DBIC
=145 Shudy
-8 GrolpD
-8 Subject
) 2nat
—- iy FLA
) volume
) volume
[volume
) volume
+- 0y FUA
+- 8 Subject
+- 8 Subject
+H-45 Shudy
+H-45 Shudy

The Messy Data Problem (2)

* Heterogeneous storage
format & access protocols

— Same dataset can be stored
In text file, spreadsheet,
database, ...

— Access via filesystem, DBMS,
HTTP, WebDAYV, ...
 Metadata encoded In
directory and file names

* Hinders program
development, composition,
execution

Jknottastic

drwxr-xr-x 4 yongzh users 2048 Nov 12 14:15 AA
drwxr-xr-x 4 yongzh users 2048 Nov 11 21:13 CH
drwxr-xr-x 4 yongzh users 2048 Nov 11 16:32 EC

Jknottastic/AA:
drwxr-xr-x 5 yongzh users 2048 Nov 5 12:41 04novO6aa
drwxr-xr-x 4 yongzh users 2048 Dec 6 12:24 11nov06aa

. Iknottastic//AA/04nov06aa:
drwxr-xr-x 2 yongzh users 2048 Nov 5 12:52 ANATOMY
drwxr-xr-x 2 yongzh users 49152 Dec 5 11:40 FUNCTIONAL

. Iknottastic/AA/04nov06aa/ANATOMY :
-rw-r--r-- 1 yongzh users 348 Nov 5 12:29 coplanar.hdr
-rw-r--r-- 1 yongzh users 16777216 Nov 5 12:29 coplanar.img

. Iknottastic/AA/04nov06aa/FUNCTIONAL.:

-rw-r--r-- 1 yongzh users 348 Nov 5 12:32 bold1_0001.hdr
-rw-r--r-- 1 yongzh users 409600 Nov 5 12:32 bold1_0001.img
-rw-r--r-- 1 yongzh users 348 Nov 5 12:32 bold1_0002.hdr
-rw-r--r-- 1 yongzh users 409600 Nov 5 12:32 bold1_0002.img
-rw-r--r-- 1 yongzh users 496 Nov 15 20:44 bold1_0002.mat
-rw-r--r-- 1 yongzh users 348 Nov 5 12:32 bold1_0003.hdr
-rw-r--r-- 1 yongzh users 409600 Nov 5 12:32 bold1 0003.img

SwittScript

« Typed parallel programming notation
— XDTM as data model and type system
— Typed dataset and procedure definitions
« Scripting language
— Implicit data parallelism

— Program composition
from procedures

Clean application logic

Type checking
— Control constructs Dataset selection, iteration
(foreach, if, while, ...) Discovery by types

Type conversion

A Notation and System for Expressing and Executing Cleanly Typed Workflows on

Messy Scientific Data [SIGMODO5]

Swiit Runtime Sysiem

* Runtime system for SwiftScript
— Translate programs into task graphs

— Schedule, monitor, execute task graphs on local clusters and/or
distributed Grid resources

— Annotate data products with provenance metadata
« Grid scheduling and optimization

— Lightweight execution engine: Karajan

— Falkon: lightweight dispatch, dynamic provisioning

— Grid execution: site selection, data movement

— Caching, pipelining, clustering, load balancing

— Fault tolerance, exception handling

A Virtual Data System for Representing, Querying & Automating Data Derivation [SSDBMO02]

Swift: Fast, Reliable, Loosely-Coupled Parallel Computation [SWFO07]

app absitraciion facilitates (1/2):
flexibility in execution siie

There are many different execution resources in the
world: clusters on your campus, supercomputers, your
own laptop.

It IS useful to be able to choose and switch between
sites, and choose between different mechanisms for
accessing a site, because:

your usual site is broken today

someone is developing a better mechanism (higher
performance) for submitting to your usual site (ongoing
r&d there)

you want to use the combined power of several sites at
once (research question: if many sites available, which is
best to use?) 18

app absitraciion facilitaies (2/2):
reliability mechanisms

Failure happens a lot in our target environments (integer
percentages in some environments) so reliability is not "a nice
feature to have" - it is essential.

Retries: if an application execution fails, we try it 2 more times

Restarts: if retries fail, then the whole script fails (eventually). Maybe
want to restart manually where we left off. Assume that app blocks
are expensive and everything else is cheap, so start the script from
beginning again, skipped apps that we've already run (using a log
file)

Replication: deals with a softer class of failure. Sometimes an app
goes into a queue and sits "forever" (really forever, or perhaps much
longer than most other apps). We can launch a new attempt to run
the app, without killing the original. When one starts, we Kkill the
other(s)

19

Swift Architecture

Specification Scheduling Execution Provisioning
™\ : 4
Abstract Execution Engine |—» Virtual Node(s) Falkon
Computatlon (Karajan W/ N — ReS.Ol:Jrce
4 Swift Runtime) > \FOYIENES

B T T T T P P TP P PP P PP P PP PP PP PP TPPPPT TS

SwiftScript '
(\évc;mpf{éll? @ @ @ [Iauncher

Swift runtime
T callouts Provenance
c T s data
' :

]
N ¢ | launcher

/
/
/
//
Vs . _-”|| Provenance ‘/
\ 1 P 1 =z Z = =-
rovenance =z data
hE ==
1
\

collector !

- -

SWiit uses
Karajan Workilow Engine

» Fast, scalable lightweight threading model
» Suitable constructs for control flow
* Flexible task dependency model

— “Futures” enable pipelining

* Flexible provider model allows for use of
different run time environments
— Desktop, clusters, Grids
— Flow controlled to avoid resource overload

 Workflow client runs from a Java container

Java CoG Workflow, Gv Laszewski, M. Hatigan, Workflows for e-Sciences 2007

Swiit Uses
Falkon Lightweight Execution Service

Clients
@D @D @D e Falkon dynamic provisioner:

+ Monitors demand (incoming user

WS requests)
+ Manages supply: selects resources;
Provisioner — creates executors (via Globus
Resources GRAM+LRM)

+ \arious decision strategies for
acquisition and release
e Falkon executor
¢ 440 tasks/sec max
+ 54,000 executors
+ millions of tasks

)
s-

Falkon: Fast and Light-weight Task Execution Framework, I. Raicu, Y. Zhao et al. SC07

Swiit running on BlueGene/P

Swift script Falkon services on
gl dke ke 4k gk gk 4k 4k 4k 4k Jk 4k 4
L = Y u <‘[T[T[T[T[T 1 00000E
¥ ACOOCODIOCO
(n 900000000000

\.

Falkon client
(load balancing)

Shared
global
file system

Figure 3. Swift scripts execute using the Falkon distributed

resource manager on the BG/P architecture.

23

Swift running on BlueGene/P

Swift Swift:
scripts C——) | scriptinglanguage, task coordination,
throttling, data management, restart
S Collective data management:
Datasets | ———) | proadcast of large common datasets,
=l

scatter and gather of small files

Command Falkon:
:> ultrafast task dispatch and load

balancing over processor sets

ZeptoOS:

Shell
I:> full Linux with fork/exec, dynamic linking

and torus/collective net access
Applications

Figure 2. Architecture for petascale scripting.

More Details about Swift

The other key area of interest is...
Massive implicit parallelism

We can declare a mapped array of files: (eg
mydata.*.img)

file inp[] <simple_mapper; prefix="mydata.",
suffix=".iImg">; and iterate over it:

foreach s,i in inp { out[i] = f(s); // same as out[i] = f(inp[i]);
} All iterations can happen in parallel (subject to runtime
limits, but could be many thousands of CPUS)

In real use, f might be an app procedure taking 30s, with
1075 loop iterations.

25

More Details about Swift

Execution order is data dependency order

Everything can be executed in parallel, except where
there are dataflow dependencies.

Dataflow dependencies are expressed by single
assignment variables:

Int a; int b; int c; a =f(c); b =g(6); c = h(7); Execution of f
will be after h. Execution of g will be unordered wrt f and
h.

Extends into (non-app) procedures.

Only concurrency control in SwiftScript - no locks, etc.
Assignment can be "in memory" or giving a file its
content.

26

Arrays

Arrays are not single-assignment

int af]; int b; a[0] = 128; a[1] = 129; b = sum(a); // pass in
the whole array a is not single assignment. But the
elements of a are.

Static analysis of code to see which statements might
write to a. When all potential writers are finished, then
the array is "closed" for writing. Cannot modify an
element once it has been assigned.

Arrays are "monotonic” - we know more over time, and
once we know something, it is true forever. A weaker
form of single assignment.

27

Array deadlocks

« But there are deadlocks (in practice, and maybe in theory?):
int af];
foreach iin [1:10] {

if (i< 9)

{ali]=5;
}else {//i==10
int b;

b = f(a);

}

}
a will be closed when the whole foreach is finished... but the foreach
will never finish because f(a) is waiting for a to close.

» Leads to programmer confusion when overly conservative
* More static+runtime analysis? Better structures/iterators? (map-
like?)

28

Performance

Metrics are related to scientific computing focus.

Mostly, what was done with app procedures by an
application:

How many CPU-hours in total? (eg 208763 CPU-hours)

How many CPUs in use simultaneously? (eg 2000
CPUs)

In terms of language execution, interested in raw
SwiftScript speed where it impedes the above: can we
sustain 100 app block launches per second?

How short can you make your SwiftScript program? (so
Interesting to see how *few* lines of code are written in
SwiftScript...)

29

Number of Nodes

180000

160000

140000

120000

100000

80000

60000

40000

20000

0

0

200

400

600
Memory (MB)

800

1000

1200

Throughput

60

=
-/I S
50
/ - -
30
20 -
—=— Swift + Falkon (ANL->ANL)
10 - —e— Siift + Falkon (UC->ANL)
O I I I I I I
0 10 20 30 40 50 60

Number of Workers

70

Less concreie idea (1):
Provenance

provenance = record of the history of an artifact to help
convince you that it is genuine/valuable

In Swift: record what output files were generated - which
iInput files, which programs, where programs were run

Which datafiles used this site? (because we must
discard any results from it)

Regenerate interesting results because we've damaged
our copy

Functional/dataflow style helps there but many other
ISSues.

Prototype implementation

32

Less concreie idea (2):
Sitreaming Dataseis

Processing datasets that grow over time - eg a database
of fMRI images that is added to as new patients are
seen.

Represent the database as a mapped array that is never
closed.

We can iterate with foreach over that array, and leave
the SwiftScript program running "forever"

Maybe no need to change the language definition much /
at all

No implementation, only some mailinglist chatter

33

As an embedded language or library
Vs own language

Q: why did you implement this as a new language rather
than embedding?

« A: An accident of history - we started off making a
glorified DAG description language, not a "real
programming language"

« But we can still wonder whether it would be a better or
worse idea...

« How would we implement:

« Qut-of-core data and applications

« Massive (1075) multithreading and everything-is-a-future
style

« for example: in Haskell or Java

34

Embedding would give more
libraries

In the beginning we were expecting people to make things that
looked almost like DAGs of programs but "a bit more interesting."

Now people want to do sin and cos and in-memory matrix
multiplication

Its a hassle to add wire in existing libraries in other langauges for
every new feature.

The implementation is not really suited to in-core data processing -
even a single integer has a very large footprint (because originally
our 'values' were mostly many-megabyte files, where overhead
mattered less)

Areas that I've seen: parsing/printing data files; matrix operations;
sin/cos

Would be great to easily import some other languages library
collection

35

Optimizations:
iMRI Workilow Execution without Pipelining

fMEI pipleline

———————————— R~ I E— %‘_'
[r— I IE‘ I I [——————— ol
% e . B gy — -
Hligﬂ.liﬂea I‘RllIL"3 E— -] = =—'
=——=— —
—— I — ; : ,:
E" !='—|I ' !=|I IE.T' |
000 005 010 0:15 020 0:25

(Dispatch is performed here via GRAM+PBS)

Optimizations:
Karajan Futures Enable Pipelining

fMRI pipleline

1
1
1
1
alignlinearRun/3
resliceRun/4

I I
0200 003 0o 013 00

(Dispatch is performed here Via GRAM+PBS)

alignlinearRun/3

resliceRun/4

Opitimizations:
Load Balancing

UC: 218

fMRI pipleline on two sites TP 262

v H K H 1 H =

Applications

Table 1. Example parallel scripting applications.

Description

Characteristics

Status

Astronomy Creation of montages from many digital images Many 1-core tasks, much communication, complex Experimental
dependencies
Astronomy Stacking of cutouts from digital sky surveys Many 1-core tasks, much communication Experimental

Biochemistry™*

Analysis of mass-spectrometer data for post-
translational protein modifications

10,000-100 million jobs for proteomic searches using
custom serial codes

[n development

Biochemistry* Protein structure prediction using iterative fixing Hundreds to thousands of 1- to 1,000-core simulations | Operational
algorithm; exploring other biomolecular and data analysis
interactions

Biochemistry* Identification of drug targets via computational Up to 1 million 1-core docking operations Operational

docking/screening

Bioinformatics*®

Metagenome modeling

Thousands of 1-core integer programming problems

In development

Business
economics

Mining of large text corpora to study media bias

Analysis and comparison of over 70 million text files of
news articles

In development

Climate science

Ensemble climate model runs and analysis of
output data

Tens to hundreds of 100- to 1,000-core simulations

Experimental

Economics™ Generation of response surfaces for various eco- 1,000 to 1 million 1-core runs (10,000 typical), then Operational
nomic models data analysis
Neuroscience® Analysis of functional MRI datasets Comparison of images; connectivity analysis with Operational

structural equation modeling, 100,000+ tasks

Radiology Training of computer-aided diagnosis algorithms Comparison of images; many tasks, much In development
communication
Radiology Image processing and brain mapping for neuro- Execution of MPI application in parallel In development

surgical planning research

Note: Asterisks indicate applications being run on Argonne National Laboratory’s Blue Gene/P (Intrepid) and/or the TeraGrid Sun Constellation at the University of Texas at Austin (Ranger).

Applications
) Medical Imaging: TMRI

i — (I,
%%{ IR EEEEE & &A / !
N2 20000000 -- |
@ O IIIIILE,

SITIEEEE.

299999999 _
992800000 _ : |
« Wide range of analyses

— Testing, interactive analysis,
production runs

— Data mining
— Parameter studies

[SCO7] “Falkon: a Fast and Light-weight tasK executiON framework”
[SWFO07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”

« GRAM vs. Falkon: |85%~90%|lower run time

 GRAM/Clustering vs. Falkon:|40%~74%

lower run time

6000
0 GRAM
5000 B GRAM/Clustering 4808
O Falkon
4000
2 3000
=

2000

1000

0 -

120 240 360

[SCO7] “Falkon: a Fast and Light-weight tasK executiON framework” |PUt Data Size (Volumes)

[SWFO?] “Swift: F Ot, Rc:;ab:c, LUUDU:Y CUUP:Ud Pala”c: Cunlputat;UI I”

480

41

Applications
Asironomy: Montage

i
PR
perd
nB l del
e
| B. Berriman, J. Good (Caltech)
usirik J. Jacob, D. Katz (JPL)

[SCO7] “Falkon: a FLs_t and Light-weight tasK executiON framework”
[SWF07] “Swift: Fast. Reliable, Loosely Coupled Parallel Computation”

Applications
Asitronomy: Montage

 GRAM/Clustering vs. Falkon:|57% lower application run time

« MPI* vs. Falkon: 4%

« *MPI should be

[SCO7] “Falkon: a Fa

[SWFO07] “Swift: Fast-f

higher application run time

3500
3000
2500

@ 2000

£

= 1500

1000

500 A

st and Light-weight tasK executiON framework”

lower bound

8 GRAM/Clustering

m MPI s

O Falkon

W P e B

S & > D > >
& <§§' $9§\ e§5§> & &

'\ NS

N\ Q),bo Ne

Components

Dnl.nkln l_aocehConpled Dnrn"f\l r\r\w\ nnnnnnnnnn

ACITaviIc, LUUSCTTY UUUMITCU T aranct Uul 'JulGLIUII

43

Applications

Molecular Dynamics: MolDyn
 Determination of free

energies In aqueous solution
— Antechamber — coordinates
— Charmm — solution

— Charmm - free e

s

nergy

!

”
“
",
\h{f

l

N

44

Task ID

10001
11001
12001
13001
14001
15001
16001
17001
18001
19001
20001

Applications
Molecular lyname

244 molecules - 20497 jobs

15091 seconds on 216 CPUs - 867.1 CPU hours
Efficiency;
Speedup: 206.9x - 8.2x faster than GRAM/PBS

50 molecules w/ GRAM (4201 jobs) = 25.3 speedup

0 1800

99.8%

3600

Time (sec)

5400 7200 9000 10800 12600 14400

1001
2001
3001
4001
5001
6001
7001
8001
9001

‘ B waitQueueTime M execTime M resultsQueueTime

i52.5.1%0.138:50L00
192.5.198.148:50101
192.5.198.130:50100
192.5.198.147:50100
192.5.198.144:50100
192.5.198.129:50101
192.5.198.135:50100
192.5.198.147:50101
192.5.198.134:50101
192.5.198.140:50100
192.5.198.144:50101
192.5.198.137:50100
192.5.198.145:50101
192.5.198.125:50100 =
192.5.198.118:50100 -
192.5.198.,127:50100 -
192.5.198.123:50101 =
192.5.198.119:50101 -
192.5.198.124:50100 =
192.5.198.45:50101 =
192.5.198.89:50101 =
152.5.198.89:50100 =
192.5.198.91:50101 =
192.5.198.83:50100 -
182.5.198.112:50101 =
192.5.198.112:50100 =
192.5.198.90:50100 -
192.5.198.115:50100 —

192.5.198.111:50100 -

182.5.198.46:50100 =

192.5.198.103:50101

182.5.198.79:50101 =
182.5.198.78:50100 -
192.5.198.77:50101 -
152.5.198.76:50101 =
192.5.198.76:50100 =
192.5.198.34:50101 -
192.5.198.57:50100

0

[NOVAO8] “Realizing Fast, Scalable and Reliable Scientific Computations in Grid Environments”

2000 4000 6000 8000

Time

(sec)

10000 12000 14000

10000 | m swift+PBS

Time (sec)

B Hadoop

Applications
Word Count and Sorti

* Classic benchmarks for MapReduce
— Word Count
— Sort

« Swift and Falkon performs similar or better than
Hadoop (on 32 processors)

Word Count 2860

1000

4688

100 +

=
o
|

75MB

350MB 703MB
Data Size

Time (sec)

10000

Sort

1000 -

100

W Swift+Falkon
— M Hadoop

733

85 83

10 ~

l,

10MB

100MB
Data Size

1000MB

[SCO08] “Towards Loose

Elapsed time: 2483 secs’
CPU Years: 9.3

Applications
Economic Modeling: MARS

CPU Cores: 130816
Tasks:

1048576

800000 7
C

-

600000 +

400000 ~

Tasks Completed
Number of Processors

200000 A

pled Programming on Petascale Systems”

N Processors

mmmm A\ AtiviA Tacl/e

Q Q
N
Time (sec)

Q
Q
N

188
168
148
128
188
88
68
48
28

Q Q
Q QS
A s

()
(4

T 3000

T 2000

5000

T 4500

T 4000

A4
a1
o
o

T

2500

Throughput (tasks/sec)

1500

1000

500

a7

Applications
Pharmaceuticals

(1 per proteln:
defines pocket

e

BuildNABScript

v (1 per protein:
SUUCHUIES|| | jafines pocket

protein
descriptions |(1MB)
Amber prep:
[é\lcﬁlst 2 AmberizeReceptor
< ~ perl gen nabscript
{ FRED DOCK®6 f'\G"O’;(GSZ " 1h‘r’2“
Select best ~5K |Select best ~5K
/ N _— Amber Score.
A‘r;?); ~10K x 20m x 1 cpu|] ___| 1. AmberizeLigand
P ~3K cpu-hrs 3. AmberizeComplex
[¥ 5. RunNABScript
L Select best ~500
) I
GONC ~500 x 10hr x 100 cpu For 1 target:
T ~500K cpu-hrs o
4 million tasks

500,000 cpu-hrs

complexes

[ngéhds]

[SCO08] “Towards Loosely-Coupled Programming on Petascale Systems

Applications
Pharimaceuticals: DOCK

I Processors

Active Tasks

CPU cores: 118784 1000000 ———
Tasks: 934803 ST
Elapsed time: 2.01 hours

800000 -

Compute time: 21.43 CPU years

Average task time: 667 %806000

Relative Efficiency: 9937% 600000

(from 16 to 32 racks) £ & 500000
O %

Utilization:
e Sustained: 99.6%

400000

« Overall: 78.3¢ 300000
200000

100000 -

N &
x|

Tasks Comnleted — |

450

0O clo H CH
o= | i }.-Nj()\rhlwsf 3
|

'p P-0
o ¢l o
[Na*]4 5\/%F

L0336l

- 400

- 350

- 300

- 250

o

- 200

- 150

- 100

T T T T T T T T T T

0
Q

LR

FE
EEEs

Q
S

Q Q Q Q Q Q Q Q Q Q Q
h:ﬁp 58§> (ﬁ§) q§§) q§§> 6355 tsgb <§§) Q§§) Q§§> 4{55

Time (sec)

[SCO08] “Toward y-Coupled Programming on Petascale Systems”

49

Throughput (tasks/sec)

Applications

Asitronomy: AsiroPorial

* Purpose

— On-demand “stacks” of
random locations within
~10TB dataset

« Challenge

— Processing Costs:
* O(100ms) per object

— Data Intensive:

‘Q
.
PSR
* *
‘Q
.

« 40MB:1sec

_ Rapid access to 10-10K @
‘random” files

— Time-var¥in load

[DADCO8] “Accelerating Large-scale Bata Exploration through Data Diffusion”
[TGO06] “AstroPortal: A Science Gateway for Large-scale Astronomy Data Analysis”

||
+
|
+
H
+
|
+
|
+
|
+
H
+
|
1
.| Sloan
1
| 1| Data
Locality | Number of Objects | Number of Files
1 111700 111700
1.38 154345 111699
2 97999 49000
3 88857 29620
4 76575 19145
5 60590 12120
10 46480 4650
20 40460 2025 D
30 23695 790

Applications
Astronomy: AstroPorial

wew Go Pookmarks Jooks Help
2 ""\)(/)OO ﬁ ey " m > @ Gl \\\
5% 23 W 17 To G @cetting started Watest Headines [Glcoogle P Main Research Page P Des Plaines Public Library

Glsearchy §5 F29004 A% check gy “, Autotink (] Avtorit (@2 Options

AstroPortal: Stacking Service
Results

User ID: wacu

g o I‘klllg S i Pasaiword: wwwwse
SHE

4 Th ro u g h p ut ore/WS/APFacronge:r'vwz
— 10X higher than GPFS

* Reduced load
— 1/10 of the original GPFS load ———

 |ncreased scalability
« 8X

LTl

"o

e s aweny

.'5417_’}&(7]‘_'}]
‘das sdes,

@DR4fdas, /imaging/75

2/¢ S) ho
</ J”‘twn/r./{iu 000755

-16-0245 H?g;; [0x 0])

f1W Stacking g, back to the man

Sta cking Service

Many-Task
Computing

51 — = -

http://www.eecs.northwestern.edu/~iraicu/projects/Falkon/astro_portal.htm

SWIit: Summary

« Clean separation of logical/physical concerns

+ Concise specification of parallel programs
— SwiftScript, with iteration, etc.

+ Efficient execution (on distributed resources)

— Karajan+Falkon: Grid interface, lightweight dispatch,
pipelining, clustering, provisioning

+ Rigorous provenance tracking and guery
— Virtual data schema & automated recording

- Improved usability and productivity
— Demonstrated in numerous applications

Quesiions

