
Make Notes

Home
Class Info
Links

Lectures
Newsgroup
Assignments

Projects and makefiles

Real programs, even the simple ones we do in EECS 211, are built by compiling
multiple source files and linking in multiple library files. While you can do this in one
long call to g++, it's pretty tedious and error-prone to have to type out such things.
Furthermore, most of the time, when you have several source files, only a few need
to be recompiled, so compiling all of them is a waste of time.

This is why make was invented. make is a program that lets you specify in a text file,
usually called Makefile (note the capitalization), exactly how to build an application.

In an integrated development environment (IDE) for C++ or Java or C#,
the corresponding concept is usually called a project. You specify in the
IDE what files are in the project, what libraries and compiler switches to
use, and so on. Internally, the IDE creates either a makefile, or something
equivalent to a makefile. The build command in an IDE is the equivalent of
calling make in Unix. A similar modern utility is Ant. Ant is very often used in

Java application development.

The syntax of Makefiles developed over time to handle many different tasks involved
in compiling and deploying large applications. Common repeated activities were given
shorthand notations. These can make Makefiles very short but also very cryptic. The
Makefile template presented here should be sufficient for this course.

Making a project with make

Create a directory for all of your EECS 211 projects. Avoid directory name with
spaces, like My Documents.

Download and install CppUnit. You'll need it for the example project below and the
exercises. This example project willl help test your CppUnit setup.

Download example.zip. Extract the folder it contains into your 211 directory. This
should give you one directory called example with two files, Makefile and
ExampleTests.cpp.

Open a Unix terminal window:

On Windows, open a Cygwin terminal window. Do not use a normal
Windows command shell.
On MacOS X, start the Terminal application.

Cygwin screenshots will be used here, but the contents will be the same on any
Unix-like platform.

EECS 211 Make Notes http://www.cs.northwestern.edu/academics/courses/211/html/make.html

1 of 5 3/28/2010 8:06 AM



Click on any screenshot to see a larger version.

EECS 211 Make Notes http://www.cs.northwestern.edu/academics/courses/211/html/make.html

2 of 5 3/28/2010 8:06 AM



 to the example directory. Do 

to make sure you see the two
source files.

Do  to run the Makefile. You

should see a few messages as
the code is compiled and linked.
(In Cygwin, there will be a
warning about enable-auto-import
that you can ignore.) If you see a
lot of error messages, something
is not installed correctly.

Do . You should see an object

file for ExampleTests (the compiled
version of that file), plus the final
application file, example.exe. (For
uniformity over all three
platforms, the Makefile creates
applications with the .exe
extension, even though only
Windows needs it.)

Do  again. You should see a

message saying that nothing
needs to be done. The rules in
the Makefile only run if relevant
files have changed since the last
time the application was built.

Run the application by typing
. You should see

messages about some tests
failing. This is correct behavior.
ExampleTests.cpp has tests that
are supposed to fail, so that you
can see what test failures look
like.

EECS 211 Make Notes http://www.cs.northwestern.edu/academics/courses/211/html/make.html

3 of 5 3/28/2010 8:06 AM



Finally, type . This

runs make with the target clean,
instead of the default target all.
You should see a command that
removes all the files created by
compilation.

Verify that the new files have
been removed by doing another
.

Making Makefiles for new EECS 211 Projects

To adapt the example Makefile for other EECS 211 projects, you only need to change
the first few lines of the example Makefile. Here's the Makefile, with the text to
change shown in this style.

Use the example Makefile in the Zip archive. Do not copy and paste text
from this web page. The indented lines in a Makefile must be indented with
tab characters, which can easily be lost by copying from a web page. See
the warnings about how to copy and edit this file.

Edit this line to describe your project

# ExampleTests Project

Edit this line to list your C++ files (not header files)

SRCS = ExampleTests.cpp

Edit this line to list your header files -- there were none in the example

HDRS =  

Edit this line to name your application

PROJ = example

# Remaining lines shouldn't need changing

# Here's what they do:

#   - rebuild if any header file changes

#   - include CppUnit as dynamic library

#   - search /opt/local for MacPorts

#   - generate .exe files for Windows

#   - add -enable-auto-import flag for Cygwin only

First, define variables for the make rules. Many of these are common names.

CC = g++      Use g++ to compile

OBJS = $(SRCS:.cpp=.o)      Make a list of .o files from the list of .cpp files

APP = $(PROJ).exe      Make the name of the executable

CFLAGS = -c -g -Wall      Compiler flags

ifeq (,$(findstring CYGWIN,$(shell uname))) Test for Cygwin 

  LDFLAGS = -L/opt/local/lib      Linker flags

else

  LDFLAGS = -L/opt/local/lib -enable-auto-import Cygwin needs this flag

endif

LIBS = -lcppunit -ldl      Libraries to link into the application

all: $(APP)      "make all" is the default target

$(APP): $(OBJS)      make the executable if any object file needed updating

$(CC) $(LDFLAGS) $(OBJS) -o $(APP) $(LIBS)      Assemble the executable.

%.o: %.cpp $(HDRS)      make file.o if file.cpp or any header changed

$(CC) $(CFLAGS) $< -o $@      compiles file.cpp to file.o

EECS 211 Make Notes http://www.cs.northwestern.edu/academics/courses/211/html/make.html

4 of 5 3/28/2010 8:06 AM



clean:      the rule for "make clean"

rm -f *.o $(APP)      remove object files and the executable

To learn more about how make works and what you can do with it, see the GNU make
manual.

Tips

When debugging Makefile's, the following two flags can be handy:

 -- this causes make to only print the actions it would do, but not

actually do them
 -- this forces make to run all the actions that apply, whether or not

files have changed

Therefore, an easy way to "dry run" a Makefile is to type:

make -B -n

This will show the commands that the Makefile will do to build a project from scratch.

WARNINGS

Make sure that all indented command lines start with a tab character. This is the
single most common problem with makefiles. If the indented lines start with spaces,
make will mis-interpret them.

In any other file, e.g., source code, avoid tab characters. Turn them off in
your editor. There is no standard amount for indenting a line with a tab
character. It depends on the setting of the editor. Some emailers erase tab
characters. Nicely laid out code with tab characters will most likely be an
unreadable mess when looked at by someone else.

EECS 211 Make Notes http://www.cs.northwestern.edu/academics/courses/211/html/make.html

5 of 5 3/28/2010 8:06 AM


