Lecture 6:
Introduction to

C++ Programming (cont)

loan Raicu
Department of Electrical Engineering & Computer Science
Northwestern University

EECS 211
Fundamentals of Computer Programming ||
April 6, 2010

Common Programming Error 2.4

Some programming languages use operators ** or A to
represent exponentiation. C++ does not support these ex-
ponentiation operators; using them for exponentiation
results in errors.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

g Good Programming Practice 2.11
Using redundant parentheses in complex arithmetic ex-
pressions can make the expressions clearer.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

y

25 %5 +3 %5 +7; (Leftmost multiplication)
2 *51ds 10

[E

10 * 5+ 3 *5 + 7; (Leftmost multiplication)

10 * 5 is 50

50 + 3 5 + 7; (Multiplication before addition)
3 %5 1s 15I

50 + 15 + 7; (Leftmost addition)

50 + 15 1is 65

\

65 + 7; (Last addition)

65 + 7 is 72

72 (Last operation—place 72 iny)

Fig. 2.11 | Orderin which a second-degree polynomial is evaluated.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

2.7 Decision Making: Equality and
Relational Operators

The if statement allows a program to take alternative action
based on whether a condition is true or false.

If the condition is true, the statement in the body of the 11
statement Is executed.

If the condition is false, the body statement is not executed.

Conditions in 1t statements can be formed by using the
equality operators and relational operators summarized in
Fig. 2.12.

The relational operators all have the same level of
precedence and associate left to right.

The equality operators both have the same level of
precedence, which is lower than that of the relational
operators, and associate left to right.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Common Programming Error 2.5
A syntax error will occur if any of the operators ==, 1=,
>= and <= appears with spaces between its pair of sym-

bols.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6

2.7 Declision Making: Equality and
Relational Operaiors

Common Programming Error 2.6

Reversing the order of the pair of symbols in any of the
operators !=, >=and <= (by writing them as =1, => and
=<, respectively) is normally a syntax error. In some cases,
writing != as =1 will not be a syntax error, but almost
certainly will be a logic error that has an effect at execu-
tion time. You'll understand why when you learn about
logical operators in Chapter 5. A fatal logic error causes
a program to fail and terminate prematurely. A nonfa-
tal logic error allows a program to continue executing,
but usually produces incorrect results.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Standard algebraic C++ equality Sample

equality or relational or relational C++ Meaning of

operator operator condition C++ condition

Relational operators

> > X >y X is greater than y

< < X <Yy x is less than y

> >= X >=y X is greater than or equal to y
< <= X <=y x is less than or equal to y
Equality operators

= == ==y X is equal to y

= X l=vy X is not equal to y

Fig. 2.12 | Equality and relational operators.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8

Common Programming Error 2.7

Confusing the equality operator == with the assignment
operator = results in logic errors. The equality operator
should be read “is equal to,” and the assignment operator
should be read “gets” or “gets the value of” or “is assigned
the value of.” Some people prefer to read the equality op-
erator as “double equals.” As we discuss in Section 5.9,
confusing these operators may not necessarily cause an
easy-to-recognize syntax error, but may cause extremely
subtle logic errors.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

2.7 Decision Making: Equality and
Relational Operators (cont.)

 The following example uses six 1T statements
to compare two numbers input by the user.

o |f the condition in any of these 1T statements
IS satisfied, the output statement as-sociated
with that 1 statement is executed.

 Figure 2.13 shows the program and the
Input/output dialogs of three sample
executions.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

10

OoOo~NSNUNDh WN =

10
11
12
13
14
15
16
17
18
19
20
21

// Fig. 2.13: fig02_13.cpp

// Comparing integers using if statements, relational operators
// and equality operators.

#include <iostream> // allows program to perform input and output

using std::cout; // program uses cout
using std::cin; // program uses cin
using std::endl1; // program uses endl

// function main begins program execution
int main()

{

int numberl; // first integer to compare
int number2; // second integer to compare
cout << "Enter two integers to compare: "; // prompt user for data
cin >> numberl >> number2; // read two integers from user

if (numberl == number2)

LA LA

cout << numberl << " == " << number2 << endl;

Fig. 2.13 | Comparing integers using if statements, relational operators and
equality operators. (Part | of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

11

22 if (numberl != number2)

23 cout << numberl << " != " << number2 << endl;
24

25 if (numberl < number2)

26 cout << numberl << " < " << number2 << endl;
27

28 if (numberl > number2)

29 cout << numberl << " > " << number2 << endl;
30

31 if (numberl <= number2)

32 cout << numberl << " <= " << number2 << endl;
33

34 if (numberl >= number2)

35 cout << numberl << " >= " << number2 << endl;

36 } // end function main

Enter two integers to compare: 3 7

3 1=7
3 <7
3 <=7

Fig. 2.13 | Comparing integers using if statements, relational operators and
equality operators. (Part 2 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

12

Enter two integers to compare: 22 12

22 1= 12
22 > 12
22 >= 12

Enter two integers to compare: 7 7

==7
7 <=7
7 >=7

Fig. 2.13 | Comparing integers using if statements, relational operators and

equality operators. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

13

2.7 Decision Making: Equality and
Relational Operators (coni.)

using declaratlons that eliminate the need to repeat the
std: : prefix as we did in earlier programs.

Once we insert these us1ng declarations, we can erte
cout instead of std: : cout, cin instead of std: :cin
and end1 instead of std: rend], respectively, in the
remainder of the program.

Many programmers prefer to use the declaration
using namespace std;

which enables a program to use all the names in any
standard C++ header file (such as <1ostream>) that a
program might include.

From this point forward in the book, we’ll use the preceding
declaration in our programs.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

2.7 Decision Making: Equality and
Relational Operators (cont.)

 Each 1T statement in Fig. 2.13 has a single
statement in its body and each body statement
IS Indented.

« In Chapter 4 we show how to specify 1T
statements with multiple-statement bodies (by
enclosing the body statements in a pair of
braces, { }, creating what’s called a
compound statement or a block).

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

15

Good Programming Practice 2.12
Indent the statement(s) in the body of an 1 statement ro
enhance readability.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16

Good Programming Practice 2.13
For readabiliry, there should be no more than one state-
ment per line in a program.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17

Common Programming Error 2.8

Placing a semicolon immediately after the right paren-
thesis after the condition in an 1T statement is often a
logic error (although not a syntax error). The semicolon
causes the body of the 1t statement to be empty, so the if
statement performs no action, regardless of whether or
not its condition is true. Worse yet, the original body
statement of the 1t statement now becomes a statement
in sequence with the 1T statement and always executes,
often causing the program to produce incorrect results.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18

Common Programming Error 2.9
It’s a syntax error to split an identifier by inserting white-
space characters (e.g., writing main as ma in).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19

Good Programming Practice 2.14

m A lengthy statement may be spread over several lines. If a
single statement must be split across lines, choose mean-
ingful breaking points, such as after a comma in a com-
ma-separated list, or after an operator in a lengthy
expression. If a statement is split across two or more lines,

indent all subsequent lines and lefi-align the group of in-
dented lines.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20

2.7 Decision Making: Equality and
Relational Operators (cont.)

 Figure 2.14 shows the precedence and
assoclativity of the operators introduced in this

chapter.

* The operators are shown top to bottom in
decreasing order of precedence.

 All these operators, with the exception of the
assignment operator =, associate from left to

right.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21

Operators Associativity

O left to right
* / % left to right
+ = left to right
<< >> left to right
< <= > >= left to right
== I= left to right
= right to left

parentheses

multiplicative

additive

stream insertion/extraction
relational

equality

assignment

Fig. 2.14 | Precedence and associativity of the operators discussed so

far.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

22

Questions

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

23

