


• The variable average is declared to be of type double
to capture the fractional result of our calculation.

• total and gradeCounter are both integer variables.

• Recall that dividing two integers results in integer division, 

in which any fractional part of the calculation is lost (i.e., 

truncated).

• In the following statement the division occurs first—the 

result’s fractional part is lost before it’s assigned to 

average:

• average = total / gradeCounter;

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2



• To perform a floating-point calculation with integers, 

create temporary floating-point values.

• Unary cast operator accomplishes this task.

• The cast operation 

static_cast<double>(total) creates a 

temporary floating-point copy of its operand in 

parentheses.

– Known as explicit conversion.

– The value stored in total is still an integer.

• An alternative cast operation: (double)(total)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3



• The calculation now consists of a floating-point value 

divided by the integer gradeCounter.

– The compiler knows how to evaluate only expressions in 

which the operand types of are identical.

– Compiler performs promotion (also called implicit 

conversion) on selected operands.

– In an expression containing values of data types int and 

double, C++ promotes int operands to double values.

• Cast operators are available for use with every data 

type and with class types as well.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4



• Consider the following problem statement:
– A college offers a course that prepares students for the state licensing 

exam for real es-tate brokers. Last year, ten of the students who 
completed this course took the exam. The college wants to know how 
well its students did on the exam. You’ve been asked to write a 
program to summarize the results. You’ve been given a list of these 10 
students. Next to each name is written a 1 if the student passed the 
exam or a 2 if the student failed. 

– Your program should analyze the results of the exam as follows: 

– 1.Input each test result (i.e., a 1 or a 2). Display the prompting message 
―Enter result‖ each time the program requests another test result. 

– 2.Count the number of test results of each type. 

– 3.Display a summary of the test results indicating the number of 
students who passed and the number who failed. 

– 4.If more than eight students passed the exam, print the message 
―Bonus to instructor!‖ 

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5



• After reading the problem statement carefully, we make the 
following observations:

– Must process test results for 10 students. A counter-controlled loop 
can be used because the number of test results is known in advance.

– Each test result is a number—either a 1 or a 2. Each time the 
program reads a test result, the program must determine whether the 
number is a 1 or a 2. We test for a 1 in our algorithm. If the number 
is not a 1, we assume that it’s a 2. (Exercise 4.20 considers the 
consequences of this assumption.)

– Two counters keep track of the exam results—one to count the 
number of students who passed and one to count the number of 
students who failed.

– After the program has processed all the results, it must decide 
whether more than eight students passed the exam.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10



• C++ allows variable initialization to be 

incorporated into declarations.

• The if…else statement (lines 22–25) for 

processing each result is nested in the while
statement.

• The if statement in lines 35–36 determines 

whether more than eight students passed the 

exam and, if so, outputs the message "Bonus
to instructor!".

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11



• C++ provides several assignment operators for abbreviating assignment 
expressions.

• The += operator adds the value of the expression on the right of the 
operator to the value of the variable on the left of the operator and 
stores the result in the variable on the left of the operator.

• Any statement of the form
• variable = variable operator expression;

• in which the same variable appears on both sides of the assignment 
operator and operator is one of the binary operators +, -, *, /, or %
(or others we’ll discuss later in the text), can be written in the form 

• variable operator= expression;

• Thus the assignment c += 3 adds 3 to c.

• Figure 4.17 shows the arithmetic assignment operators, sample 
expressions using these operators and explanations.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13



• C++ also provides two unary operators for 

adding 1 to or subtracting 1 from the value of a 

numeric variable.

• These are the unary increment operator, ++, 

and the unary decrement operator, --, which 

are summarized in Fig. 4.18.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18



• When you increment (++) or decrement (--) a variable in a 

statement by itself, the preincrement and postincrement 

forms have the same effect, and the predecrement and 

postdecrement forms have the same effect.

• It’s only when a variable appears in the context of a larger 

expression that preincrementing the variable and 

postincrementing the variable have different effects (and 

similarly for predecrementing and post-decrementing).

• Figure 4.20 shows the precedence and associativity of the 

operators introduced to this point.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20



• Counter-controlled repetition requires

– the name of a control variable (or loop counter)

– the initial value of the control variable

– the loop-continuation condition that tests for the 

final value of the control variable (i.e., whether 

looping should continue)

– the increment (or decrement) by which the control 

variable is modified each time through the loop.

• In C++, it’s more precise to call a declaration 

that also reserves memory a definition.
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 23



• The for repetition statement specifies the counter-

controlled repetition details in a single line of code.

• The initialization occurs once when the loop is encountered.

• The condition is tested next and each time the body 

completes.

• The body executes if the condition is true. 

• The increment occurs after the body executes.

• Then, the condition is tested again.

• If there is more than one statement in the body of the for, 

braces are required to enclose the body of the loop.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 25



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26



• The general form of the for statement is 
• for ( initialization; loopContinuationCondition; increment ) 

statement

• where the initialization expression initializes the loop’s control variable, 
loopContinuationCondition determines whether the loop should continue executing 
and increment increments the control variable.

• In most cases, the for statement can be represented by an equivalent while
statement, as follows:

• initialization;

while ( loopContinuationCondition )
{
statement
increment;

}

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27



• If the initialization expression declares the 

control variable, the control variable can be 

used only in the body of the for statement—

the control variable will be unknown outside 

the for statement.

• This restricted use of the control variable name 

is known as the variable’s scope.

• The scope of a variable specifies where it can 

be used in a program.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 28



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29



• The three expressions in the for statement 
header are optional (but the two semicolon 
separators are required).

• If the loopContinuationCondition is omitted, C++ 
assumes that the condition is true, thus creating 
an infinite loop.

• One might omit the initialization expression if the 
control variable is initialized earlier in the 
program.

• One might omit the increment expression if the 
increment is calculated by statements in the body 
of the for or if no increment is needed.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 30



• The increment expression in the for statement acts 

as a stand-alone statement at the end of the body of 

the for.

• The expressions
• counter = counter + 1
counter += 1
++counter
counter++

• are all equivalent in the incrementing portion of the 

for statement’s header (when no other code appears 

there).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32



• The initialization, loop-continuation condition 

and increment expressions of a for statement 

can contain arithmetic expressions.

• The ―increment‖ of a for statement can be 

negative, in which case the loop actually 

counts downward.

• If the loop-continuation condition is initially 

false, the body of the for statement is not 

performed.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 33



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 34



• Vary the control variable from 1 to 100 in increments of 1.
• for ( int i = 1; i <= 100; i++ )

• Vary the control variable from 100 down to 1 in decrements of 1.
• for ( int i = 100; i >= 1; i-- )

• Vary the control variable from 7 to 77 in steps of 7.
• for ( int i = 7; i <= 77; i += 7 )

• Vary the control variable from 20 down to 2 in steps of -2.
• for ( int i = 20; i >= 2; i -= 2 )

• Vary the control variable over the following sequence of values: 2, 
5, 8, 11, 14, 17.

• for ( int i = 2; i <= 17; i += 3 )

• Vary the control variable over the following sequence of values: 
99, 88, 77, 66, 55.

• for ( int i = 99; i >= 55; i -= 11 )

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 35



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 36



• Similar to the while statement.

• The do…while statement tests the loop-

continuation con-dition after the loop body executes; 

therefore, the loop body always executes at least 

once.

• It’s not necessary to use braces in the do…while
statement if there is only one statement in the body.

– Most programmers include the braces to avoid confusion 

between the while and do…while statements.

• Must end a do…while statement with a semicolon.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 37



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 38



• The switch multiple-selection statement 

performs many different actions based on the 

possible values of a variable or expression.

• Each action is associated with the value of a 

constant integral expression (i.e., any 

combination of character and integer con-

stants that evaluates to a constant integer 

value).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 39



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 40



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 41



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 42



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 43



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 44



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 45



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 46



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 47



• The cin.get() function reads one character from the keyboard. 

• Normally, characters are stored in variables of type char; how-ever, 
characters can be stored in any integer data type, because types short, 
int and long are guaranteed to be at least as big as type char.

• Can treat a character either as an integer or as a character, depending on 
its use.

• For example, the state-ment
• cout << "The character (" << 'a' << ") has the value "

<< static_cast< int > ( 'a' ) << endl;

• prints the character a and its integer value as follows:
• The character (a) has the value 97

• The integer 97 is the character’s numerical representation in the 
computer.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 48



• Generally, assignment statements have the value that 

is assigned to the variable on the left side of the =.

• EOF stands for ―end-of-file‖. Commonly used as a 

sentinel value.

– However, you do not type the value –1, nor do you type the 

letters EOF as the sentinel value.

– You type a system-dependent keystroke combination that 

means ―end-of-file‖ to indicate that you have no more data 

to enter.

• EOF is a symbolic integer constant defined in the 

<iostream> header file.
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 49



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 50



• The switch statement consists of a series of case
labels and an optional default case.

• When the flow of control reaches the switch, the 
program evaluates the expression in the parentheses.
– The controlling expression.

• The switch statement compares the value of the 
controlling expression with each case label.

• If a match occurs, the program executes the statements 
for that case.

• The break statement causes program control to 
proceed with the first statement af-ter the switch.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 51



• Listing cases consecutively with no statements between 
them enables the cases to perform the same set of 
statements.

• Each case can have multiple statements.

– The switch selection statement does not require braces around 
multiple statements in each case.

• Without break statements, each time a match occurs in the 
switch, the statements for that case and subsequent 
cases execute until a break statement or the end of the 
switch is encountered.

– Referred to as ―falling through‖ to the statements in subsequent 
cases.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 52



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 53



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 54



• If no match occurs between the controlling 

expression’s value and a case label, the 

default case executes.

• If no match occurs in a switch statement that 

does not contain a default case, program 

control continues with the first statement after 

the switch.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 55



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 56



• C++ has flexible data type sizes (see Appendix C, Fundamental 
Types).

• C++ provides several integer types.

• The range of integer values for each type depends on the 
particular computer’s hardware.

• In addition to the types int and char, C++ provides the types 
short (an abbreviation of short int) and long (an 
abbreviation of long int).

• The minimum range of values for short integers is –32,768 to 
32,767.

• For the vast majority of integer calcula-tions, long integers are 
sufficient.

• The minimum range of values for long integers is –
2,147,483,648 to 2,147,483,647.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 57



• On most computers, ints are equivalent either 

to short or to long.

• The range of values for an int is at least the 

same as that for short integers and no larger 

than that for long integers.

• The data type char can be used to represent 

any of the characters in the computer’s 

character set.

• It also can be used to represent small integers.
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 58



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 59



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 60



61©1992-2010 by Pearson Education, Inc. All Rights Reserved.


