

• The break statement, when executed in a

while, for, do…while or switch
statement, causes immediate exit from that

statement.

• Program execution continues with the next

statement.

• Common uses of the break statement are to

escape early from a loop or to skip the

remainder of a switch statement.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• The continue statement, when executed in a while,

for or do…while statement, skips the remaining

statements in the body of that statement and proceeds

with the next iteration of the loop.

• In while and do…while statements, the loop-

continuation test evaluates immediately after the

continue statement executes.

• In the for statement, the increment expression

executes, then the loop-continuation test evaluates.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• C++ provides logical operators that are used to

form more complex conditions by combining

simple conditions.

• The logical operators are && (logical AND),

|| (logical OR) and ! (logical NOT, also

called logical negation).

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• The && (logical AND) operator is used to

ensure that two conditions are both true
before we choose a certain path of execution.

• The simple condition to the left of the &&
operator evaluates first.

• If necessary, the simple condition to the right

of the && operator evaluates next.

• The right side of a logical AND expression is

evaluated only if the left side is true.
©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• C++ provides the ! (logical NOT, also called

logical negation) operator to ―reverse‖ a

condition’s meaning.

• The unary logical negation operator has only a

single condition as an operand.

• You can often avoid the ! operator by using an

appropriate relational or equality operator.

• Figure 5.17 is a truth table for the logical

negation operator (!).
©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• Accidentally swapping the operators == (equality) and =
(assignment).

• Damaging because they ordinarily do not cause syntax errors.

• Rather, statements with these errors tend to compile correctly and
the programs run to completion, often generating incorrect results
through runtime logic errors.

• [Note: Some compilers issue a warning when = is used in a
context where == typically is expected.]

• Two aspects of C++ contribute to these problems.
– One is that any expression that produces a value can be used in the

decision portion of any control statement.

– The second is that assignments produce a value—namely, the value
assigned to the variable on the left side of the assignment operator.

• Any nonzero value is interpreted as true

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• Variable names are said to be lvalues (for “left

values”) because they can be used on the left

side of an assignment operator.

• Constants are said to be rvalues (for “right

values”) because they can be used on only the

right side of an assignment operator.

• Lvalues can also be used as rvalues, but not

vice versa.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

16©1992-2010 by Pearson Education, Inc. All Rights Reserved.

