Lecture 10:
Control Statements (cont)

loan Raicu
Department of Electrical Engineering & Computer Science
Northwestern University

EECS 211
Fundamentals of Computer Programming ||
April 13th, 2010

5.9 break and continue Statements

 The break statement, when executed In a
wh1ile, for, do...while or switch
statement, causes immediate exit from that
statement.

» Program execution continues with the next
Sstatement.

« Common uses of the break statement are to
escape early from a loop or to skip the
remainder of a sw1tch statement.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

1 // Fig. 5.13: fig05_13.cpp

2 // break statement exiting a for statement.

3 #include <iostream>

4 using namespace std;

5

6 int main(Q)

7 {

8 int count; // control variable also used after loop terminates
9

10 for (count = 1; count <= 10; count++) // Toop 10 times

11 {

12 if (count == 5)

13 break; // break Toop only if x is 5

14

15 cout << count << " ";

16 } // end for

17

18 cout << "\nBroke out of Toop at count = " << count << endl;
19 1} // end main

1234

Broke out of Toop at count = 5

Fig. 5.13 | break statement exiting a for statement.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

5.9 break and continue Statements
(cont.)

« The cont 1nue statement, when executed in awh1 e,
for or do...wh1 1le statement, skips the remaining
statements in the body of that statement and proceeds
with the next iteration of the loop.

* Inwh1ile and do...wh1 1e statements, the loop-
continuation test evaluates immediately after the
continue statement executes.

* Inthe for statement, the increment expression
executes, then the loop-continuation test evaluates.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

1 // Fig. 5.14: fig05_14.cpp

2 // continue statement terminating an iteration of a for statement.
3 #include <iostream>

4 using namespace std;

5

6 int main(Q)

7 {

8 for (int count = 1; count <= 10; count++) // loop 10 times
9 {

10 if (count == 5) // if count is 5,

11 continue; // skip remaining code in loop

12

13 cout << count << " ";

14 } // end for

15

16 cout << "\nUsed continue to skip printing 5" << endl;

17 } // end main

1234678910
Used continue to skip printing 5

Fig. 5.14 | continue statement terminating a single iteration of a for statement.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

9.10 Logical Operators

« C++ provides logical operators that are used to
form more complex conditions by combining
simple conditions.

« The logical operators are && (logical AND),
| | (logical OR) and ! (logical NOT, also

called logical negation).

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

9.10 Logical Operators (cont.)

The && (logical AND) operator is used to
ensure that two conditions are both true

before we choose a certain path of execution.

The simple condition to the left of the &&
operator evaluates first.

If necessary, the simple condition to the right
of the && operator evaluates next.

he right side of a logical AND expression Is
evaluated only If the left side Is true.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Common Programming Error 5.13
Although 3 < x < 7 is a mathematically correct condi-
tion, it does not evaluate as you might expect in C+ +.

Use (3 <x & x <7) to get the proper evaluation in
C++.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

expression | expression2 expression| && expression2

false false false
false true false
true false false
true true true

Fig. 5.15 | && (logical AND) operator truth table.

expression | expression2 expression| || expression2
false false false
false true true
true false true
true true true
Fig. 5.16 | || (logical OR) operator truth table.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

1 // Fig. 5.18: fig05_18.cpp

2 // Logical operators.

3 #include <iostream>

4 using namespace std;

5

6 1int mainQ)

7 {

8 // create truth table for & (logical AND) operator
9 cout << boolalpha << "Logical AND (&&)"

10 << "\nfalse && false: " << (false && false)

11 << "\nfalse && true: " << (false && true)

12 << "\ntrue && false: " << (true && false)

13 << "\ntrue &% true: " << (true &% true) << "\n\n";
14

15 // create truth table for || (logical OR) operator
16 cout << "Logical OR (|[)"

17 << "\nfalse || false: " << (false || false)

18 << "\nfalse || true: " << (false || true)

19 << "\ntrue || false: " << (true || false)
20 << "\ntrue || true: " << (true || true) << "\n\n";
21

Fig. 5.18 | Logical operators.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

9.10 Logical Operators (cont.)

C++ provides the ! (logical NOT, also called
logical negation) operator to “reverse” a
condition’s meaning.

The unary logical negation operator has only a
single condition as an operand.

You can often avoid the ! operator by using an
appropriate relational or equality operator.

Figure 5.17 is a truth table for the logical
negation operator (!).

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

22

23

24

25 << "\n!ltrue:
26 } // end main

// create truth table for !
cout << "Logical NOT ()"
<< "\nl!false: " << (!false)

<< (!true) << endl;

Logical AND (&&)

false && false: false
false & true: false
true && false: false

true && true: true

Logical OR (]|)

false || false: false
false || true: true
true || false: true
true || true: true

Logical NOT (!)
Ifalse: true
ltrue: false

Fig. 5.18 | Logical operators. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

(logical negation) operator

9.11 Confusing the Equality (==) and
Assignment (=) Operators

Accidentally swapping the operators == (equality) and =
(assignment).

« Damaging because they ordinarily do not cause syntax errors.

- Rather, statements with these errors tend to compile correctly and
the programs run to completion, often generating incorrect results
through runtime logic errors.

« [Note: Some compilers issue a warning when =is used in a
context where ==typically is expected.]
« Two aspects of C++ contribute to these problems.

— One is that any expression that produces a value can be used in the
decision portion of any control statement.

— The second Is that assignments produce a value—namely, the value
assigned to the variable on the left side of the assignment operator.

* Any nonzero value is interpreted as true

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Common Programming Error 5.14
Using operator == for assignment and using operator =
for equality are logic errors.

Error-Prevention Tip 5.3

Programmers normally write conditions such as x ==
with the variable name on the left and the constant on
the right. By placing the constant on the left, as in 7 ==
X, you'll be protected by the compiler if you accidentally
replace the == operator with =. The compiler treats this
as a compilation error, because you can’t change the val-
ue of a constant. This will prevent the potential devasta-
tion of a runtime logic error.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

9.11 Confusing the Equality (==) and
Assignment (=) Operators (cont.)

 Variable names are said to be lvalues (for “left

values”) because they can be used on the left
side of an assignment operator.

 Constants are said to be rvalues (for “right
values™) because they can be used on only the
right side of an assignment operator.

e Lvalues can also be used as rvalues, but not
Vice versa.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Questions

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

16

