

• The C++ Standard Library is divided into many portions,
each with its own header file.

• The header files contain the function prototypes for the
related functions that form each portion of the library.

• The header files also contain definitions of various class
types and functions, as well as constants needed by those
functions.

• A header file ―instructs‖ the compiler on how to interface
with library and user-written components.

• Figure 6.7 lists some common C++ Standard Library header
files, most of which are discussed later in the book.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7

• The element of chance can be in-troduced into computer
applications by using the C++ Standard Library function
rand.

• The function rand generates an unsigned integer between
0 and RAND_MAX (a symbolic constant defined in the
<cstdlib> header file).

• The value of RAND_MAX must be at least 32767—the
maximum positive value for a two-byte (16-bit) integer.

• For GNU C++, the value of RAND_MAX is 2147483647; for
Visual Studio, the value of RAND_MAX is 32767.

• If rand truly produces integers at random, every number
between 0 and RAND_MAX has an equal chance (or
probability) of being chosen each time rand is called.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8

• The function prototype for the rand function

is in <cstdlib>.

• To produce integers in the range 0 to 5, we use

the modulus operator (%) with rand:
•rand() % 6

– This is called scaling.

– The number 6 is called the scaling factor. Six

values are produced.

• We can shift the range of numbers produced

by adding a value.
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11

• To show that the numbers produced by rand
occur with approximately equal likelihood,

Fig. 6.9 simu-lates 6,000,000 rolls of a die.

• Each integer in the range 1 to 6 should ap-pear

approximately 1,000,000 times.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15

• Executing the program of Fig. 6.8 again produces

exactly the same sequence of values.

– This repeatability is an important characteristic of function

rand.

– Essential for proving that program works and for

debugging.

• Function rand actually generates pseudorandom

numbers.

– Repeatedly calling rand produces a sequence of numbers

that appears to be random.

– The sequence repeats itself each time the program executes.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16

• Once a program has been debugged, it can be

conditioned to produce a different sequence of

random numbers for each execution.

• This is called randomizing and is

accomplished with the C++ Standard Library

function srand.

• Function srand takes an unsigned integer

argument and seeds the rand function to

produce a different sequence of random

numbers for each execution.©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19

• To randomize without having to enter a seed each

time, we may use a statement like
• srand(time(0));

• This causes the computer to read its clock to obtain

the value for the seed.

• Function time (with the argument 0 as written in the

preceding statement) typically re-turns the current

time as the number of seconds since January 1, 1970,

at midnight Greenwich Mean Time (GMT).

• The function prototype for time is in <ctime>.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20

• To produce random numbers in a specific

range use:
•number = shiftingValue + rand() %
scalingFactor;

• where shiftingValue is equal to the first

number in the desired range of consecutive

integers and scalingFactor is equal to the

width of the de-sired range of consecutive

integers.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21

• An enumeration, introduced by the keyword enum and

followed by a type name, is a set of integer constants

represented by identifiers.

• The values of these enumeration constants start at 0,

unless specified otherwise, and increment by 1.

• The identifiers in an enum must be unique, but

separate enumeration constants can have the same

integer value.

• Variables of an enum type can be assigned only one

of the values declared in the enumeration.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22

• Another popular enumeration is
• enum Months { JAN = 1, FEB, MAR, APR, MAY,
JUN, JUL, AUG,

SEP, OCT, NOV, DEC };

– creates user-defined type Months with enumeration

constants representing the months of the year.

– The first value in the preceding enumeration is explicitly

set to 1, so the remaining values increment from 1,

resulting in the values 1 through 12.

• Any enumeration constant can be assigned an integer

value in the enumeration definition.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 23

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24

• Local variables declared static are still

known only in the function in which they’re

declared, but, unlike automatic variables,

static local variables retain their values

when the function returns to its caller.

• The next time the function is called, the

static local variables contain the values

they had when the function last completed

execution.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 25

• The portion of the program where an identifier

can be used is known as its scope.

• Four scopes for an identifier

– function scope,

– global namespace scope,

– local scope and

– function-prototype scope.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26

• An identifier declared outside any function or class

has global namespace scope.

– Global variables, function definitions and function

prototypes placed outside a function

• Identifiers declared inside a block have local scope.

– Local scope begins at the identifier’s declaration and ends

at the terminating right brace (}) of the block in which the

identifier is declared.

– Local vari-ables and function parameters.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27

• Any block can contain variable declara-tions.

• When blocks are nested and an identifier in an outer

block has the same name as an identifier in an inner

block, the identifier in the outer block is ―hidden‖

until the inner block terminates.

• Local variables declared static still have local

scope, even though they exist from the time the

program begins execution.

• The only identifiers with function prototype scope are

those used in the parameter list of a function

prototype.
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 28

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 30

• To understand how C++ performs function calls, we

first need to consider a data structure (i.e., collection

of related data items) known as a stack.

• Analogous to a pile of dishes.

– When a dish is placed on the pile, it’s normally placed at

the top (referred to as pushing).

– Similarly, when a dish is removed from the pile, it’s

normally removed from the top (referred to as popping).

• Last-in, first-out (LIFO) data structures—the last item

pushed (inserted) is the first item popped (removed).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31

• One of the most important mechanisms for computer
science students to understand is the function call stack (or
program execution stack).
– supports the function call/return mechanism.

– Also supports the creation, maintenance and destruction of each
called function’s automatic variables.

• Each function eventually must return control to the function
that called it.

• Each time a function calls another function, an entry is
pushed onto the function call stack.
– This entry, called a stack frame or an activation record, contains the

return address that the called function needs in order to return to the
calling function.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32

• When a function call returns, the stack frame

for the function call is popped, and control

transfers to the return address in the popped

stack frame.

• Stack frames also maintain the memory for

local automatica variables.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 33

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 34

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 35

• In C++, an empty parameter list is specified by

writing either void or nothing at all in

parentheses.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 36

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 37

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 38

• C++ provides inline functions to help reduce function call
overhead—especially for small functions.

• Placing the qualifier in-line before a function’s return
type in the function definition ―advises‖ the compiler to
generate a copy of the function’s code in place (when
appropriate) to avoid a function call.

• Trade-off
– Multiple copies of the function code are inserted in the program

(often making the program larger) rather than there being a single
copy of the function to which control is passed each time the
function is called.

• The complete function definition must appear before the
code is inlined so that the compiler knows how to expand a
function call into its inlined code.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 39

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 40

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 41

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 42

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 43

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 44

45©1992-2010 by Pearson Education, Inc. All Rights Reserved.

