Lecture 12:
Functions

loan Raicu
Department of Electrical Engineering & Computer Science
Northwestern University

EECS 211
Fundamentals of Computer Programming ||
April 16th, 2010

C++ Standard Library Header Files

« The C++ Standard Library is divided into many portions,
each with its own header file.

» The header files contain the function prototypes for the
related functions that form each portion of the library.

 The header files also contain definitions of various class
types and functions, as well as constants needed by those
functions.

* A header file “instructs” the compiler on how to interface
with library and user-written components.

« Figure 6.7 lists some common C++ Standard Library header
files, most of which are discussed later in the book.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2

Standard Library
header file Explanation

<iostream> Contains function prototypes for the C++ standard input and standard
output functions, introduced in Chapter 2, and is covered in more
detail in Chapter 15, Stream Input/Output. This header file replaces

header file <iostream. h>.

<iomanip> Contains function prototypes for stream manipulators that format
streams of data. This header file is first used in Section 4.9 and is dis-
cussed in more detail in Chapter 15, Stream Input/Output. This header
file replaces header file <iomanip.hs.

<cmath> Contains function prototypes for math library functions (discussed in
Section 6.3). This header file replaces header file <math. h>.

<cstdlib> Contains function prototypes for conversions of numbers to text, text
to numbers, memory allocation, random numbers and various other
utility functions. Portions of the header file are covered in Section 6.7;
Chapter 11, Operator Overloading; String and Array Objects;
Chapter 16, Exception Handling; Chapter 21, Bits, Characters,
C Strings and structs; and Appendix E C Legacy Code Topics. This
header file replaces header file <std1ib.h>.

Fig. 6.7 | C++ Standard Library header files. (Part | of 5.)
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3

Standard Library
header file

<ctime>

<vectors>, <list>,
<deque>, <queue>,
<stack>, <map>,
<set>, <bitset>

<cctype>

<cstring>

Explanation

Contains function prototypes and types for manipulating the time and
date. This header file replaces header file <time.h>. This header file is
used in Section 6.7.

These header files contain classes that implement the C++ Standard
Library containers. Containers store data during a program’s execution.
The <vectors header is first introduced in Chapter 7, Arrays and Vec-
tors. We discuss all these header files in Chapter 22, Standard Template
Library (STL).

Contains function prototypes for functions that test characters for cer-
tain properties (such as whether the character is a digit or a punctua-
tion), and function prototypes for functions that can be used to convert
lowercase letters to uppercase letters and vice versa. This header file
replaces header file <ctype.h>. These topics are discussed in

Chapter 21, Bits, Characters, C Strings and structs.

Contains function prototypes for C-style string-processing functions.
This header file replaces header file <string.h>. This header file is used
in Chapter 11, Operator Overloading; String and Array Objects.

Fig. 6.7 | C++ Standard Library header files. (Part 2 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Standard Library
header file

<typeinfo>

<exception>,
<stdexcept>

<memory>

<fstream>

<string>

<sstream>

<functional>

Explanation

Contains classes for runtime type identification (determining data types
at execution time). This header file is discussed in Section 13.8.

These header files contain classes that are used for exception handling

(discussed in Chapter 16, Exception Handling).

Contains classes and functions used by the C++ Standard Library to
allocate memory to the C++ Standard Library containers. This header is
used in Chapter 16, Exception Handling.

Contains function prototypes for functions that perform input from
files on disk and output to files on disk (discussed in Chapter 17, File
Processing). This header file replaces header file <fstream. h>.

Contains the definition of class string from the C++ Standard Library
(discussed in Chapter 18, Class string and String Stream Processing).

Contains function prototypes for functions that perform input from
strings in memory and output to strings in memory (discussed in
Chapter 18, Class string and String Stream Processing).

Contains classes and functions used by C++ Standard Library algo-
rithms. This header file is used in Chapter 22.

Fig. 6.7 | C++ Standard Library header files. (Part 3 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Standard Library
header file

<iterator>

<algorithm>

<cassert>

<cfloat>

<climits>

<cstdio>

<locale>

Explanation

Contains classes for accessing data in the C++ Standard Library contain-

ers. This header file is used in Chapter 22.

Contains functions for manipulating data in C++ Standard Library con-
tainers. This header file is used in Chaprter 22.

Contains macros for adding diagnostics that aid program debugging.
This replaces header file <assert.h> from pre-standard C++. This
header file is used in Appendix E, Preprocessor.

Contains the floating-point size limits of the system. This header file
replaces header file <float. h>.

Contains the integral size limits of the system. This header file replaces
header file <1imits.h>.

Contains function prototypes for the C-style standard input/output
library functions. This header file replaces header file <stdio.h>.

Contains classes and functions normally used by stream processing to
process data in the natural form for different languages (e.g., monetary
formats, sorting strings, character presentation, etc.).

Fig. 6.7 | C++ Standard Library header files. (Part 4 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Standard Library

header file Explanation

<limits> Contains classes for defining the numerical dara type limits on each
computer platform.

<utility> Contains classes and functions that are used by many C++ Standard
Library header files.

Fig. 6.7 | C++ Standard Library header files. (Part 5 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7

6.7 Case Study: Randem Number
Generation

The element of chance can be in-troduced into computer
applications by using the C++ Standard Library function
rand.

The function rand generates an unsigned integer between
0 and RAND_MAX (a symbolic constant defined in the
<cstd11b> header file).

The value of RAND_MAX must be at least 32767—the
maximum positive value for a two-byte (16-bit) integer.

For GNU C++, the value of RAND_MAX 15 2147483647: for
Visual Studio, the value of RAND_MAX 1Is 32767.

If rand truly produces integers at random, every number
between 0 and RAND_MAX has an equal chance (or
probability) of being chosen each time rand s called.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

6.7 Case Study: Randem Numler
Generation (cont.)

 The function prototype for the rand function
Isin <cstd11b>.

« To produce integers in the range 0 to 5, we use
the modulus operator (%) with rand:
erand() % 6

— This is called scaling.

— The number 6 is called the scaling factor. Six
values are produced.

 \We can shift the range of numbers produced
by adding a \ég!ylgy Pearson Education, Inc. All Rights Reserved.

oo ~NSUNhE WN -

10
11
12
13
14
15
16
17
18
19
20

// Fig. 6.8: fig06_08.cpp

// Shifted and scaled random integers.

#include <iostream>

#include <iomanip>

#include <cstdlib> // contains function prototype for rand
using namespace std;

int main(Q)
{
// loop 20 times
for (int counter = 1; counter <= 20; counter++)
{
// pick random number from 1 to 6 and output it
cout << setw(10) << (1 + rand() % 6);

// if counter is divisible by 5, start a new line of output
if (counter % 5 == 0)
cout << endl;
} // end for
} // end main

Fig. 6.8 | Shifted, scaled integers produced by 1 + rand() % 6. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

10

N OO = O
W N R

[e2 o) ¥; W)
FoN SN, WV, |
=N WO

Fig. 6.8 | Shifted, scaled integers produced by 1 + rand() % 6. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

11

6.7 Case Study: Random Number
Generation (cont.)

 To show that the numbers produced by rand

occur with approximately equal likelihood,
Fig. 6.9 simu-lates 6,000,000 rolls of a die.

 Each integer in the range 1 to 6 should ap-pear
approximately 1,000,000 times.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

oo ~NSUNhE WN -

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// Fig. 6.9: fig06_09.cpp

// Roll a six-sided die 6,000,000 times.

#include <iostream>

#include <iomanip>

#include <cstdlib> // contains function prototype for rand
using namespace std;

int main(Q)

{

: // count of 1s rolled
: // count of 2s rolled
: // count of 3s rolled

int frequencyl = 0;
i // count of 4s rolled

int frequency2 =
int frequency3
int frequency4
int frequency5 =
int frequency6 =

I
OO OO OO

; // count of 5s rolled
: // count of 6s rolled

int face; // stores most recently rolled value

// summarize results of 6,000,000 rolls of a die
for (int roll = 1; roll <= 6000000; roll++)
{

face = 1 + rand() % 6; // random number from 1 to 6

Fig. 6.9 | Rolling a six-sided die 6,000,000 times. (Part | of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

13

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

// determine roll value 1-6 and increment appropriate counter

switch (face)

{

case 1:
++frequencyl;
break;

case 2:
++frequency?2;
break;

case 3:
++frequency3;
break;

case 4:
++frequency4;
break;

case 5:
++frequency5;
break;

case 6:
++frequencyb;
break;

//

//

//

//

//

//

default: // invalid
cout << "Program
} // end switch

} // end for

increment the 1s

increment the 2s

increment the 3s

increment the 4s

increment the 5s

increment the 6s

value
should never get

counter

counter

counter

counter

counter

counter

here!";

Fig. 6.9 | Rolling a six-sided die 6 60858061t mese4RaH 2i@adoh, inc. All Rights Reserved.

14

49

50 cout << "Face" << setw(13) << "Frequency" << endl; // output headers
51 cout << 1" << setw(13) << frequencyl
52 << "\n 2" << setw(13) << frequency2
53 << "\n 3" << setw(13) << frequency3
54 << "\n 4" << setw(13) << frequency4
55 << "\n 5" << setw(13) << frequency5
56 << "\n 6" << setw(13) << frequencyb6 << endl;
57 1} // end main
Face Frequency
1 999702
2 1000823
3 999378
4 998898
5 1000777
6 1000422

Fig. 6.9 | Rolling a six-sided die 6,000,000 times. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

15

6.7 Case Study: Random Numler
Generation (cont.)

 EXxecuting the program of Fig. 6.8 again produces
exactly the same sequence of values.

— This repeatability is an important characteristic of function
rand.

— Essential for proving that program works and for
debugging.
 Function rand actually generates pseudorandom
numbers.

— Repeatedly calling rand produces a sequence of numbers
that appears to be random.

— The sequence repeats itself each time the program executes.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16

6.7 Case Study: Randoin Number
Generation (cont.)

« Once a program has been debugged, it can be
conditioned to produce a different sequence of
random numbers for each execution.

 This is called randomizing and is
accomplished with the C++ Standard Library
function srand.

« Function srand takes an unsigned integer
argument and seeds the rand function to
produce a different sequence of random
numbers for each.eXecltiON . e .

oo ~NSUNhE WN -

10
11
12
13
14
15
16
17
18
19
20
21

// Fig. 6.10: fig06_10.cpp

// Randomizing die-rolling program.
#include <iostream>

#include <iomanip>

#include <cstdlib> // contains prototypes for functions srand and rand

using namespace std;

int main(Q)

{

unsigned seed; // stores the seed entered by the user
cout << "Enter seed: ";

cin >> seed;

srand(seed); // seed random number generator

// loop 10 times
for (int counter = 1; counter <= 10; counter++)
{
// pick random number from 1 to 6 and output it
cout << setw(10) << (1 + rand() % 6);

Fig. 6.10 | Randomizing the die-rolling program. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

18

22 // if counter 1is divisible by 5, start a new line of output

23 if (counter % 5 == 0)
24 cout << endl;
25 } // end for

26 } // end main

Enter seed: 67

6 1 4 6 2

1 6 1 6 4
Enter seed: 432

4 6 3 1 6

3 1 5 4 2
Enter seed: 67

6 1 4 6 2

1 6 1 6 4

Fig. 6.10 | Randomizing the die-rolling program. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

19

6.7 Case Study: Randoin Number
Generation (cont.)

To randomize without having to enter a seed each
time, we may use a statement like

e srand(time(0));
This causes the computer to read its clock to obtain
the value for the seed.

Function t 1me (with the argument O as written in the
preceding statement) typically re-turns the current
time as the number of seconds since January 1, 1970,
at midnight Greenwich Mean Time (GMT).

The function prototype for t1me isin <ctime>.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20

6.7 Case Study: Randem Numler
Generation (cont.)

* To produce random numbers in a specific
range use:

s number = shiftingValue + rand() %
scalingFactor;

 where shiftingValue Is equal to the first
number in the desired range of consecutive
Integers and scalingFactor is equal to the

width of the de-sired range of consecutive
Integers.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

21

6.8 Case Study: Gaine of Chance;
Introducing enum (cont.)

An enumeration, introduced by the keyword enum and
followed by a type name, Is a set of integer constants
represented by identifiers.

The values of these enumeration constants start at O,
unless specified otherwise, and increment by 1.

The identifiers in an enum must be unique, but
separate enumeration constants can have the same
Integer value.

Variables of an enum type can be assigned only one
of the values declared in the enumeration.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22

6.6 Case Study: Gamme of Chance;
Introducing enum (cont.)

 Another popular enumeration is

e enum Months { JAN = 1, FEB, MAR, APR, MAY,
JUN, JUL, AUG,
SEP, OCT, NOV, DEC };

— creates user-defined type Months with enumeration
constants representing the months of the year.

— The first value in the preceding enumeration is explicitly
set to 1, so the remaining values increment from 1,
resulting in the values 1 through 12.

« Any enumeration constant can be assigned an integer
value in the enumeration definition.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

23

Good Programming Practice 6.3
m Using enumerations rather than integer constants can
make programs clearer. You can set the value of an enu-
meration constant once in the enumeration declaration.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24

6.9 Storage Classes (cont.)

 Local variables declared static are still
known only 1n the function in which they’re
declared, but, unlike automatic variables,
static local variables retain their values
when the function returns to its caller.

* The next time the function is called, the
static local variables contain the values
they had when the function last completed
execution.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

25

6.10 Scope Rules

 The portion of the program where an identifier
can be used Is known as Iits scope.

 Four scopes for an identifier
— function scope,
— global namespace scope,

— local scope and
— function-prototype scope.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26

6.10 Scope Rules (cont.)

* An identifier declared outside any function or class
has global namespace scope.

— Global variables, function definitions and function
prototypes placed outside a function

« |dentifiers declared inside a block have local scope.

— Local scope begins at the 1dentifier’s declaration and ends
at the terminating right brace (}) of the block in which the
Identifier is declared.

— Local vari-ables and function parameters.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

27

6.10 Scope Rules (cont.)

Any block can contain variable declara-tions.

When blocks are nested and an identifier in an outer
block has the same name as an identifier in an inner
block, the 1dentifier in the outer block 1s “hidden”
until the inner block terminates.

Local variables declared stat1c still have local
scope, even though they exist from the time the
program begins execution.

The only identifiers with function prototype scope are
those used In the parameter list of a function
prototype.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 28

Common Programming Error 6.9

Accidentally using the same name for an identifier in an
inner block that is used for an identifier in an outer
block, when in fact you want the identifier in the outer
block to be active for the duration of the inner block, is
typically a logic error.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

29

1 // Fig. 6.12: fig06_12.cpp

2 // A scoping example.

3 #include <iostream>

4 using namespace std;

5

6 void uselocal(); // function prototype

7 void useStaticLocal(); // function prototype

8 void useGlobal(); // function prototype

9

10 1int x = 1; // global variable

11

12 1int main()

13 {

14 cout << "global x in main is " << x << endl;

15

16 int x = 5; // local variable to main

17

18 cout << "local x in main's outer scope is " << x << endl;
19
20 { // start new scope
21 int x = 7; // hides both x in outer scope and global x
22
23 cout << "local x in main's inner scope is " << X << endl;
24 } // end new scope

Fig. 6.12 | Scoping example. (Part | of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

30

6.11 Funetion Call Stack and Activation
Records

» To understand how C++ performs function calls, we
first need to consider a data structure (i.e., collection
of related data items) known as a stack.

 Analogous to a pile of dishes.

— When a dish 1s placed on the pile, 1t’s normally placed at
the top (referred to as pushing).

— Similarly, when a dish 1s removed from the pile, 1t’s
normally removed from the top (referred to as popping).

 Last-in, first-out (LIFO) data structures—the last item
pushed (inserted) is the first item popped (removed).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31

6.11 Funetion Call Stack aind Activation
Records (cont.)

* One of the most important mechanisms for computer
science students to understand is the function call stack (or
program execution stack).

— supports the function call/return mechanism.
— Also supports the creation, maintenance and destruction of each
called function’s automatic variables.

« Each function eventually must return control to the function
that called it.

- Each time a function calls another function, an entry is
pushed onto the function call stack.

— This entry, called a stack frame or an activation record, contains the
return address that the called function needs in order to return to the
calling function.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32

6.11 Funetion Call Stack aind Activation
Records (cont.)

 When a function call returns, the stack frame
for the function call is popped, and control

transfers to the return address in the popped
stack frame.

o Stack frames also maintain the memory for
local automatica variables.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 33

oo ~NSUNhE WN -

10
11
12
13
14
15
16
17
18
19
20

// Fig. 6.13: fig06_13.cpp

// square function used to demonstrate the function
// call stack and activation records.

#include <iostream>

using namespace std;

int square(int); // prototype for function square

int main()

{

int a = 10; // value to square (Tocal automatic variable in main)

cout << a <<
} // end main

squared: << square(a) << endl; // display a squared

// returns the square of an integer
int square(int x) // x is a local variable
{
return x * x; // calculate square and return result
} // end function square

Fig. 6.13 | square function used to demonstrate the function call stack and
activation records.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

34

10 squared: 100

Fig. 6.13 | square function used to demonstrate the function call stack and
activation records.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 35

* In C++, an empty parameter list is specified by
writing either vo1d or nothing at all in
parentheses.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 36

oo ~NSUNhE WN -

10
11
12
13
14
15
16
17
18
19
20
21

// Fig. 6.17: fig06_17.cpp

// Functions that take no arguments.
#include <iostream>

using namespace std;

void functionl(); // function that takes no arguments
void function2(void); // function that takes no arguments

int main()
{
functionl(); // call functionl with no arguments
function2(); // call function2 with no arguments
} // end main

// functionl uses an empty parameter list to specify that
// the function receives no arguments
void functionl()
{
cout << "functionl takes no arguments" << endl;
} // end functionl

Fig. 6.17 | Functions that take no arguments. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

37

22 // function2 uses a void
23 // the function receives
24 void function2(void)
25 {

parameter Tist to specify that
no arguments

26 cout << "function2 also takes no arguments” << endl;

27 1} // end function2

functionl takes no arguments

function2 also takes no arguments

Fig. 6.17 | Functions that take no arguments. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

38

6.13 Inline Funetions

C++ provides inline functions to help reduce function call
overhead—especially for small functions.

Placing the qualifier in—11ne before a function’s return
type 1n the function definition “advises” the compiler to
generate a copy of the function’s code 1n place (when
appropriate) to avoid a function call.

Trade-off

— Multiple copies of the function code are inserted in the program
(often making the program larger) rather than there being a single
copy of the function to which control is passed each time the
function is called.
The complete function definition must appear before the
code is inlined so that the compiler knows how to expand a
function call into its inlined code.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 39

Software Engineering Observation 6.10

Any change to an inline function requires all clients of
the function to be recompiled. This can be significant in
some program development and maintenance situations.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 40

g Good Programming Practice 6.5
The inline qualifier should be used only with small,
frequently used functions.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 41

Performance Tip 6.4
Using inl1ine functions can reduce execution time but
may increase program size.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 42

Ooe~NGOWNbh WN =

23

// Fig. 6.18: fig06_18.cpp

// Using an inline function to calculate the volume of a cube.
#include <iostream>

using namespace std;

// Definition of inline function cube. Definition of function appears
// before function is called, so a function prototype is not required.
// First Tine of function definition acts as the prototype.
inline double cube(const double side)
{

return side * side * side; // calculate cube
} // end function cube

int main()

{

doubTle sideValue; // stores value entered by user

cout << "Enter the side length of your cube: ";
cin >> sideValue; // read value from user

// calculate cube of sideValue and display result
cout << "Volume of cube with side "
<< sideValue << " 1is << cube(sideValue) << endl;
} // end main

Fig. 6.18 | inTine function that calculates the volume of a cube. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

43

Enter the side length of your cube: 3.5
Volume of cube with side 3.5 1is 42.875

Fig. 6.18 | inline function that calculates the volume of a cube. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 44

Questions

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

45

