

• Two ways to pass arguments to functions in many
programming languages are pass-by-value and
pass-by-reference.

• When an argument is passed by value, a copy of
the argument’s value is made and passed (on the
function call stack) to the called function.
– Changes to the copy do not affect the original

variable’s value in the caller.

• To specify a reference to a constant, place the
const qualifier before the type specifier in the
parameter declaration.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3

• With pass-by-reference, the caller gives the

called function the ability to access the caller’s

data directly, and to modify that data.

• A reference parameter is an alias for its

corresponding argument in a function call.

• To indicate that a function parameter is passed

by reference, simply follow the pa-rameter’s

type in the function prototype by an ampersand

(&); use the same convention when listing the

pa-rameter’s type in the function header.©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10

• References can also be used as aliases for

other variables within a function.

• Reference variables must be initialized in their

declarations and cannot be reassigned as

aliases to other variables.

• Once a reference is declared as an alias for

another variable, all opera-tions supposedly

performed on the alias are actually performed

on the original variable.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13

• Functions can return references, but this can be

dangerous.

• When return-ing a reference to a variable

declared in the called function, the variable

should be declared static in that function.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15

• It’s possible to declare local and global

variables of the same name.

• C++ provides the unary scope resolution

operator (::) to access a global variable when

a local variable of the same name is in scope.

• Using the unary scope resolution operator (::)

with a given variable name is optional when

the only variable with that name is a global

variable.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18

• C++ enables several functions of the same name to be

defined, as long as they have different signatures.

• This is called function overloading.

• The C++ compiler selects the proper function to call

by examining the number, types and order of the

arguments in the call.

• Function overloading is used to create sev-eral

functions of the same name that perform similar

tasks, but on different data types.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21

• Overloaded functions are distinguished by
their signatures.

• A signature is a combination of a function’s
name and its parameter types (in order).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22

• This chapter introduces the important topic of

data structures—collections of related data

items.

• Arrays are data structures consisting of related

data items of the same type.

• After discussing how arrays are declared,

created and initialized, we present a series of

practical examples that demonstrate several

common array manipulations.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• An array is a consecutive group of memory locations that all have the
same type.

• To refer to a particular location or element in the array, spec-ify the
name of the array and the position number of the particular element.

• Figure 7.1 shows an integer array called c.

• 12 elements.

• The position number is more formally called a subscript or index
(this number specifies the number of elements
from the beginning of the array).

• The first element in every array has subscript 0 (zero) and is sometimes
called the zeroth element.

• The highest subscript in array c is 11, which is 1 less than the number
of elements in the array (12).

• A subscript must be an integer or integer expression (using any integral
type).

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• Arrays occupy space in memory.

• To specify the type of the elements and the

number of elements required by an array use a

declaration of the form:
•type arrayName[arraySize];

• The compiler reserves the appropriate amount

of memory.

• Arrays can be declared to contain values of

any nonreference data type.
©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• The elements of an array also can be initialized in the array
declaration by following the array name with an equals sign
and a brace-delimited comma-separated list of initializers.

• The program in Fig. 7.4 uses an initializer list to initialize
an integer array with 10 values (line 10) and prints the array
in tabular format (lines 12–16).

• If there are fewer initializers than elements in the array, the
remaining array elements are initialized to zero.

• If the array size is omitted from a declaration with an
initializer list, the compiler determines the number of
elements in the array by counting the number of elements in
the initializer list.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• Figure 7.5 sets the elements of a 10-element array s
to the even inte-gers 2, 4, 6, …, 20 (lines 14–15) and

prints the array in tabular format (lines 17–21).

• Line 10 uses the const qualifier to declare a so-called

constant variable arraySize with the value 10.

• Constant vari-ables must be initialized with a constant

expression when they’re declared and cannot be

modified thereafter.

• Constant variables are also called named constants or

read-only variables.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• Often, the elements of an array represent a

series of values to be used in a calculation.

• The program in Fig. 7.8 sums the values

contained in the 10-element integer ar-ray a.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

43©1992-2010 by Pearson Education, Inc. All Rights Reserved.

