Lecture 13:

Functions
&

Arrays

loan Raicu
Department of Electrical Engineering & Computer Science
Northwestern University

EECS 211
Fundamentals of Computer Programming ||
April 19th, 2010

6.14 References and Reference
Parameters

» Two ways to pass arguments to functions in many
programming languages are pass-by-value and
pass-by-reference.

* When an argument iIs passed by value, a copy of
the argument’s value is made and passed (on the
function call stack) to the called function.

— Changes to the copy do not affect the original
variable’s value in the caller.

» To specify a reference to a constant, place the
const qualifier before the type specifier in the
parameter declaration.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2

Performance Tip 6.5
One disadvantage of pass-by-value is that, if a large data
item is being passed, copying that data can take a consid-
erable amount of execution time and memory space.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3

6.14 References and Reference
Parameters (cont.)

 With pass-by-reference, the caller gives the
called function the ability to access the caller’s
data directly, and to modify that data.

A reference parameter Is an alias for Its
corresponding argument in a function call.

 To indicate that a function parameter Is passed
by reference, simply follow the pa-rameter’s
type In the function prototype by an ampersand
(&); use the same convention when listing the

pa-rameter’s.type,m.the.function.header. 4

Performance Tip 6.6
Pass-by-reference is good for performance reasons, be-
cause it can eliminate the pass-by-value overhead of copy-
ing large amounts of data.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5

Software Engineering Observation 6.12
Pass-by-reference can weaken security; the called
function can corrupt the caller’s data.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6

Common Programming Error 6.1 1

Because reference parameters are mentioned only by
name in the body of the called function, you might inad-
vertently treat reference parameters as pass-by-value pa-
rameters. This can cause unexpected side effects if the
original variables are changed by the function.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

COVOO~NOGOWVNLEWN =

B2WN=000O~NOTUNDhWN -

// Fig. 6.19: fig06_19.cpp

// Comparing pass-by-value and pass-by-reference with referentces.

#include <jostream>
using namespace std;

int squareByValue(int); // function prototype (value pass)

void squareByReference(int &); // function prototype (reference pass)

int main()
{
int x = 2; // value to square using squareByValue
int z = 4; // value to square using squareByReference

// demonstrate squareByValue
cout << "x = " << x << " before squareByValue\n";
cout << "Value returned by squareByValue: "

<< squareByValue(x) << endl;

" "

cout << "x = " << x << " after squareByValue\n" << endl;

// demonstrate squareByReference
cout << "z = " << z << " before squareByReference" << endl;
squareByReference(z);

cout << "z = " << z << " after squareByReference” << endl;
} // end main

Fig. 6.19 | Passing arguments by value and by reference. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

25

26 // squareByValue multiplies number by itself, stores the
27 // result in number and returns the new value of number
28 int squareByValue(int number)

29 {

30 return number *= number; // caller's argument not modified
31 } // end function squareByValue

32

33 // squareByReference multiplies numberRef by itself and stores the result

34 // in the variable to which numberRef refers in function main
35 void squareByReference(int &numberRef)

36 {

37 numberRef *= numberRef; // caller's argument modified
38 } // end function squareByReference

X = 2 before squareByValue

Value returned by squareByValue: 4

x = 2 after squareByValue

z
z

4 before squareByReference
16 after squareByReference

Fig. 6.19 | Passing arguments by value and by reference. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

5 Performance Tip 6.7

For passing large objects, use a constant reference param-
eter to simulate the appearance and security of pass-by-
value and avoid the overhead of passing a copy of the
large object.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

10

6.14 Rererences and Reference
Parameters (cont.)

 References can also be used as aliases for
other variables within a function.

e Reference variables must be initialized in their
declarations and cannot be reassigned as
allases to other variables.

» Once a reference Is declared as an alias for
another variable, all opera-tions supposedly
performed on the alias are actually performed
on the original variable.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

11

1 // Fig. 6.20: fig06_20.cpp

2 // Initializing and using a reference.

3 #include <iostream>

4 using namespace std;

5

6 1int mainQ)

7 {

8 int x = 3;

9 int & = x; // y refers to (is an alias for) x

10
11 cout << "x = " << x << end] << "y = " << y << endl;
12 y = 7; // actually modifies x
13 cout << "x = " << x << end] << "y = " <<y << endl;

14 3} // end main

< X X
nn Il
NN W w

Fig. 6.20 | Initializing and using a reference.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

12

1 // Fig. 6.21: fig06_21.cpp

2 // References must be initialized.

3 #include <iostream>

4 using namespace std;

5

6 int main()

7 {

8 int x = 3;

9 int &y; // Error: y must be initialized

10

11 cout << "x = " << x << end] << "y = " <<y << endl;
12 y =7,

13 cout << "x = " << x << end] << "y = " <<y << endl;

14 3} // end main

Microsoft Vvisual C++ compiler error message:

C:\cpphtp7_examples\ch06\Fig06_21\fig06_21.cpp(9) : error C2530: 'y'
references must be initialized

GNU C++ compiler error message:

fig06_21.cpp:9: error: 'y' declared as a reference but not initialized

Fig. 6.21 | Uninitialized reference causes a syntax error.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

13

6.14 References and Reiference
Parameters (cont.)

* Functions can return references, but this can be
dangerous.

« When return-ing a reference to a variable
declared In the called function, the variable
should be declared static in that function.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

Common Programming Error 6.12

Returning a reference to an automatic variable in a
called function is a logic error. Some compilers issue a
warning when this occurs.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15

Unary Scope Resolution Operaior

* It’s possible to declare local and global
variables of the same name.

« C++ provides the unary scope resolution
operator (- :) to access a global variable when
a local variable of the same name Is In scope.

 Using the unary scope resolution operator (: :)
with a given variable name is optional when
the only variable with that name is a global
variable.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16

oo ~NSUNhE WN -

10
11
12
13
14
15

// Fig. 6.23: fig06_23.cpp

// Using the unary scope resolution operator.
#include <iostream>

using namespace std;

int number = 7; // global variable named number

int main(Q)

{

double number = 10.5; // local variable named number

// display values of Tlocal and global variables

cout << "Local double value of number = << number

<< "\nGlobal int value of number = " << ::number << endl;
} // end main

Local double value of number =
Global int value of number = 7

Fig. 6.23

10.5

variable name is ;:)ptional when the only variable with that
name is a global variable.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

17

Error-Prevention Tip 6.4

Avoid using variables of the same name for different
purposes in a program. Although this is allowed in vari-
ous circumstances, it can lead to errovs.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18

6.17 Funetion Overloading

C++ enables several functions of the same name to be
defined, as long as they have different signatures.

This is called function overloading.

The C++ compiler selects the proper function to call
by examining the number, types and order of the
arguments in the call.

Function overloading is used to create sev-eral
functions of the same name that perform similar
tasks, but on different data types.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19

oo ~NSUNhE WN -

10
11
12
13
14
15
16
17
18
19

// Fig. 6.24: fig06_24.cpp
// Overloaded functions.
#include <iostream>

using namespace std;

// function square for int values
int square(int x)

{

cout << "square of integer " << x << " is ";
return x * Xx;
} // end function square with int argument

// function square for double values
double square(double y)
{

cout << "square of double " <<y << " is ";
return y * vy;
} // end function square with double argument

Fig. 6.24 | Overloaded square functions. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20

20
21
22
23
24
25
26

int main()
{
cout << square(7); // calls int version
cout << endl;
cout << square(7.5); // calls double version
cout << endl;
} // end main

square of integer 7 is 49
square of double 7.5 1is 56.25

Fig. 6.24 | Overloaded square functions. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

21

 Overloaded functions are distinguished by
their signatures.

A signature 1s a combination of a function’s
name and Its parameter types (in order).

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

22

7.1 Introduction

 This chapter introduces the important topic of
data structures—collections of related data
Items.

 Arrays are data structures consisting of related
data items of the same type.

 After discussing how arrays are declared,
created and initialized, we present a series of
practical examples that demonstrate several
common array manipulations.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

7.2 Arrays

An array Is a consecutive group of memory locations that all have the
same type.

To refer to a particular location or element in the array, spec-ify the
name of the array and the position number of the particular element.

Figure 7.1 shows an integer array called c.
12 elements.

The position number is more formally called a subscript or index
(this number specifies the number of elements
from the beginning of the array).

The first element in every array has subscript O (zero) and is sometimes
called the zeroth element.

The highest subscript in array c is 11, which is 1 less than the number
of elements in the array (12).

A subscript must be an integer or integer expression (using any integral
type).

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Name of the array is ¢

Position number of the cl
element within the array i
cl

cl

Name of an individual —— c[
array element cl
cl

cl

cl

cl

c[10

c[11

Value

O 0 ~N & v B W N R O

| e e L e R e e e e S R S "= Dy S |

Fig. 7.1 | Array of 12 elements.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Common Programming Error 7.1

Note the difference between the “seventh element of the
array” and “array element 7.” Array subscripts begin at
0, so the “seventh element of the array” has a subscript of
6, while “array element 7” has a subscript of 7 and is ac-
tually the eighth element of the array. Unfortunately,
this distinction frequently is a source of off-by-one er-
rors. To avoid such errors, we refer to specific array ele-
ments explicitly by their array name and subscript
number (e.g., c[6] or c[7]).

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Operators

O 1

++ -- static_cast< fype>(operand)
++ - + - !

2 /%

+ -

< >>

< <= > >=

— 1=

&&

|

?:

= 4= = *= [= Y=

Associativity

left to right
left to right
left to right
right to left
left to right
left to right
left to right
left to right
left to right
left to right
left to right
right to left
right to left
left to right

Fig. 7.2 | Operator precedence and associativity.

Type

scope resolution
highest

unary (postfix)
unary (prefix)
multiplicative
additive
insertion/extraction
relational
equality

logical AND
logical OR
conditional
assignment

comma

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

7.8 Declaring Arrays

Arrays occupy space in memory.

To specify the type of the elements and the
number of elements required by an array use a
declaration of the form:

o type arrayName[arraySize J;

The compiler reserves the appropriate amount
of memory.

Arrays can be declared to contain values of
any nonreference data type.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

OoOo~NSNUNDh WN =

10
11
12
13
14
15
16
17
18
19
20

// Fig. 7.3: fig07_03.cpp
// Initializing an array.
#include <iostream>
#include <iomanip>

using namespace std;

int main()

{
int n[10 1; // n is an array of 10 integers

// initialize elements of array n to O
for (int i = 0; i < 10; i++)
nf i] =0; // set element at Tocation i to O

cout << "Element” << setw(13) << "Value" << endl;

// output each array element's value
for (int j = 0; j < 10; j++)
cout << setw(7) << j << setw(13) << n[j] << endl;
} // end main

Fig. 7.3 | Initializing an array’s elements to zeros and printing the array. (Part | of

2)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Element

oo~NOOTUVTh WNREO

<<
ja1]
—
c
(]

OO O OO0 OOO0OOo

Fig. 7.3 | Initializing an array’s elements to zeros and printing the array. (Part 2 of

2)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

7.4.2 Initializing an Array In a
Declaration with an Initializer List

The elements of an array also can be initialized in the array
declaration by following the array name with an equals sign
and a brace-delimited comma-separated list of initializers.

The program in Fig. 7.4 uses an initializer list to initialize
an integer array with 10 values (line 10) and prints the array
In tabular format (lines 12-16).

If there are fewer initializers than elements in the array, the
remaining array elements are initialized to zero.

If the array size is omitted from a declaration with an
Initializer list, the compiler determines the number of
elements in the array by counting the number of elements in
the initializer list.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

oo ~NSUNhE WN -

10
11
12
13
14
15
16
17

// Fig. 7.4: fig07_04.cpp

// Initializing an array in a declaration.
#include <iostream>

#include <iomanip>

using namespace std;

int main()
{
// use initializer 1list to initialize array n
int n[10 1 = { 32, 27, 64, 18, 95, 14, 90, 70, 60, 37 };

cout << "Element” << setw(13) << "Value" << endl;

// output each array element's value
for (int i = 0; 1 < 105 di++)
cout << setw(7) << i << setw(13) << n[1] << endl;
} // end main

Fig. 7.4 | Initializing the elements of an array in its declaration. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Element

oo~NOOTUVTh WNREO

Value
32
27
64
18
95
14
90
70
60
37

Fig. 7.4 | Initializing the elements of an array in its declaration. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

7.4.3 Specliying an Array’s Size with a
Constant Variable and Setting Array

Elements with Calculations

* Figure 7.5 sets the elements of a 10-element array s
to the even inte-gers 2, 4, 6, ..., 20 (lines 14-15) and
prints the array in tabular format (lines 17-21).

« Line 10 uses the const qualifier to declare a so-called
constant variable arrayS1ize with the value 10.

e Constant vari-ables must be initialized with a constant
expression when they’re declared and cannot be
modified thereafter.

e Constant variables are also called named constants or
read-only variables.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

1 // Fig. 7.5: fig07_05.cpp

2 // Set array s to the even integers from 2 to 20.

3 #include <iostream>

4 #include <iomanip>

5 using namespace std;

6

7 1int mainQ

8 {

9 // constant variable can be used to specify array size
10 const int arraySize = 10;

I

12 int s[arraySize]; // array s has 10 elements

13

14 for (int i = 0; i < arraySize; i++) // set the values
15 s[i]=2+2*1;

16

17 cout << "Element” << setw(13) << "Value" << endl;

18

19 // output contents of array s in tabular format
20 for (int j = 0; j < arraySize; j++)
21 cout << setw(7) << j << setw(13) << s[j] << endl;
22 } // end main

Fig. 7.5 | Generating values to be placed into elements of an array. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

m
J—
(]
3
()
=]
Ot
<
oY)
—
c
(0]

10
12
14
16
18
20

Ooo~NOYUVT B WNE

Fig. 7.5 | Generating values to be placed into elements of an array. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

1 // Fig. 7.6: fig07_06.cpp

2 // Using a properly initialized constant variable.

3 #include <iostream>

4 using namespace std;

5

6 int main(Q)

7 {

8 const int x = 7; // initialized constant variable
9
10 cout << "The value of constant variable x is: " << x << endl;
I1 } // end main

The value of constant variable x 1is: 7

Fig. 7.6 | Initializing and using a constant variable.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

= = —

// Fig. 7.7: fig07_07.cpp
// A const variable must be initialized.

int main()

{

const int x; // Error: x must be initialized

x = 7; // Error: cannot modify a const variable
} // end main

OoOo~NSNUNDh WN =

Microsoft Visual C++ compiler error message:

C:\cpphtp7_examples\ch07\fig07_07.cpp(6) : error C2734: 'x' : const object
must be initialized if not extern

C:\cpphtp7_examples\ch07\fig07_07.cpp(8) : error C3892: 'x' : you cannot
assign to a variable that is const

GNU C++ compiler error message:

fig07_07.cpp:6: error: uninitialized const ’x'
fig07_07.cpp:8: error: assignment of read-only variable

X

Fig. 7.7 | const variables must be initialized.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Common Programming Error 7.5

Only constants can be used to declare the size of automat-
ic and static arrays. Not using a constant for this purpose
is a compilation error.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

=

Good Programming Practice 7.2

Defining the size of an array as a constant variable in-
stead of a literal constant makes programs clearer. This
technique eliminates so-called magic numbers. For ex-
ample, repeatedly mentioning the size 10 in array-pro-
cessing code for a 10-element array gives the number 10
an artificial significance and can be confusing when the

program includes other 10s that have nothing to do with
the array size.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

7.4.4 summing the Elements of an Array

 Often, the elements of an array represent a
series of values to be used in a calculation.

* The program in Fig. 7.8 sums the values
contained Iin the 10-element integer ar-ray a.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

1 // Fig. 7.8: fig07_08.cpp

2 // Compute the sum of the elements of the array.

3 #include <iostream>

4 using namespace std;

5

6 int main(Q)

7 {

8 const int arraySize = 10; // constant variable indicating size of array
9 int a[arraySize] = { 87, 68, 94, 100, &3, 78, 85, 91, 76, 87 };
10 int total = 0;

11

12 // sum contents of array a

13 for (int i = 0; i < arraySize; i++)

14 total += a[i];

15

16 cout << "Total of array elements: " << total << endl;

17 } // end main

Total of array elements: 849

Fig. 7.8 | Computing the sum of the elements of an array.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Questions

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

43

